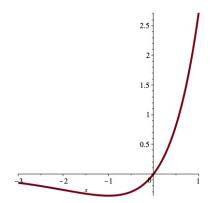
I: Section 6.3: 37, 47, 54

Exercise 37: For $f(x) = xe^x$, the product rule gives $f'(x) = 1e^x + xe^x = (1+x)e^x$ and $f''(x) = 1e^x + (1+x)e^x = (2+x)e^x$. Since e^x is positive for all x, the sign of the first derivative is the sign of 1+x and the sign of the second derivative is the sign of 2+x. Thus f' is negative for x < -1 and positive for x > -1. There is a relative minimum at x = -1 where the value of the function f is $-1e^{-1} = \frac{-1}{e}$. The second derivative f'' is negative for x < -2 and positive for x > -2. There is a point of inflection on the graph of f at $(-2, f(-2)) = (-2, \frac{-2}{e^2})$ where the graph changes concavity from negative to positive.



Exercise 37: Graph of xe^x

Exercise 47: $h(x) = 79.041 + 6.39x - e^{3.261 - 0.993x}$ has $h'(x) = 6.39 + 0.993xe^{3.261 - 0.993x}$ and $h''(x) = -.986049e^{3.261 - 0.993x}$.

- (a) Height at age $1 = h(1) = 75.771 \, cm$ and rate of growth $= h'(1) = 15.982 \, cm/yr$.
- (b) h''(x) is negative for all x so rate of growth is always decreasing. It is largest at x = 1/4 year = 3 months and smallest at x = 6 years.

Exercise 54: Revenue $R(x) = (\text{demand})(\text{price}) = xp_0e^{-ax}$ so $R'(x) = p_0e^{-ax}(1-ax)$ which switches from positive to negative at $x = \frac{1}{a}$. We maximize revenue when $x = \frac{1}{a}$ where $p = p_0e^{-1} = \frac{p_0}{e}$. For $p_0 = 300$, this is about \$110.36. The maximum revenue would be \$15000 $e^{-1} \approx 5518.19

II: Section 6.4: 19, 25, 31

Exercise 19: Let $u = 1 + 2\cos x$ so $du = -2\sin x \, dx$ and $\frac{-1}{2}du = \sin x \, dx$. Then

$$\int \frac{3\sin x}{1 + 2\cos x} \, dx = \int \frac{-3}{2} \frac{1}{u} \, du = \frac{-3}{2} \ln|u| + C = \frac{-3}{2} \ln|1 + 2\cos x| + C$$

Exercise 25: Write the integral as $\int \frac{\cot x^{1/3}}{x^{2/3}} dx = \int (\cot x^{1/3}) x^{-2/3} dx$. Note that $(x^{1/3})' = \frac{1}{3} x^{-2/3}$ and $\int \cot u \, du = \int \frac{\cos u}{\sin u} \, du = \ln|\sin u| + C$. Let $u = x^{1/3}$ so $3 \, du = x^{-2/3} dx$. Then $\int (\cot x^{1/3}) x^{-2/3} \, dx = 3 \int \cot u \, du = 3 \ln|\sin u| + C = 3 \ln|\sin x^{1/3}| + C$

Exercise 31: $\int \frac{\cos^2 x}{\sin x} dx = \int \frac{1-\sin^2}{\sin x} dx = \int \frac{1}{\sin x} - \frac{\sin^2 x}{\sin x} dx = \int \csc x - \sin x dx = \ln|\csc x - \cot x| + \cos x + C$

III: Section 6.5: 1, 8, 17

Exercise 1: Let $f(x) = 7^x$. Then $\ln f(x) = \ln 7^x = x \ln 7$ so $\frac{f'(x)}{f(x)} = \ln 7$ and hence $f'(x) = (\ln 7)f(x) = (\ln 7)7^x$.

Exercise 8: Let $f(x) = 3^{2-x^2}$ so $\ln f(x) = (2-x^2) \ln 3$ and $\frac{f'(x)}{f(x)} = (-2 \ln 3)x$ and $f'(x) = (-2 \ln 3)x3^{2-x^2}$

Exercise 17: Since e is a constant, we can use the Power Rule on the first term. The derivative of $x^e + e^x$ is $e^{x^e - 1} + e^x$.