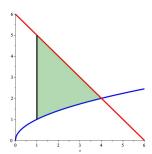
MATH 122: Calculus II Some Notes on Assignment 5 I: Section 5.1: 2, 13, 23, 27

Exercise 2: The curves x = 1 and $y = \sqrt{x}$ intersect at (1,1), x = 1 and x + y = 6 intersect at (1,5), and $y = \sqrt{x}$ and x + y = 6 intersect at (2,4).

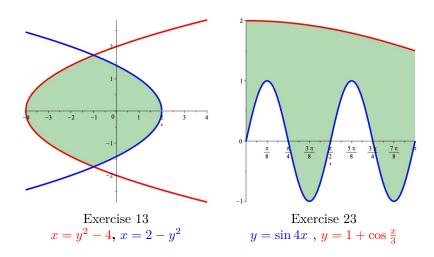
Slice the region into vertical slices so each slice goes from $y = \sqrt{x}$ to y = 6 - x. Area of region = $\int_{1}^{4} (6 - x) - \sqrt{x} \, dx$.



Exercise 2: x = 1, $y = \sqrt{x}$, x + y = 6

Exercise 13: The graph of $x=y^2-4$ is a parabola opening to the right while the graph of $x=2-y^2$ is a parabola opening to the left. The curves intersect when $y^2-4=2-y^2$; that is $2y^2=4+2=6$ so $y=\pm\sqrt{3}$ where x=-1. Imagine the region curved up into horizontal strips; Each strip between $y=-\sqrt{3}$ and $y=\sqrt{3}$ runs from the red curve to the blue curve. Hence the area is given by

$$\int_{-\sqrt{3}}^{\sqrt{3}} (2 - y^2) - (y^2 - 4) \, dy = \int_{-\sqrt{3}}^{\sqrt{3}} 6 - 2y^2 \, dy = \left[6y - \frac{2}{3}y^3 \right]_{-\sqrt{3}}^{\sqrt{3}} = 8\sqrt{3}$$

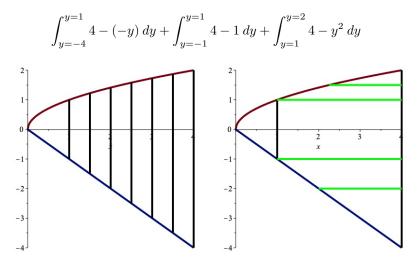


Exercise 23: Carve the region into vertical strips, reach running from $y = \sin 4x$ to $y = 1 + \cos \frac{x}{3}$ The area is

$$\int_0^\pi 1 + \cos(\frac{x}{3}) - \sin 4x \, dx = \left[x + 3\sin\frac{x}{3} + \frac{1}{4}\cos 4x\right]_0^\pi = (\pi + 3\sin\frac{\pi}{3} + \frac{1}{4}\cos 4\pi) - (0 + 3\sin\frac{0}{3} + \frac{1}{4}\cos 0)$$

which equals
$$(\pi + \frac{3}{2}\sqrt{3} + \frac{1}{4}) - (0 + 0 + \frac{1}{4}) = \pi + \frac{3}{2}\sqrt{3}$$

Exercise 27: We depict the region below. If we use vertical strips, each strip runs from the line y=-x to the curve $y=\sqrt{x}$ so the area is $\int_{x=1}^{x=4} \sqrt{x} - (-x) \, dx = \int_{x=1}^{x=4} \sqrt{x} + x \, dx$ (See Figure 27a). Slicing with horizontal strips shows (see Figure 27b) there are 3 kinds of strips. All end at x=4 but start long different curves. For y<-1, the left end is on the line x=-y, for $-1 \le y \le 1$, the left end is on the vertical line x=1, and for y>1, the left end is on the parabola $x=y^2$. We can express the area of the entire region as the sum of 3 integrals:



II: Section 6.1: 1, 6, 11, 13

Exercise 1: For f(x) = y = 3x + 5, solve for x in terms of y : 3x = y - 5 so $x = \frac{y - 5}{3}$; hence $f^{-1}(x) = \frac{x - 5}{3}$.

Exercise 6:Here $f(x) = y = \frac{4x}{x-2}$ so (x-2)y = 4x or xy - 2y = 4x which yields xy - 4x = 2y or x(y-4) = 2y so $x = \frac{2y}{y-4}$ and hence $f^{-1}(x) = \frac{2x}{x-4}$.

Exercise 11: Starting $f(x) = y = \sqrt[3]{x} + 1$, we have $y - 1 = \sqrt[3]{x}$ or $(y - 1)^3 = x$ and $f^{-1}(x) = (x - 1)^3$

Exercise 13: If f(x) = y = ax + b, then y - b = ax and, since $a \neq 0$, $x = \frac{y - b}{a}$ so $f^{-1}(x) = \frac{x - b}{a}$.