MATH 122: Calculus II

Some Notes on Assignment 13

I: Section 6.7: 51, 60, 69

Exercise 51: Let $\tan \theta = \frac{x}{4}$ (See triangle below). The $x = 4 \tan \theta$ so $dx = 4 \sec^2 \theta \, d\theta$ and $\sec \theta = \frac{\sqrt{x^2 + 16}}{4}$ so $x^2 + 16 = 16 \sec^2 \theta$, Thus $\int \frac{1}{x^2 + 16} \, dx = \int \frac{1}{16 \sec^2 \theta} (4 \sec^2 \theta) \, d\theta = \int \frac{1}{4} \, d\theta = \frac{\theta}{4} + C = \frac{1}{4} \arctan(x/4) + C$ and $\int_0^4 \frac{1}{x^2+16} dx = \frac{1}{4} \left[\arctan(1) - \arctan(0) \right] = \frac{1}{4} \left[\frac{\pi}{4} - 0 \right] = \frac{1}{4} \frac{\pi}{4} = \frac{\pi}{16}$

Exercise 60: Consider a right triangle with hypotenuse x^3 and horizontal side 2; then the vertical side is $\sqrt{x^6-4}$, a key ingredient of the integrand. The simplest ratio in the triangle involving x is $\frac{x^3}{2}$ which is $\sec \theta$. See picture above, noting also that $\sqrt{x^6-4}=2\tan \theta$

Thus $x^3 = 2 \sec \theta$ so $3x^2 dx = 2 \sec \theta \tan \theta d\theta$. We can write $dx = \frac{2 \sec \theta \tan \theta}{3x^2} d\theta$ and $\frac{1}{x} dx$ as $\frac{2 \sec \theta \tan \theta}{3x^3} d\theta = \frac{2 \sec \theta \tan \theta}{3(2 \sec \theta)} d\theta = \frac{\tan \theta}{3} d\theta$

Hence
$$\int \frac{1}{x\sqrt{x^6-4}} dx = \int \frac{\tan \theta}{3(2 \tan \theta)} d\theta = \int \frac{1}{6} d\theta = \frac{1}{6} \theta + C = \frac{1}{6} \operatorname{arcsec} \left(\frac{x^3}{2}\right) + C$$

Exercise 69: (See Figure above): Let h(t) be height of missile t seconds after firing and θ the angle of elevation. We are looking for h'(t) at the instant $\theta = 30^{\circ} = \pi/6$ radians. We need to switch to radian measure to use classic differentiation formulas for the trigonometric functions). Note that $2^{\circ} = \pi/90$ radians. One relation between h and θ that is true at every second is $\tan \theta = h/5$ so $h(t) = 5 \tan \theta(t)$. Differentiating with respect to t yields $h'(t) = 5(\sec^2\theta)(\theta'(t))$. Since $\sec(\pi/6) = 2/\sqrt{3}$, at the given instant, we have $h' = 5\left(\frac{4}{3}\right)\left(\frac{\pi}{90}\right) = \frac{2\pi}{27}mi/sec$.

II: Section 6.9: 28, 36, 42

Exercise 28: $\lim_{x\to 1} \frac{2x^3 - 5x^2 + 6x - 3}{x^3 - 2x^2 + x - 1} = \frac{2 - 5 + 6 - 3}{1 - 2 + 1 - 1} = \frac{0}{-1} = 0$ (l'Hôpitals Rule does **not** apply!)

Exercise 36: Let $u = \frac{1}{x}$. Then $\frac{e^{-1/x}}{x} = \frac{e^{-u}}{1/u} = \frac{u}{e^u}$ Then

$$\lim_{x\to 0^+}\frac{e^{-1/x}}{x}=\lim_{u\to\infty}\frac{u}{e^u}=\ (\text{ Using l'Hôpital on }\frac{\infty}{\infty}\text{ form })\ \lim_{u\to\infty}\frac{1}{e^u}=0$$

Exercise 42: (a) $\lim_{t\to\infty} \frac{K}{1+ce^{-rt}} = \frac{K}{1+(c)(0)} = \frac{K}{1+0} = K$ (l'Hôpitals Rule does not apply here)

(b) $y(t) = \frac{K}{1 + ce^{-rt}} = \frac{K}{1 + \frac{K - y(0)}{y(0)}e^{-rt}} = \frac{y(0)K}{y(0) + [K - y(0)]e^{-rt}}$ is a $\frac{\infty}{\infty}$ form as $K \to \infty$ so we can apply l'Hôpital's Rule:

$$\lim_{K \to \infty} y(t) = \lim_{K \to \infty} \frac{y(0)K}{y(0) + [K - y(0)]e^{-rt}} = \lim_{K \to \infty} \frac{y(0)}{0 + e^{-rt}} = y(0)e^{rt}$$

The population will grow exponentially if K is unbounded; If K is bounded, population will approach carrying capacity over time.

III: Section 7.1: 1, 7, 13

Integration By Parts Formula: $\int u \, dv = uv - \int v \, du$

Exercise 1: Let u = x and $dv = e^{-x}dx$. Then du = 1dx, $v = -e^{-x}$. Thus $\int xe^{-x} dx = -xe^{-x} - xe^{-x}$ $\int -e^{-x} dx + C = -xe^{-x} - e^{-x} + C = -e^{-x}(x+1) + C.$

Exercise 7: Let u = x and $dv = \sec x \tan x \, dx$. Then $du = 1 \, dx$ and $v = \sec x$. Thus $\int x \sec xx \tan x \, dx = x \sec x - \int \sec x \, dx = x \sec x - \ln(|\sec x + \tan x|) + C$.

Exercise 13: Let $u = \ln x$ and $dv = \sqrt{x} dx$ so $du = \frac{1}{x} dx$ and $v = \frac{2}{3}x^{3/2}$. Thus $\int \sqrt{x} \ln x dx = \frac{2}{3}x^{3/2} \ln x - \int \frac{1}{x} \frac{2}{3}x^{3/2} dx = \frac{2}{3}x^{3/2} \ln x - \frac{2}{3} \int x^{1/2} dx = \frac{2}{3}x^{3/2} \ln x - \frac{4}{9}x^{3/2} + C$.