76. An element (g, h) in $\mathbb{Z}_4 \oplus \mathbb{Z}_4$ has order 4 if lcm(|g|, |h|) has order 4, i.e. if |g| = 4 and |h| = 1, 2, or 4, or if |g| = 1 or 2 and |h| = 4.

Since we are dealing with a cyclic group \mathbb{Z}_t (t=4) where 4 divides t, we know there are 2 elements of order 4 (because there are two numbers $1 \le i \le 4$ such that $\gcd(i,4) = \frac{4}{4} = 1$), 1 element of order 2 (because there is one number $1 \le i \le 4$ such that $\gcd(i,4) = \frac{4}{2} = 2$), and 1 element of order 1 (because there is one number $1 \le i \le 4$ such that $\gcd(i,4) = \frac{4}{1} = 4$).

Thus we have we have 2(2+1+1)+2(1+1)=12 elements of order 4.

The exact same reasoning works for $\mathbb{Z}_{8000000} \oplus \mathbb{Z}_{400000}$. (By the FTCG, the number of elements of order 4 in $\mathbb{Z}_{8000000}$ or \mathbb{Z}_{400000} is still 2 because there are two numbers $1 \le i \le 4$ such that $\gcd(i,4) = \frac{4}{4} = 1$, and so on.) In general then, the number of elements of order 4 in $\mathbb{Z}_{4m} \oplus \mathbb{Z}_{4n}$ is 12.

- 77. The subgroup of rotations in D_n is an abelian group. Similarly, any two-element subgroup generated by a flip in D_n is abelian. However, D_n cannot be an external direct product of the subgroup of rotations and a two-element subgroup generated by a flip. The reason is that the external direct product of two abelian groups would be abelian (this follows directly from the definition of group multiplication in an external direct product) but D_n is not abelian.
- 78. Notice that the groups \mathbb{Z}_{12} and $\mathbb{Z}_4 \oplus \mathbb{Z}_3$ have the same size so it is possible to have an isomorphism between them. We know that 1 is a generator of \mathbb{Z}_{12} . If by the work above, if ψ is an isomorphism, then ψ is completely determined by the value of $\psi(1)$.

On the other hand, since $\mathbb{Z}_4 \oplus \mathbb{Z}_3$ is cyclic, any isomorphism ψ must map $1 \in \mathbb{Z}_{12}$ to a generator of $\mathbb{Z}_4 \oplus \mathbb{Z}_3$. Thus, to determine the number of isomorphisms from \mathbb{Z}_{12} to $\mathbb{Z}_4 \oplus \mathbb{Z}_3$, we must simply determine the number of generators of $\mathbb{Z}_4 \oplus \mathbb{Z}_3$.

An element $(g,h) \in \mathbb{Z}_4 \oplus \mathbb{Z}_3$ will be a generator if it has order 12, i.e. if |g| = 4 and |h| = 3. There are 2 elements of order 4 in \mathbb{Z}_4 and 2 elements of order 3 in \mathbb{Z}_3 . Thus, $\mathbb{Z}_4 \oplus \mathbb{Z}_3$ has $2 \cdot 2 = 4$ generators, so there are 4 isomorphisms $\mathbb{Z}_{12} \to \mathbb{Z}_4 \oplus \mathbb{Z}_3$.

79. Since lcm(|2|, |3|) = lcm(3, 5) = 15, (2, 3) is a generator of $\mathbb{Z}_3 \oplus \mathbb{Z}_5$. In \mathbb{Z}_{15} , $1 = 8 \cdot 2$ (i.e. 2^8 written in additive notation). Since φ is an isomorphism, it would be the case

that $\varphi(8 \cdot (2,3)) = 8 \cdot \varphi((2,3)) = 8 \cdot 2 = 1$. So the element we are looking for is $8 \cdot (2,3) = (8 \cdot 2 \mod 3, 8 \cdot 3 \mod 5) = (1,4)$.

80. If *H* has index 2 in *G*, then there are exactly 2 distinct left (resp. right) cosets of *H* in *G*. One of these cosets must equal *H* itself. The other coset (either left or right) is the complement of *H* in *G*. Call this set *S*.

We know that H = aH (resp. H = Ha) if and only if $a \in H$. Thus, if $a \in H$, we have aH = H = Ha, and if $a \notin H$, we have that aH = S = Ha. In either case, we now know that for all $a \in G$, aH = Ha, so by definition, H is normal in G.

- 81. No. For example, take $A = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix} \in H$ and $B = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \in GL(2, \mathbb{R})$. Then $BAB^{-1} = \begin{bmatrix} 4 & -1 \\ 9 & -2 \end{bmatrix} \notin H$.
- 82. We have proven that for any $a \in G$, the map $\varphi_a : G \to G$ defined by $\varphi_a(x) = axa^{-1}$ is an automorphism of G. (It's the inner automorphism determined by a.) Suppose that N is a characteristic subgroup of G. Then by definition $\varphi(N) = N$ for any automorphism. So let $a \in G$ and let $\varphi = \varphi_a$. Then $\varphi_a(N) = N$, i.e. $aNa^{-1} = N$. This holds for any $a \in G$, so N is normal in G.