Math 121 - Calculus I

Name: SOLUTIONS

Exam 1: Practice Exam

Please be sure to neatly show and explain all of your work and clearly label your answers. Except for your index card, this exam is a closed-book, closed-notebook exam. Calculators are not allowed.

Please write and sign the Honor Pledge here when you are done:

Signed:

Problem	Points .
1	/12
2	/10
3	/10
4	/8
5	/12
6	/8
Total	/60

1. Please compute the following. For each, show all work and clearly explain your reasoning. (a) $\lim_{x \to 1} \frac{x^2 - 3x + 2}{x^2 - 4x + 3}$ $= \lim_{\chi \to 1} \frac{(\chi - 2)(\chi - 1)}{(\chi - 3)(\chi - 1)}$ $(\chi - 2)(\chi - 1)$ $(\chi - 3)(\chi - 1)$ $(\chi - 3)(\chi - 1)$ but x=1, and apply the Nex Ful thim. $=\frac{1-2}{1-3}=\frac{1}{2}$ (b) $\lim_{x\to 2^-} \frac{x(x-3)}{x-2}$ ---- (observe: if we plug in 2, we get $\frac{-2}{x}$. Thus, indicates a vertical asymptotic In the nunerator, as x > 2, x(x-3) approudies -2, a negative finite In the denominator, as X -> 2 , X-2 is a vory small regative number Thus, exs $x \rightarrow 2^-$, $\frac{(x-3)}{x-2}$ apparatus (neg number), so lim $\frac{x(x-3)}{x-2} = +\infty$. (c) $\lim_{x \to -\infty} \frac{4x - x^2}{x - 2}$ lim $\frac{4x-x^2}{x-2} \cdot \frac{1}{x}$ highest power of x in denominator As $x \to -\infty$, the deplementator $\to 1$. The numerator 4-x grows positive netheat bound as $x \to -\infty$. Thus $\lim_{x \to -\infty} \frac{4-x}{1-2} = +\infty$.

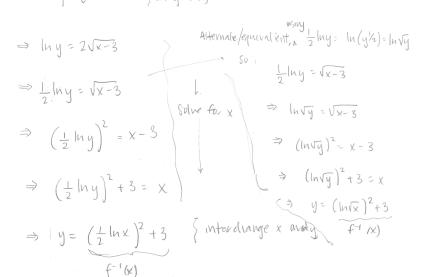
2. Consider the function

$$f(x) = e^{2\sqrt{x-3}}.$$

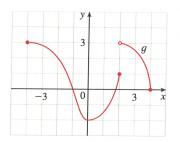
(a) What is the domain of f(x)? Please explain.

ex is defined for all x.

(b) Find a formula for $f^{-1}(x)$, the inverse of f(x). Show all work.



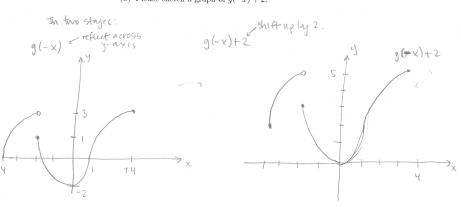
3. Suppose that the following is a graph of g(x).



(a) What is the value of $(g \circ g \circ g)(4)$? Show your work.

$$(g \circ g \circ g)(4)$$
 = $g(g(g(4)))$. = $g(g(g(4)))$ = $g(g(0))$

(b) Please sketch a graph of g(-x) + 2.

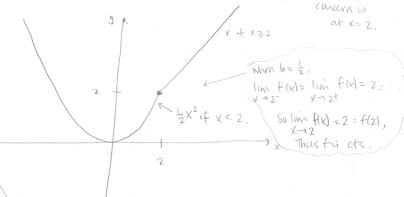


4. (a) Define what it means for a function to be continuous at x=a. (What three conditions must hold for the function to be contin-

$$\lim_{\chi \to \alpha} f(\chi) = f(\alpha).$$
 (b) Consider the function given by

$$f(x) = \begin{cases} x & \text{if } x \geq 2 \\ bx^2 & \text{if } x < 2. \end{cases} \quad \text{The precession tomportality}$$

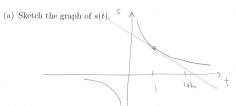
For what value of b is this function continuous for all x? Clearly ADMALINS . Thus, explain your reasoning. (It may help to draw a picture here. It's not required, but it might help you sort out your thinking.)



We need b so that
$$\lim_{x\to 2^{-}} bx^{2} = 2$$
. I.e. $b(2)^{2} = 2$, so $b = \frac{1}{2}$.

5. Suppose that for t > 0, the position of a particle at time t is given by

$$s(t) = \frac{1}{t}.$$



(b) Find the average velocity of the particle between time t=1 and

average velocity =
$$\frac{\Delta s}{\Delta t}$$
 = $\frac{S(1+h)-S(1)}{(1+h)-1}$ = $\frac{1}{h}$

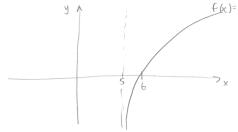
(c) Express the instantaneous velocity of the particle at time t=1 as a limit of average velocities. (Note: you do not need to compute

(d) What feature of the graph from part (a) does your answer to part

6. Please give an example of a function satisfying each of the following conditions. For each, please give the algebraic expression of your function as well as a graph of your function.

(Hint: your examples do not need to be complicated! Keep in mind our basic functions as you consider this question.)

(a) A vertical asymptote at x = 5.



ed! Keep in mind

ed! Keep in mind

examples

of such

functions.

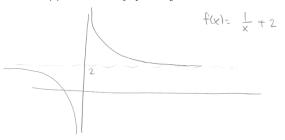
fix)=In(x-5)

May ottor

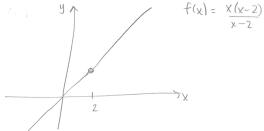
examples

mill wave.

(b) A horizontal asymptote at y = 2.



(c) A removable discontinuity at x = 2.



 $f(x) = \frac{x(x-2)}{x-2} = \begin{cases} x, & \text{if } x \neq 2 \\ \text{under if } x = 2. \end{cases}$