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57 Prove that lim, , [1+ (x/n)]" =e* by letting h =

x/n and using Theorem (6.32)(i).

58 Graph, on the same coordinate axes, y =27 and y =

log, x.

(a) Estimate the x-coordinate of the point of intersection

of the graphs.

6.6
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(b) If the region R bounded by the graphs and the line
x = lis revolved about the x-axis, set up an integral
that can be used to approximate the volume of the
resulting solid.

(c) Use Simpson’s rule, with » = 2, to approximate the
integral in part (b).

SEPARABLE DIFFERENTIAL EQUATIONS AND
LAWS OF GROWTH AND DECAY

Suppose that a physical quantity varies with time and that the magnitude
of the quantity at time ¢ is given by ¢(¢), where g is differentiable and
q(t) > 0 for every t. The derivative ¢'(¢) is the rate of change of g ()
with respect to time. In many applications, this rate of change is directly
proportional to the magnitude of the quantity at time r—that is,

q'(t) = cq(t)

for some constant ¢. The number of bacteria in certain cultures behaves
in this way. If the number of bacteria ¢(¢) is small, then the rate of in-
crease g’ (¢) is small; however, as the number of bacteria increases, the rate
of increase also increases. The decay of a radioactive substance obeys a
similar law: As the amount of matter decreases, the rate of decay—that is,
the amount of radiation—also decreases. As a final illustration, suppose an
electrical condenser is allowed to discharge. If the charge on the condenser
is large at the outset, the rate of discharge is also large, but as the charge
weakens, the condenser discharges less rapidly.

In applied problems, the equation ¢'(¢) = cq(t) is often expressed in
terms of differentials. Thus, if y = ¢(¢), we may write

dy

— =cy, or dy=cydt.
dt cy y=cy

Dividing both sides of the last equation by y, we obtain
1
—dy =cdt.
Y

Since it is possible to separate the variables y and r—in the sense that
they can be placed on opposite sides of the equals sign—the differential
equation dy/dt = cy is a separable differential equation. We will study
such equations in more detail later in the text and will show that solu-
tions can be found by integrating both sides of the “separated” equation

(1/y)dy = cdt. Thus,
1
f—dy :fcdt
y

Iny=ct+d
for some constant d. It follows that

y = ect-i-d — edect

and, assuming y > 0,

6.6 Separable Differential Equations and Laws of Growth and Decay

Theorem 6.33

If y, denotes the initial value of y (that is, the value corresponding to
t = 0), then letting t = 0 in the last equation gives us

Y = eled = o4

and hence the solution y = e%¢“" may be written

. Y = yoe.

We have proved the following theorem.

Let y be a differentiable function of ¢ such that y > 0 for every ¢,
and let y, be the value of y at 7 = 0. If dy/dt = cy for some constant
¢, then

¥ = ypet'.

The preceding theorem states that if the rate of change of y = q(t) with
respect to t is directly proportional to y, then y may be expressed in terms
of an exponential function. If y increases with ¢, the formula y = yje is
a law of growth (c > 0), and if y decreases, it is a law of decay (¢ < 0).

EXAMPLE= I The number of bacteria in a culture increases from
600 to 1800 in 2 hr. Assuming that the rate of increase is directly propor-
tional to the number of bacteria present, find

(a) a formula for the number of bacteria at time #

(b) the number of bacteria at the end of 4 hr

SOLUTION
(@) Let y =¢q(¢) denote the number of bacteria after ¢ hours. Thus, Yo =
q(0) = 600 and g(2) = 1800. By hypothesis,
dy
=
Following exactly the same steps used in the proof of Theorem (6.33), we
obtain

cy.

y = ype = 600e.
Since y = 1800 when ¢ = 2, we obtain the following equivalent equations:
1800 = 600e%, 3 =¢*, =32
Substituting for ¢ in y = 600e*’ gives us
y = 60032, or y=600(3)"2.
(b) Letting t = 4 in y = 600(3)"/? yields

y = 600(3)%2 = 600(9) = 5400.
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EXA M PLE® 2 Radium decays exponentially and has a half-life of
apprommately 1600 yr—that is, given any quantity, one half of it will
disintegrate in 1600 yr.

(a) Find a formula for the amount y remaining from 50 mg of pure radium
after ¢ years.

(b) When will the amount remaining be 20 mg?

SOLUTION
(a) If we let y = g(¢), then

Yo =4¢0) =50 and ¢(1600) = 1(50) = 25.
Since dy/ dt = cy for some c, it follows from Theorem (6.33) that
y = 50e“.
Since y = 25 when t = 1600,
25 = 5001600 o 1600c _ %
Hence,
o€ — (%)1/1600 — p-1/1600

Substituting for e in y = 50¢“' gives us

y =50Q 160y or ) = 50(2)~1/16%

(b) Using y= 50(2)"/ 1600 we see that the value of ¢ at which y=20isa
solution of the equation

20 = 50(2)1/160, o /1600 _ 3,

Taking the natural logarithm of each side, we obtain

' 2 —in2
600 -~ "%
16001n 3
or t=————=m2115yr.

In2

E X AMPLE® 3 According to Newton’s law of cooling, the rate at
which an object cools is directly proportional to the difference in temper-
ature between the object and the surrounding medium. If an object cools
from 125 °F to 100 °F in half an hour when surrounded by air at a temper-
ature of 75 °F, find its temperature at the end of the next half hour.

SOL U TI ON Let y denote the temperature of the object after ¢ hours
of coohng.‘Smce the temperature of the surrounding medium is 75°, the
difference in temperature is y — 75, and therefore, by Newton’s law of
cooling,

D 75
o =c(y —175)

6.6 Separable Differential Equations and Laws of Growth and Decay m

for some constant c. We separate variables and integrate as follows:
1
y—17

1
f dy:fcdt
y—175

In(y =75)=ct+b

dy = cdt
5 TC

for some constant b. The last equation is equivalent to
y =75 ="t = ebe,

Since y = 125 whent = 0,

125—75=eb60:eb, or e’ =50.

Hence,
y —75 =50, or y=>50e"+75.

Using the fact that y = 100 when 1 = % leads to the following equiva-
lent equations:

100 = 50¢2 +75, =8 =1 = =

Bl—

Substituting i for €€ in y = 50e’ + 75 gives us a formula for the temper-
ature after ¢ hours:
y =50(3)" +75
In particular, if t =1,
y =50()+75=875°F.

In biology, a function G is sometimes used, as follows, to estimate the
size of a quantity at time ¢:

G(1t) = ket=4¢

for positive constants k, A, and B. The function G is called a Gompertz

growth function. It is always positive and increasing, but has a limit as
t increases without bound. The graph of G is called a Gompertz growth

curve.

Br)

EXAMPLE®=4 Discussand sketch the graph of the Gompertz growth
function G.

SOLUTION We first observe that the y-intercept is G(0) = ke
and that G(¢) > 0 for every ¢. Differentiating twice, we obtain

G (1) = ke™AT M (AP
— ABke(-—Bt—Ae_B’)
G'(t) = ABkeB=AD (~ Bt — Ae™P1Y

— ABK(—B + ABe Bye~Br=a¢ ™,



Figure 6.24
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Since G'(¢) > 0 for every ¢, the function G is increasing on [0, 00). The
second derivative G” (¢) is zero if

—B+ABe B =0, or €% =A.

Solving the last equation for ¢ gives us ¢t = (I/B) In A, which is a critical
number for the function G'. We leave it as an exercise to show that at this
time the rate of growth G’ has a maximum value Bk/e. We can also show
that

lim G'(#)=0 and lim G(t) = k.

=00 =00

Hence, as ¢ increases without bound, the rate of growth approaches 0
and the graph of G has a horizontal asymptote y = k. A typical graph
is sketched in Figure 6.24. The point P on the graph, corresponding to
t = (1/B)In A, is a point of inflection, and the concavity changes from
upward to downward at P.

In the next example, we consider a physical quantity that increases to a
maximum value and then decreases asymptotically to 0.

EXAMPLE®5 When uranium disintegrates into lead, one step in the
process is the radioactive decay of radium into radon gas. Radon gas enters
homes by diffusing through the soil into basements, where it presents a
health hazard if inhaled. If a quantity Q of radium is present initially, then
the amount of radon gas present after ¢ years is given by

c, 0

6=

A(t) =

—c,t —cyt
(e7" — e,

Where ¢ = ﬁ In2 and ¢ = m In2 are the decay constants for ra-
dium and radon gas, respectively.

(a) Find the amount of radon gas present initially and after an extended
period of time.

(b) Use a graphing utility to graph A(z).

(c) Determine the maximum amount A, of radon gas and when that
amount is reached.

(d) After the maximum amount A,, has been reached, estimate how long
it would take the radon gas to decrease to 90% of the maximum.

SOLUTION
(a) The initial amount of radon gas is
c
A0y = —L= (- % =0.
L
If we let ¢ increase without bound, then

lim A(t) = “Q lim (e~ %" — e™%1)
=00 c2 —_ cl I—>00
- 92 o_g=o

|

6.6 Separable Differential Equations and Laws of Growth and Decay

Figure 6.25
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Figure 6.26
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Hence, over a long period of time, the amount of radon gas decreases to 0.

(b) We use a graphing utility to obtain Figure 6.25, which illustrates the
graph of A(¢). In the viewing window, 0 < ¢ < 1, it appears that the radon
gas rises fairly quickly to its maximum level and then levels off or perhaps
decreases very, very slowly. In part (a), we concluded that the amount
of radon gas would eventually decrease to O but that is not evident from
the graph in Figure 6.25. In parts (c) and (d), we do further analysis to
determine how quickly the maximum is reached and how slowly the gas
disappears.

(c) To find the critical numbers of A, we differentiate, obtaining

c
A = —L=— [~ (c;e™ " + c,e ],
€~ q
Thus, A'(¢) = 0if
cotf = et or e = 2,
1 2 )
¢
It follows that
)
(¢ —ct =In—=,
<
In(c,/c
or t = ——(—2/—1)

€y =0

This value of ¢ yields the maximum value of A. Substituting this value for
¢ into the function, we find (after a fair amount of algebraic manipulation)
that the maximum value is ~

g a (L) (9]

G4 %)

For the given values of the constants ¢, and c,, these two numbers are
approximately

ty ~ 0.181 years ~ 66 days and Ay ~ (6.562)107°Q.

(d) To find the value #; > #,, that yields A(#) = 0.90A,,, we first divide
both sides by Q so that we can work numerically. Using the solving routine

_ on a computational device (or Newton’s method), we find that the solution

to
3!

(e7oh —e™h) = (0.9)(6.562)107°Q

G — ¢

for the given values of ¢, and c, is #; & 243 years. (See Figure 6.26 for a
viewing window displaying this part of the graph of the function.) The fact
that the radon decreases to O over a long period of time may not be very
comforting to a homeowner since the decrease takes place so slowly.
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I The number of bacteria in a culture increases from 5000
to 15,000 in 10 hr. Assuming that the rate of increase
is proportional to the number of bacteria present, find a
formula for the number of bacteria in the culture at any
time . Estimate the number at the end of 20 hr. When
will the number be 50,0007

2 The polonium isotope >!°Po has a half-life of approx-
imately 140 days. If a sample weighs 20 mg initially,
how much remains after + days? Approximately how
much will be left after two weeks?

3 If the temperature is constant, then the rate of change
of barometric pressure p with respect to altitude 4 is
proportional to p. If p = 30 in. at sea level and p = 29
in. when /£ = 1000 ft, find the pressure at an altitude of
5000 ft.

4 The population of a city is increasing at-the rate of 5%
per year. If the present population is 500,000 and the
rate of increase is proportional to the number of people,
what will the population be in 10 yr?

5 Agronomists use the assumption that a quarter acre
of land is required to provide food for one person
and estimate that there are 10 billion acres of tillable
land in the world. Hence a maximum population of 40
billion people can be sustained if no other food source
is available. The world population at the beginning of
1993 was approximately 5.5 billion. Assuming that the
population increases at a rate of 2% per year and the
rate of increase is proportional to the number of people,
when will the maximum population be reached?

6 A metal plate that has been heated cools from 180 °F
to 150°F in 20 min when surrounded by air at a
temperature of 60 °F. Use Newton’s law of cooling (see
Example 3) to approximate its temperature at the end of
1 hr of cooling. When will the temperature be 100 °F?

7 An outdoor thermometer registers a temperature of
40 °F. Five minutes after it is brought into a room where
the temperature is 70°F, the thermometer registers
60 °F. When will it register 65 °F?

8 The rate at which salt dissolves in water is directly
proportional to the amount that remains undissolved. If
10 Ib of salt is placed in a container of water and 4 1b
dissolves in 20 min, how long will it take for two more
pounds to dissolve?

9 According to Kirchhoff’s first law for electrical circuits,
V = RI + L(dI/dt), where the constants V, R, and L
denote the electromotive force, the resistance, and the
inductance, respectively, and / denotes the current at
time ¢. If the electromotive force is terminated at time

t =0 and if the current is [, at the instant of removal,

prove that | = Ioe*Rt/L.

A physicist finds that an unknown radioactive substance
registers 2000 counts per minute on a Geiger counter.
Ten days later, the substance registers 1500 counts per
minute. Approximate its half-life.

The air pressure P (in atmospheres) at an elevation of
z meters above sea level is a solution of the differential
equation dP/dz = —9.81p(z), where p(z) is the density
of air at elevation z. Assuming that air obeys the ideal
gas law, this differential equation can be rewritten as
dP/dz = —0.0342P/T, where T is the temperature
(in °K) at elevation z. If T =288 — 0.01z and if the
pressure is 1 atmosphere at sea level, express P as a
function of z.

During the first month of growth for crops such as
maize, cotton, and soybeans, the rate of growth (in
grams per day) is proportional to the present weigﬁt w.
For a species of cotton, dW/dt = 0.21W. Predict the
weight of a plant at the end of the month (¢ = 30) if the
plant weighs 70 mg at the beginning of the month.

Radioactive strontium-90, 90Sr, with a half-life of 29
yr, can cause bone cancer in humans. The substance
is carried by acid rain, soaks into the ground, and is
passed through the food chain. The radioactivity level
in a particular field is estimated to be 2.5 times the safe
level §. For approximately how many years will this
field be contaminated?

The radioactive tracer ! Cr, with a half-life of 27.8 days,
can be used in medical testing to locate the position of
a placenta in a pregnant woman. Often the tracer must
be ordered from a medical supply lab. If 35 units are
needed for a test and delivery from the lab requires 2
days, estimate the minimum number of units that should
be ordered.

Veterinarians use sodium pentobarbital to anesthetize
animals. Suppose that to anesthetize a dog, 30 mg is
required for each kilogram of body weight. If sodium
pentobarbital is eliminated exponentially from the
bloodstream and half is eliminated in 4 hr, approximate
the single dose that will anesthetize a 20-kg dog for
45 min.

In the study of lung physiology, the following
differential equation is used to describe the transport of
a substance across a capillary wall:

d V[ h
d  O\k+h/)’

Exercises 6.6
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where h is the hormone concentration in the blood-
stream, f is time, V is the maximum transport rate, Q is
the volume of the capillary, and k is a constant that mea-
sures the affinity between the hormones and enzymes
that assist with the transport process. Find the general
solution of the differential equation.

A space probe is shot upward from the earth. If air
resistance is disregarded, a differential equation for the
velocity after burnout is v(dv/dy) = —ky ™2, where y
is the distance from the center of the earth and k is a
positive constant. If y, is the distance from the center of
the earth at burnout and vy, is the corresponding velocity,
express v as a function of y.

At high temperatures, nitrogen dioxide, NO,, decom-
poses into NO and O,. If y(¢) is the concentration of
NO, (in moles per liter), then, at 600 °K, y(¢) changes
according to the second-order reaction law dy/dt =
—O.OSy2 for time ¢ in seconds. Express y in terms of
¢ and the initial concentration y;.

The technique of carbon-14 dating is used to determine
the age of archeological or geological specimens. This
method is based on the fact that the unstable isotope
carbon-14 (*C) is present in the CO, in the atmosphere.
Plants take in carbon from the atmosphere; when they
die, the '*C that has accumulated begins to decay, with
a half-life of approximately 5700 yr. By measuring the
amount of '*C that remains in a specimen, it is possible
to approximate when the organism died. Suppose that
a bone fossil contains 20% as much *C as an equal
amount of ¢carbon in present-day bone. Approximate the
age of the bone.

20 Refer to Exercise 19. The hydrogen isotope % H, which

21

has a half-life of 12.3 yr, is produced in the atmosphere
by cosmic rays and is brought to earth by rain. If the
wood siding of an old house contains 10% as much f H
as the siding on a similar new house, approximate the
age of the old house.

The earth’s atmosphere absorbs approximately 32%
of the sun’s incoming radiation. The earth also emits
radiation (mostly in the form of heat), and the
atmosphere absorbs approximately 93% of this outgoing
radiation. This difference in absorption of incoming
and outgoing radiation by the atmosphere is called the
greenhouse ¢ffect. Changes in this balance will affect
the earth’s climate. Suppose I, is the intensity of the
sun’s radiation and I is the intensity of the radiation
after traveling a distance x through the atmosphere. If
p(h) is the density of the atmosphere at height #, then
the optical thickness is f(x) = k [y p(h) dh, where k is
an absorption constant, and 7 is given by I = Ioe'f @,
Show that dI/dx = —kp(x)I.

22 Certain learning processes may be illustrated by the
graph of f(x) = a + b(1 — e™") for positive constants
a, b, and c¢. Suppose a manufacturer estimates that a
new employee can produce 5 items the first day on
the job. As the employee becomes more proficient,
the daily production increases until a certain maximum
production is reached. Suppose that on the nth day
on the job, the number f(n) of items produced
is approximated by f(n) =3 +20(1 — ¢ 011y,

(a) Estimate the number of items produced on the fifth
day, the ninth day, the twenty-fourth day, and the
thirtieth day.

(b) Sketch the graph of f from n =0 to n=30.
(Graphs of this type are called learning curves and
are used frequently in education and psychology.)

(c) What happens as n increases without bound?
23 A spherical cell has volume V and surface area S. A

sirhple model for cell growth before mitosis assumes
that the rate of growth dV/dt is proportional to the

surface area of the cell. Show that dV/dt = k23 for
some k > 0, and express V as a function of ¢.

24 In Theorem (6.33), we assumed that the rate of change
of a quantity g(z) at time ¢ is directly proportional
to g(z). Find q(t) if its rate of change is directly

proportional to [g 0
25 Refer to Example 4.
(a) Verify that Bk/e is a maximum value for G’
(b) Show that tl_l)l’glo G'(t) = 0and tl—ngo G{t) =k.
(<) Sketch the graph of Gif k = 10,A =2,and B = 1.

26 Graph the Gompertz growth function G on the interval
[0,5]fork=1.1,A=32,and B=1.1.

Exer. 27 - 31: Each function contains a constant term for
which four values are given. Plot the four versions of the
function in the same viewing window.

27 y = 10e” on —5<t<8§
forc = 0.05,0.1,0.2, and 0.4
28 y = 10e74¢ " on —3<r<8

forA=0.8,2.0,3.2,and 4.4

on —3<tr<8§
for B=0.2,0.8,1.1, and 2.0

29 y = 10e 32"

30 y=10(¢™' —e %) on0<r<5
forc, = 1
and ¢, = 3,5, 10, and 25

31 y=10(¢ " —e %) on0<tr=<5
forc; =0.5,1,2,and 4
andc, = 10
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INVERSE TRIGONOMETRIC FUNCTIONS

In this section, we discuss the inverse trigonometric functions, their deriva-
tives, and their integrals. Since we may regard the values of the inverse
trigonometric functions as angles, these functions have a broad range of
applications, such as rates of change in the angle of elevation as an ob-
server tracks a moving object, speed of rotation of a searchlight, and opti-
mal angles to minimize energy loss in blood flows.

DEFINING THE INVERSE TRIGONOMETRIC FUNCTIONS

Since the trigonometric functions are not one-to-one, they do not have
inverse functions (see Section 6.1). By restricting their domains, how-
ever, we may obtain one-to-one functions that have the same values as
the trigonometric functions and that do have inverses over these restricted
domains.

We consider first the graph of the sine function, whose domain is R
and whose range is the closed interval [—1, 1] (see Figure 6.27). The sine
function is not one-to-one, since a horizontal line such as y = % intersects
the graph at more than one point. If we restrict the domain to [—7/2, 7/2],
then, as the solid portion of the graph in Figure 6.27 illustrates, we obtain
an increasing function that takes on every value of the sine function exactly
once. This new function, with domain [—n/2, 7/2] and range [—1, 1], is
continuous and increasing and hence, by Theorem (6.6), has an inverse
function that is continuous and increasing. The inverse function has do-
main [—1, 1] and range [—7/2, /2].

If we restrict the domain of the cosine function to the interval [0, 7],
as shown in the solid portion of the graph in Figure 6.28, we obtain a one-
to-one continuous decreasing function that has a continuous decreasing
inverse function. The inverse cosine function has domain [—1, 1] and range
[0, ].

We formalize this discussion in the following definition.

The inverse sine funetion, denoted sin™", is defined by

y=sin"'x ifand onlyif x =siny

for—1 <x <land —xw/2 <y <m/2.

The inverse cosine function, denoted cos™!, is defined by

y=cos"'x ifand onlyif x=cosy

for-1<x<landO <y <.

The inverse sine and inverse cosine functions are also called the aresine
function (denoted arcsinx) and arecosine function (denoted arccos x),
respectively. The —1 in sin™! and cos™! is not regarded as an exponent, but
rather as a means of denoting an inverse function. We may read the notation
y = sin”! x as y is the inverse sine of x and the notation y = cos lx as

6.7

Inverse Trigonometric Functions

ILLUSTRATION

If y=sin"
It i ! then si and
= —— ), thensiny = —— -
y =arcsin| —> y 5
If y=cos™

1 1
If y = arccos <—§>, then cosy = —3 and ) <y < m.Hence,y = ER

y is the inverse cosine of x. The equations x = siny and x = cos y in the
definition allow us to regard y as an angle. Thus, we often read the inverse
functions as y is the angle whose sine is x or y is the angle whose cosine
is x. Note that

1 1

—nw/2<sin " x<m/2 and 0<cos 'x <.

1 and —— <y <

b4
.Hence, y = re

(SR

1
—,thensiny = =
2 Y=2

Hm|tl

T
.Hence, y = s

SN

=y=

(SHRE|

1 T
1E,thencosyziandOSy < m.Hence,y = 3

2

Since the graphs of a function f and its inverse f ~! are reflections of
each other through the line y = x, we can sketch the graphs of y = sin™! x
and y = cos~! x by reflecting the solid portions of the graphs in Figures
6.27 and 6.28. The graphs of the inverse sine and inverse cosine functions
are shown in Figures 6.29 and 6.30. We can also use the equations x =
siny with —7/2 <y <7/2 and x = cos y with 0 < y < m to find points
on the graphs of the inverse functions.

On a calculator, the inverse sine function may be approximated by us-

ing a single or key, if available, or a two-stroke combination
. The inverse cosine function is implemented in an analogous
fashion. Be sure to set the calculator to radian mode. For example,

0.85 yields the approximate result 1.01598529 radians, but if the
calculator is set in degrees, the result is 58.21°.

We can proceed in a similar manner to find an inverse for the tangent
function. If we restrict the domain of the tangent to the open interval
(—m/2, w/2), we obtain a continuous increasing function (see Figure 6.31
on the following page). We use this new function to define the inverse
tangent function.

Figure 6.29 Figure 6.30
AY AY

1 "

y =sin"!x \
T X= cos 1 x
—

T

|
f
-1 1 .
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Definition 6.35 . ILLUSTRATION
The inverse tangent function, or arctangent function, denoted by
tan™!, or arctan, is defined by : sinsin 1 1) =1 since —1 <1 <1
y=tan"'x = arctanx ifandonlyif x =tany . (Sm Z) _T since -~ <~ <X
forevery x and —7/2 < y < /2. 4 4 27472
cos [cos_'1 (—%)] . —% since —1 < —% <1
) 21 2. 27
The domain of the arctangent function is R and the range is the open ACCOS COS 737 ) = 757 smee 0= 3 =7
interval (—m/2, 7/2). We can obtain the graph of y = arctan x shown in -1
Figure 6.32 by reflecting the graph in Figure 6.31 through the line y = x. tan(tan™" 1000) = 1000 by (6.36)(v)
tan 1(tan )—n smce—z<n’—<n
Figure 6.31 Figure 6.32 4 4 2 ‘ :
i 4 i 4 cos™! [cos <—£)] =cos™! Q = T
| |y = tan x — 4 2 4
: |I y = arctan x Figure 6".3341 . arctan(tanw) = arctan0 =0
' | R ™ = tan~ ! x f{(x) =sin~ ' (sinx) , 5
) S = B 4
S : 2 - Y sin~! (sin i) —an ! [ X2) 22
| | 3 2 3
5 " > f f —
_m | x 1 x /\ -
2 : T I' 2 e = == \'I/ > Be careful when using (6.36). In the final part of the preceding illustra-
| | 2 ' tion, for example, 27/3 is not between —m/2 and /2, and hence we can-
} I not use (6.36)(ii). Instead, we use properties of reference angles (page 45)
I l T to first evaluate sin(277/3) and then find sin"1(+/3/2). As we see in this il-
I ! Figure 6.34 lustration, in general, sin_l(sin x) # x. The function f(x) = sin~! (sinx)

is defined and continuous for all real numbers x and has an interesting
graph, part of which is shown in Figure 6.33.

ILLUSTRATION

V13

If y = arctan(—1), then tany = —1 and —% <y< % Hence, y = —%. 2 EXAMPLE®|  Find the exact value of sec(arctan ).

= SOLUTION If welet y = arctan %, then tan y = . We wish to find
secy. Since —m/2 < arctanx < 7/2 for every x and tany > 0, it follows
that 0 < y < 7/2. Thus, we may regard y as the radian measure of an an-
Figure 6.35 gle of a right triangle such that tan y = %, as illustrated in Figure 6.34. By

If y = arctan(+/3), then tan y = +/3 and —% <y< g Hence, y = %

W

The relationships f(f~'(x)) = x and f~!(f(x)) = x that hold for

any inverse function £~ give us the following properties. AY |y =secx \‘ the Pyt}'lagorean theorgm, the hypotenuse is v/3% + 2% = +/13. Referring
} i \\ to the triangle, we obtain
Properties of Inverse | | N 2 V13
Trigonometric Functions 6.36 () sin(sin™! x) =sinfarcsinx) =x if-1<x <1 \i_ I { N sec (arctan g) =secy = 3
(i) sin”!(sin x) = arcsin(sinx) =x if—7/2 <x <n/2 ll | ! e
@iii) cos(cos™!x) = cos(arccosx) =x if—1<x < | } m I 27 X
05 s e e e ) = RO S -1 A | If we considel" the graph of y = sec x, there are many ways to restrict
= - = : // { x so that we obtain a one-to-one function that takes on every value of the
(v) tan(tan™ x) = tan(arctanx) = x  for every x I | secant function. There is no universal agreement on how this should be
(vi) tan“l(tan x) = arctan(tanx) = x if—7/2 <x < 7/2 } ,’ I done. Tt is convenient to restrict x to the intervals [0, 7r/2) and [7, 37/2),
I | as indicated by the solid portion of the graph of y = secx in Figure 6.35,




Definition 6.37

Figure 6.36
AY
_______ Sl
\ 2
y =sec 'x i
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rather than to the “more natural” intervals [0, 7/2) and (7/2, 7], because
the differentiation formula for the inverse secant is simpler. We show in the

next section that (d/dx)(sec ! x) = 1 /(xv x? = 1). Thus, the slope of the
tangent line to the graph of y = sec ™! x is negative if x < —1 or positive
if x > 1. For the more natural intervals, the slope is always positive, and

we would have (d/dx)(sec™! x) = 1/(|x| Vx> = 1).

The inverse secant function, or arcsecant function, denoted by

sec™!, or arcsec, is defined by

y=sec”!x = arcsecx ifandonlyif x = sec ¥

for |x| > 1 and y in [0, /2) orin [7, 37/2).

The graph of y = sec™! x is sketched in Figure 6.36.

The inverse cotangent function, cot’l, and the inverse cosecant func-
tion, csc™!, can be defined in similar fashion (see Exercises 25-26).

Most calculators and many computer applications do not provide for
the direct evaluation of the secant function or the inverse secant function.
We evaluate sec x by computing the reciprocal of cos x, but there is no sim-
ple way to evaluate the inverse secant function. The next example suggests
a procedure.

EXAMPLE®=2 Use acalculator to approximate arcsec(—14.3).

SOLUTION From the graph of the inverse secant function in Fig-
ure 6.36, we see that arcsec(—14.3) will lie between 7 and 37/2. If we
lety = arcsec(—14.3), thensecy = —14.3 andcos y = —(1/14.3). Since
the range of the inverse cosine function is [0, ] with m/2 < arccosx < 7
when x < 0, a calculator provides the approximation

7 = cos™1(—1/14.3) ~ 1.64078352.

To find the desired answer in the interval [, 377/2), we treat ¥ as a refer-
ence angle and compute the answer as y = 7 + (7 — ) & 4.64240179.

EXAMPLE®=3 If -1 <x <1, rewrite cos(sin_1 x) as an algebraic
expression in x.

SOLUTION Let
y=sin"lx, or equivalently, siny = x,.

We wish to express cos y in terms of x. Since —7/2 < y < /2, it follows
that cos y > 0, and hence

cosy:x/l—sin2y=\/1—x2.

6.7 Inverse Trigonometric Functions

Figure 6.37

Theorem 6.38

2

Consequently, cos(sih‘1 xy=vI1-—x-

The last identity can also be seen geometrically if 0 < x < 1. In this
case, 0 < y < m/2, and we may regard y as the radian measure of an
angle of a right triangle such that siny = x, as illustrated in Figure 6.37.

(The side of length v/ 1 — x2 is found by using the Pythagorean theorem.)
Referring to the triangle, we have

1—x2
cos(sin_1 X)=cCcosy = — =v1-x%

DIFFERENTIATING AND INTEGRATING
INVERSE TRIGONOMETRIC FUNCTIONS

We consider next the derivatives and integrals of the inverse trigonometric
functions and integrals that result in inverse trigonometric functions. We
concentrate on the inverse sine, cosine, tangent, and secant functions. The
next two theorems provide formulas with u = g(x) differentiable and x
restricted to values for which the indicated expressions have meaning. You
may find it surprising to learn that although we use trigonometric functions
to define inverse trigonometric functions, their derivatives are algebraic

functions.

1 i e o8
1 d
(ii) i(cos“lu) SN .
dx J1—u2dx
d _ 1 du
(@) —-(tan Lu) = T2
1 de

el o
(iv) x(sec u) =

PROOF We shall consider only the special case u = x, since the for-
mulas for ¥ = g(x) may then be obtained by applying the chain rule.

If we let f(x) =sinx and g(x) = sin~! x in Theorem (6.7), then it
follows that the inverse sine function g is differentiable if |x| < 1. We
shall use implicit differentiation to find g (x). First note that the equations

y= sin"!x and siny=x

are equivalent if —1 <x <1 and —7/2 < y < w/2. Differentiating
sin y = x implicitly, we have
dy

cosyd— =1
X
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dy 1
dx  cosy’

d
and hence — (sin_1 x) =
dx

Since —7/2 < y < /2, cos y is positive and, therefore,

cosy:\/l—sinzyzx/l—xz.

d . 1

Thus, I (sin”" x) = m
for |x| < 1. The inverse sine function is not differentiable at &1. This
fact is evident from Figure 6.29, since vertical tangent lines occur at the
endpoints of the graph.

The formula for (d/ dx)(cos™! x) can be obtained in similar fashion.

It follows from Theorem (6.7) that the inverse tangent function is dif-
ferentiable at every real number. Let us consider the equivalent equations

y=tan"'x and tany=ux
for —/2 < y < m/2. Differentiating tan y = x implicitly, we have

dy

2

sec“y— =1,
ydx

Consequently,

d _1 dy 1
—(t = - = .
dx (tan™" x) dx  sec’y

Using the fact that sec? y = 1 + tan? y =14 x? gives us
d 1
— (tan™' x) = 5
dx 14+x
Finally, consider the equivalent equations
1

y=sec 'x and secy=ux

for y in either (0, 7/2) or (, 37/2). Differentiating sec y = x implicitly
yields

dy
secytanyd— =1.
x

Since 0 <y < w/2 orm < y < 3m/2, it follows that sec y tan y # 0 and,
hence, '
d d 1
—(sec™!x) = Y =,
dx dx secytany

Using the fact that tan y = \/;02 y —_1 = vx% — 1, we obtain

1
—(sec™! X)= -
dx 1
for |x| > 1. The inverse secant function is not differentiable at x = %1.
Note that the graph has vertical tangent lines at the points with these
x-coordinates (see Figure 6.36). =

6.7

Figure 6.38

Inverse Trigonometric Functions

ILLUSTRATION

¥

f(x) f(x
1
sin~! 3x ——(3x) = —_37
1— (3x)2dx V1 — 952
1 d 1
arccos(Inx) ————(Inx) = ————
V1= (Inx)?dx xy/1 = (Inx)?
1 . d 2%
tan—-l e2x —— er —
1+(e2.X)2dx( ) I+€4x
1 d 2
arCSCC(xz) —— ——(xz) =
x%y/ (xz)2 —1dx xt =1

The next example illustrates an application involving derivatives of the
inverse trigonometric functions. Exercises 66 and 70 demonstrate other
important applications.

EXAMPLE®=4  Arocket is fired directly upward with initial velocity
0 and burns fuel at a rate that produces a constant acceleration of 50 ft/sec’
for 0 <t <5, with time ¢ in seconds. As illustrated in Figure 6.38, an
observer 400 ft from the launching pad visually follows the flight of the
rocket.

(a) Express the angle of elevation 6 of the rocket as a function of ¢.

(b) The observer perceives the rocket to be rising fastest when d6/dr is
largest. (Of course, this is an illusion, since the velocity is steadily in-
creasing.) Determine the height of the rocket at the moment of perceived
maximum velocity.

SOLUTION

(a) Let s(¢) denote the height of the rocket at time ¢ (see Figure 6.38). The
fact that the acceleration is always 50 gives us the differential equation

s" (@) =50,

subject to the initial conditions s'(0) = 0 and s(0) = 0. Integrating with

respect to ¢, we obtain
fs”(t) dt = JSOdt
s =50+C

for some constant C. Substituting 1 = 0 and using s'(0) = 0 gives us
0 =50(00) + C, or C = 0. Hence,

s'(t) = 50¢.
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Integrating again, we have

Js’(t) dt = fSOt dt

s(ty =25+ D

for some constant D. If we substitute ¢ = 0 and use 5(0) = 0, we obtain

0=25(0)+ D, or D = 0. Hence,

s(t) = 25¢°.
Referring to Figure 6.38, with s(z) = 25¢2, we find
g 2562 2 o . 12
and = —— = —, or = arc —.
400 16 16
(b) By Theorem (6.38), the rate of change of  with respect to ¢ is
de 1

_ (2:) 32
dt 1+ /162 \16) ~ 256+ 1*
Since we wish to find the maximum value of df/dt, we begin by finding
the critical numbers of df/dt. Using the quotient rule, we obtain

d (de) _d0 (256+1)(32) — 32t(4r%)  32(256 — 31%)
dt\dt)  a* (256 + 1*)? C@s6+1?

Considering d%6/dt> = 0 gives us the critical number ¢ = / 256/3. 1t fol-
lows from the first (or second) derivative test that d6/dt has a maximum

value at t = /256/3 ~ 3.04 sec. The height of the rocket at this time is

5(v/256/3) = 25(7/256/3)% = 25,/256/3 ~

2309 ft.

We may use differentiation formulas (i), (ii), and (iv) of Theorem (6.38)
to obtain the following integration formulas:

1
o f——du:sin_lu—l—C
V1—u?
1 -1
2 sdu=tan” u+C

—du=sec lu+C

®) fu\/u‘_

These formulas can be generalized for a > 0 as follows.

eI
a

(i) j\/a%__u’l du = sin“"l
174

1 1
(ii)f 2du=-—tan*‘-+c
+ a
I _ju

=-sec -+ C
a

(iii) f = du
uvu?

6.7
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_I I

PROOF Letus prove (ii). As usual, it is sufficient to consider the case
u = x. We begin by writing

J 1 d 1 f 1 d
———dx=— | ———— dx
a’+ x? a* ] 1+ (x/a)?

Next we make the substitution v = x/a, dv = (1/a) dx. Introducing the
factor 1/a in the integrand, compensating by multiplying the integral by a,
and using formula (2), preceding this theorem, gives us the following:

1 1 1 1
fz——zdx=—fﬁ‘—dx
a’+x al 1+ (x/a)” a

The remaining formulas may be proved in similar fashion. ==

In Example 5 of Section 4.7, we obtained numerical approximations

for the value of the definite integral fol [4/(1+ x2)] dx. We can now use
our knowledge of the inverse tangent function to show that the exact value

of this integral is 7.

1
EXAMPLE®5 Evaluatef dx.

0o 14+x2

SOLUTION Using (6.39)(ii), we have

1 1
4 1
j 2dx=4f 2d)c
o 1+x o 1+x

= 4[arctan x](l)

= 4(arctan 1 — arctan 0)

=4(3-0) =7

EXAMPLE®G6 Evaluatef
vl—e

SOLUTION The integral may be written as in Theorem (6.39)(i) by
letting @ = 1 and using the substitution

u=e* du = 2¢* dx.

’
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We introduce a factor 2 in the integrand and proceed as follows:

2x
___._.—ev dx = l J ———-—_1 2@2x dx
/1— ™ 2 1 - (e2x)2
1 J’ 1
- — ———du
2 /1 _ 42
sin'u+C

sin"le + C

D= N=

2
EXAMPLE®Y Evaluatejsj_  dx.

X

SOLUTION The integral may be written as in Theorem (6.39)(ii) by
letting a* = 5 and using the substitution

u=x>  du = 3x2 dx.

We introduce a factor 3 in the integrand and proceed as follows:

2
J d dlej-—-l—3—23x2dx
5+ x° 3)5+(x)

1
PLE®=8 Evaluate j———— dx.
EXAM =9

SOLUTION The integral may be written as in Theorem (6.39)(iii)
by letting a® = 9 and using the substitution

= x> du = 2x dx.

’

We introduce 2x in the integrand by multiplying the numerator and the
denominator by 2x and then proceed as follows:

1 1
————dx=J '
J’x\/x“—9 2x - xv/ (x2)? — 3
lj 1
—————du
u\/u2—32

1
-—sec'lz—kC
3 3

2x dx

ANl = N = o

2

1 *
—+C
sec 3—|-
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Integrals of Inverse
Trigonometric Functions 6.40

R ISR

The formulas we developed in previous chapters for such quantities as
areas, volumes of solids of revolution, arc length, and surface area may
also be applied to transcendental functions. The resulting definite integrals
may be evaluated by finding antiderivatives where possible or may be
approximated by the numerical methods discussed in Section 4.7. In the
next example, we approximate the arc length of a piece of the inverse
secant function using Simpson’s rule.

EXAMPLEw®9 Approximate the arc length of the graph of the func-
tion f(x) = arcsec x from x = 2 to x = 3 to four decimal places.

SOLUTION From the definition (5.14) of arc length, we know that
the arc length of this graph is

3
f V14 [f () dx.
2

If f(x) = arcsec x, then by Theorem (6.38)(iv), ) =1/(xv x? = 1),
SO

I+ [P =1+ —5—5——
+ L)) pD T

3

and the arc length is

3 /—1_ -
I+ 55 &
2 \/ x“(x*—=1)
We evaluate this definite integral numerically by using Simpson’s rule with
n = 10, 20, and 40. For each of these values of n, we obtain 1.01783 as an

approximation. Thus to four decimal places, the arc length of the graph of
y = arcsec x from x = 2tox = 3is 1.0178.

We conclude this section with a brief look at indefinite integrals of the
inverse trigonometric integrals.

) Jsin”iudu=usin’1u+vl—u2+C
(i) jcos”ludu=ucos‘1u-—v1——u2+c
(i) ftan'%du:utan“]u—%ln(1+u2)+C

(iv) fsec‘ludu=usec’1u~—lniu+\/u2~——1‘+C

We derive these forms of the indefinite integrals using the approach
demonstrated in the next example.




28 (a) Define csc ™! by restricting the domain of the cose-
cant function to [~x/2, 0) U (0, /2].

(b) Sketch the graph of y = csc™! x.
(c) Show that

Exercises 6.7

7 (a) sin sin — (b) cos cos —
3 3
(© tan~! (tan 7—”>
6

8 (a) sin[cos_1 —%)]
(c) tan[sin~}(=1)]

9 (a) sin(tan~! v/3)
(<) tan(cos ™! 0)
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EXAMPLE®=10

(a) Find f'(x) if f(x) = x arcsinx.

(b) Use the result of part (a) to find [ arcsin x dx.

(b) cos(tan~! 1) i(csc—l u) = _;d_”

dx uvu? —14dx

29 As shown in the figure, a sailboat is following a straight-
line course I. The shortest distance from a tracking
station T to the course is d miles. As the boat sails,
the tracking station records its distance & from T and
its direction 8 with respect to T. Angle « specifies the

SOLUTION

(a) By the product rule (2.19), ‘
f'(x) = (x arcsinx)’ (b) cos(sin™! 1)

= (x)(arcsin x) + (x)(arcsin x)’

— 10 (a) cot(sin”" ) (b) secltan™! (=3)]

= larcsinx + x

2 _
xl - X (¢) cscfcos 1(_%)] direction of the sailboat.
= arcsinx + - 1l (a) cot[sin_l(—%)] (b) sec(tan™! %) (a) Express « in terms of d, k, and 6.
l—x © csccos™! 1) (b) Estimate o to the nearest degree if d =50 mi,

. 5 k =210 mi, and 6 = 53.4°.

Thus, (x arcsin x)’ = arcsin x + - ‘ 12 If =1 < x < 1, is it always possible to find the value of
l—x sin”!(sin™! x) by pressing the calculator key sequence Exercise 29
(b) From part (a), we have [INV][sIN|twice? If not, determine the permissible
values of x.
x
arcsin x = (x arcsinx)’ — ——
V1—x E] Exer. 13-16: Find a four-decimal-place approximation

of the expression, whenever it is defined.

13 (a) sin~1(—0.931) (b) tan~1(0.278)

14 (a) cos1(—0.265) - (b) sec”'(15.4)

I5 (a) sec[sin™!(—0.582) + tan~1(0.304)]
(b) cos[sin!(0.179) + tan~!(—1.89)]

Integrating each side of this equation with respect to x gives

arcsinx dx = | | (x arcsinx)’ — X |ax
vi1— x? |

= J(x arcsin x)’ dx — f X _dx
V1 —x?
= xarcsinx + V1 — x* + C.

16 (a) tan[sin~!(0.783) + sec™!(8.54)]
(b) sin[cos ! (0.496) + tan~!(6.12)]

30 An art critic whose eye level is 6 ft above the floor views

- EXERCISES 6.7

Exer. 1-11: Find the exact value of the expression,
whenever it is defined.

2
(c) tan™! (—/3)

1 (a) sin~! (—ﬁ

2 (a) arcsin 73

1 gent function to the interval (0, 7).
(c) arctan — :
V3 6 (a) arcsin [ sin S (b arccos [ cos S (b) Sketch the graph of y = cot™" x.
| - @ 4 4 (c) Show that e
3 (a)sin” " — (b) cos™ — d 1 4 d
> 2 (c) arctan tan7—” —(cot™tu) = L (tan™' u)
(c) tan~11 4 dx 14 u?dx dx

)

(b) cos™! (— %)

b -
arccos
( ) C

(b) cos(arccos %)

(b) cos ™! (cos _561)

4 (a) sin[arcsin(—%)]

(c) tan(arctan 14)

5 (a) sin~! (sin z)

Exer. 17 -20: Rewrite as an algebraic expression in x for
x> 0.

18 tan(arccos x)
1

20 cot (sin_1 —)
X

Exer. 21-26: Sketch the graph of the equation.

22 y = %sin_lx

17 sin(tan_lx)
19 sec (sin_1 i)
3

21 y=sin"!2x
23 y = cos~! %x 24 y = 2cos ' x
25 y = cos(2arccos x) 26 y =cos(3 cos™! x)

27 (a) Define cot™! by restricting the domain of the cotan-

a painting that is 10 ft in height and is mounted 4 ft
above the floor, as shown in the figure.

(a) If the critic is standing x feet from the wall, express
the viewing angle 6 in terms of x.

Exercise 30




(b) Use the addition formula for the tangent to show that

9=tan“1( lid >
%2 —16

(<) For what value of x is § = 45°?

Exer. 31-48: Find f'(x) if f(x) is the given expression.

31 sin”! x 32 sin~! %x
33 tan"'(3x — 5) 34 tan~!(x?)
35 ¢ *arcsec e 36 +arcsec 3x

37 lnarctan(xz) 38 arcsinlnx
39 (1+ cos™! 3)c)3
41 cos(x_l) + (cosx)_1 +cos1x

42 xarccos+/4x +1

43 3arcsin(x3)

44 (l — arcsin —1—>4
x x
arctan x
x2+1
46 (sin2x)(sin ! 2x)
47 Jxsec ! /x
Exer. 49-50: Find y’.
49 x>+ xsin"'y=ye* 50 In(x+y) =tan"' xy

40 cos !cose”

45

48 (tan x)¥ctanx

Exer. 51 -62: Evaluate the integral.

4
! (a)fx%lrwdx ® s x241r16dx
et L
x V22

54f sinx ssf ' &»
_sinx R
Jrd %)

cos? x +1
cos x e*
56 ———dx 57 e dx
V9 —sinx V16 — 2
t:
58 fsecxianzxdx s9f S dx
1+sec”x x“+9
1

1
60 j ——dx
xxb—4
1
62 J ——dx
xvx—1
63 The floor of a storage shed has the shape of a right
triangle. The sides opposite and adjacent to an acute

64

65

66

67

68

69

70
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angle 6 of the triangle are measured as 10 ft and 7 ft,
respectively, with a possible error of £0.5 in. in the
10-ft measurement. Use the differential of an inverse
trigonometric function to approximate the error in the
calculated value of 6.

Use differentials to approximate the arc length of the
graphof y = tan~! x from A(0, 0)to B(0.1, tan! 0.1).

An airplane at a constant altitude of 5 mi and a speed of
500 mi/hr is flying in a direction away from an observer
on the ground. Use inverse trigonometric functions to
find the rate at which the angle of elevation is changing
when the airplane flies over a point 2 mi from the
observer.

A searchlight located % mi from the nearest point P on
a straight road is trained on an automobile traveling on

‘the road at a rate of 50 mi/hr. Use inverse trigonometric

functions to find the rate at which the searchlight is
rotating when the car is % mi from P.

A billboard 20 ft high is located on top of a building,
with its lower edge 60 ft above the level of a viewer’s
eye. Use inverse trigonometric functions to find how far
from a point directly below the sign a viewer should
stand to maximize the angle between the lines of sight
of the top and bottom of the billboard (see Example 9 of
Section 3.6).

The velocity, at time 7, of a point moving on a coordinate
line is (1 + 12)‘1 ft/sec. If the point is at the origin at
t = 0, find its position at the instant that the acceleration
and the velocity have the same absolute value.

A missile is fired vertically from a point that is 5 mi
from a tracking station and at the same elevation. For the
first 20 sec of flight, its angle of elevation changes at a
constant rate of 2° per second. Use inverse trigonometric
functions to find the velocity of the missile when the
angle of elevation is 30°.

Blood flowing through a blood vessel causes a loss of
energy due to friction. According to Poiseuille’s law,
this energy loss E is given by E =kl/ r*, where r is
the radius of the blood vessel, I is the length, and k is
a constant. Suppose that a blood vessel of radius r, and
length /, branches off, at an angle 0, from a blood vessel
of radius r; and length [, as illustrated in the figure on
the following page, where the white arrows indicate the
direction of blood flow. The energy loss is then the sum
of the individual energy losses—that is,

kl kl
E=—1+-2
r r

Express /; and [, in terms of a, b, and 6, and find the
angle that minimizes the energy loss.

6.8 Hypérbolic and Inverse Hyperbolic Functions

Exercise 70

Exer. 71-74: (a) Verify the correctness by differentiation.
(b) Derive the formulas using the approach illustrated in
Example 10.

71 Formula (i) of (6.40)

73 Formula (iii) of (6.40)

74 Formula (iv) of (6.40) (Hint for part (b): Verify
first that if g(x) = In |x -+ v/x* — 1], then g’(x) =

1/vVx* = 1)

Exer. 75 - 78: Evaluate the integral.

72 Formula (ii) of (6.40)

75 fsin_1 2x dx 76 fcos_1 %x dx

sec ! /%
Jx

Exer. 79-82: Approximate the arc length of the graph

of the function between A and B. Use Simpson’s rule

or numerical integration provided on a calculator or a
computer to ensure at least four correct decimal places.

77 f x tan~ ! (x?) dx 78 dx

79 y =arcsinx; A(0,0), B l,f
2°6
«/5 3 ﬁ b4
= A2 2], BlXSZ
80 y = arccos x; ( 22 R
81 y=arctanx; A(0,0), B(ﬁ, %)

82 y = arctanx; A(—5, —arctan5), B(5, arctan5)

Exer. 83 -84: Approximate the surface area generated if
the graph of the function between A and B is revolved
about the x-axis. Use Simpson’s rule or numerical
integration provided on a calculator or a computer to
ensure at least four correct decimal places.

83 y = 4arctan(x?); A(0, 0), B(1, m)

84 y = arcsec x; A(2, arcsec 2), B(10, arcsec 10)

6.8  HYPERBOLIC AND INVERSE

g AT F S0 il D * 03 = l-vJ
GT IV YL IR A

HYPERBOLIC FUNCTIONS

The hyperbolic functions and their inverses, which we investigate in this

section, are used to solve a variety of problems in the physical sciénces

and engineering.

HYPERBOLIC FUNCTIONS

Many of the advanced applications of calculus involve the exponential

expressions

ef—e? and & +e*
2 2 ’

which define the hyperbolic functions. The properties of these expres-
sions are similar in many ways to those of sinx and cosx. Later in our
discussion, we shall see why they are called the hyperbolic sine and the
“hyperbolic cosine of x.
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Definition 6.41
efinition The hyperbolic sine function, denoted by sinh, and the hyperbelic

cosine function, denoted by cosh, are defined by

X —~x X —Xx
e

sinhx = f—~—~zi— and coshx =

for every real number x.

We pronounce sinh x and cosh x as sinch x and kosh x, respectively.

The graph of y = cosh x may be found by addition of y-coordinates.
Noting that coshx = %ex + %e“", we first sketch the graphs of y = %ex
and y = %e‘x on the same coordinate plane, as shown with dashes in
Figure 6.39. We then add the y-coordinates of points on these graphs to
obtain the graph of y = cosh x. Note that the range of cosh is [1, 00).

We may find the graph of y = sinhx by adding y-coordinates of the

graphs of y = %e" and y = —%e‘x, as shown in Figure 6.40.

Figure 6.39

Figure 6.40

Some scientific calculators have keys that can be used to find values of
sinh and cosh directly. We can also substitute numbers for x in Definition
(6.41), as in the following illustration.

ILLUSTRATION

3_ -3 03 + o 05

sinh3 = < ~ 10.0179 cosh0.5 = S~ 11276

The hyperbolic cosine function can be used to describe the shape of a
uniform flexible cable, or chain, whose ends are supported from the same
height. As illustrated in Figure 6.41, telephone or power lines may be
strung between poles in this manner. The shape of the cable appears to be

)
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Figure 6.41

Theorem 6.42

“a parabola, but is actually a catenary (after the Latin word for chain). If we
introduce a coordinate system, as in Figure 6.41, we will later show that
an equation corresponding to the shape of the cable is y = a cosh(x/a) for
some real number a.

The hyperbolic cosine function also occurs in the analysis of motion
in a resisting medium. If an object is dropped from a given height and if
air resistance is disregarded, then the distance y that it falls in ¢ seconds
isy= % g%, where g is a gravitational constant. However, air resistance
cannot always be disregarded. As the velocity of the object increases,
air resistance may significantly affect its motion. For example, if the air
resistance is directly proportional to the square of the velocity, then the
distance y that the object falls in # seconds is given by

y = Aln(cosh Bt)

for constants A and B (see Exercise 42). Another application is given in
Example 2 of this section.

Many identities similar to those for trigonometric functions hold for the
hyperbolic sine and cosine functions. For example, if cosh? x and sinh? x
denote (cosh )c)2 and (sinh x)z, respectively, we have the following iden-
tity.

cosh? x — sinh?x = 1

PROOF By Definition (6.41),

x —x\ 2 x _ ,—x\2
coshzx—sinhzxz(—e te ) _<_e ¢ )

2 2
B 62x+2+e—2x er _2+e—2x
- 4 B 4
_62x+2+e—2x__82x+2_e—2x
B 4
=%2=1

Theorem (6.42) is analogous to the identity cos® x 4 sin®x = 1.
Other hyperbolic identities are stated in the exercises. To verify an
identity, it is sufficient to express the hyperbolic functions in terms of
exponential functions and show that one side of the equation can be
transformed into the other, as illustrated in the proof of Theorem (6.42).
The hyperbolic identities are similar to (but not always the same as) certain
trigonometric identities—differences usually involve signs of terms.

If ¢ is a real number, there is an interesting geometric relationship be-
tween the points P(cos ¢, sint) and Q(cosh?, sinh¢) in a coordinate plane.
Let us consider the graphs of x?+ y2 =1and x* — y2 = 1, sketched in
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Figure 6.42 x* +y* =1 Figure 6.43 x> —y? =1
y
/
LAY N 4
N Q(cosh 1, sinh 7)
T P(cos t, sin f) k
[ B(1,0) , B(1,0)
\ b — = T ¥ . =
\ 0 z'l X / 0 \ X
A 3 / \
== g :

Figures 6.42 and 6.43. The graph in Figure 6.42 is the unit circle with
center at the origin. The graph in Figure 6.43 is a hyperbola. (Hyperbolas
and their properties are discussed in the Precalculus Review Chapter.) Note
first that since cos® z + sin®# = 1, the point P(cost, sint) is on the circle
x2 + y? = 1. Next, by Theorem (6.42), cosh?t — sinh® ¢t = 1, and hence
the point Q(cosh?, sinhz) is on the hyperbola x? — y* = 1. These are the
reasons for referring to cos and sin as circular functions and to cosh and
sinh as hyperbolic functions.

The graphs in Figures 6.42 and 6.43 are related in another way. If
0 <t < /2, then ¢ is the radian measure of angle POB, shown in Figure
6.42. The area A of the shaded circular sector is A = %(l)zt = %t, and
hence ¢ = 2A. Similarly, if Q(cosht, sinh?) is the point in Figure 6.43,
then ¢t = 2A for the area A of the shaded hyperbolic sector (see Exercise
33).

The impressive analogies between the trigonometric and the hyperbolic
sine and cosine functions motivate us to define hyperbolic functions that
correspond to the four remaining trigonometric functions. The hyperbolic
tangent, hyperbolic cotangent, hyperbolic secant, and hyperbolic cose-
cant functions, denoted by tanh, coth, sech, and csch, respectively, are
defined as follows.

sinhx € —e™*

i) tanhx = =
o YT Coshx e te”
coshx e +e™*
thx = == /s 0
tHxicoth ¥ sinhx & —e™* S
1 2
e s e
1 2
@iv) cschx= = - x#0

sinhx e —e
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Theorem 6.44

Figure 6.44
AY
y = tanh x
| ——— +—+— ——t—
AY
1 y =sechx
-J—/X: > —t—1 -
x x

We pronounce the four function values in the preceding definition as
tansh x, cotansh x, setch x, and cosetch x. Their graphs are sketched in
Figure 6.44.

If we divide both sides of the identity cosh?x — sinh®x =1 (see
(6.42)) by cosh? x, we obtain

cosh?x  sinh?x 1

cosh?x cosh’x  cosh’x

Using the definitions of tanh x and sech x gives us (i) of the next theorem.
Formula (ii) may be obtained by dividing both sides of (6.42) by sinh? x.

@ 1- tanh? x = sech® x (i) coth®x — 1 = csch® x

Note the similarities and differences between (6.44) and the analogous
trigonometric identities.

Derivative formulas for the hyperbolic functions are listed in the next
theorem, where u = g(x) and g is differentiable.
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5 d v di
() E;(smh u) = cosh u—

d du
i) — = sinh g —
(i I (coshu) = sinhu T
_— d o 2 du
(iii) 7 (tanh u) = sech” u .
Sl o du
{iv) '&;(Coth i) = —csch HE;

d
) Zi;(sech 1) = —sech u tanh u%

d
{vi) —(cschu) = —cschu cothu‘jz
dx dx

PROOF As usual, we consider only the case u = x. Since
(d/dx)(e*) ='¢* and (d/dx)(e™) = —e %, c’

d d X _ =X X —x
E(smhx) = E(e 26 ): ¢ +26 = cosh x

and

d d (e +e* e —e
Ir (coshx) Ir ( 5 ) > sinh x

To differentiate tanh x, we apply the quotient rule as follows:

d d (sinhx
— (tanhx) = —
dx(an *) dx (coshx)

cosh x(d/dx)(sinh x) — sinh x(d/dx)(cosh x)
cosh? x

cosh? x — sinh? x

cosh? x
1

cosh? x

= sech®x

The remaining formulas can be proved in similar fashion. ==

EXAMPLE® I If f(x) = cosh(x? + 1), find f’(x).

6.8 Hyperbolic and Inverse Hyperbolic Functions

Figure 6.45
Basement wall

Basement [

597

SOLUTION Applying Theorem (6.45)(i), with u = x* 4 1, we ob-
tain

£ = sith(2 + 1) - L2 4 1)
dx
= 2x sinh(x? + 1).

EXAMPLE®=2 Radon gas can readily diffuse through solid materials
such as brick and cement. If the direction of diffusion in a basement wall
is perpendicular to the surface, as illustrated in Figure 6.45, then the radon
concentration f(x) (in joules/cm3) in the air-filled pores within the wall at
a distance x from the outside surface can be approximated by

f(x) = Asinh(gx) + Bcosh(gx) +k,

where the constant g depends on the porosity of the wall, the half-life of
radon, and a diffusion coefficient; the constant k is the maximum radon
concentration in the air-filled pores; and A and B are constants that depend
on initial conditions. Show that y = f(x) is a solution of the diffusion
equation

d’y 2 2

0 qg°y+q°k=0.

SOLUTION Differentiating y = f(x) twice gives us

Z—i} = gAcosh(gx) + gBsinh(gx)
and
d*y
dx?
Since y = A sinh(gx) + B cosh(gx) + k, we have
g%y = q?Asinh(gx) + q* B cosh(gx) + ¢°k.

= q2A sinh(gx) + qu cosh(gx).

Subtracting the expressions for d*y/dx* and g%y yields

ilzy
P 7’y =—q’k
and hence
l2y
PR a*y +q*k=0.

The integration formulas that correspond to the derivative formulas in
Theorem (6.45) are as follows.




m

Theorem 6.46

Theorem 6.47
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0} fsinhudu = coshu + C

(i) f coshu du = sinhu + C

Gii) f sech? udu = tanhu + C

(iv) fcschzudu=-cothu+c

) jsechutanhudu—--—sechuﬁ—C

(vi) f cschucothudy = —cschu + C

EXAMPLE®=3 Evaluatefx2 sinh x> dx.

SOLUTION Ifweletu = x°, then du = 3x%dx and
fxz sinh x> dx = % f(sinhx3)3x2 dx

= %fsinhudu = %coshu+ C= %coshx3 + C.

INVERSE HYPERBOLIC FUNCTIONS

We now investigate the inverses of the hyperbolic functions, which fre-
quently occur in evaluating certain types of integrals. We will also see how
an inverse hyperbolic function is used in the derivation of the equation for
a hanging cable.

The hyperbolic sine function is continuous and increasing for every x
and hence, by Theorem (6.6), has a continuous, increasing inverse func-
tion, denoted by sinh™!. Since sinh x is defined in terms of ¢*, we might
expect that sinh~! can be expressed in terms of the inverse, In, of the natu-
ral exponential function. The first formula of the next theorem shows that
this is the case.

() sinh™'x =ln(x+vVx*+1)
(i) cosh ! x = In(x + \/xz -1, x>1

1
1ii, x| <1

1++v1—x2
e

1
@ii) tanh™'x = 5 In

(iv) sech™'x =1n O<x<l1

6.8 Hyperbolic and Inverse Hyperbolic Functions

PROOF Toprove (i), we begin by noting that
y=sinh™!x ifandonlyif x = sinhy.

The equation x = sinh y can be used to find an explicit form for sinh™! x.
Thus, if

then e —-2x—e? =0.
Multiplying both sides by e”, we obtain
e —2xe? —1=0.

Applying the quadratic formula yields

2x £ V4x* + 4
ey=x—2x—+, or & =x+VxZ+1.

Since x — v x%2+1 < 0and ¢’ is never negative, we must have

e =x+Vxt+1.

The equivalent logarithmic form is
y =In(x + Vx4 1);

that is, sinh~lx = In(x + v X2+ 1).

Formulas (ii)—(iv) are obtained in similar fashion. As with trigonomet-
ric functions, some inverse functions exist only if the domain is restricted.
For example, if the domain of cosh is restricted to the set of nonnegative
real numbers, then the resulting function is continuous and increasing, and
its inverse function cosh™! is defined by

y=cosh™'x ifandonlyif coshy=x, y=>0.

Employing the process used for sinh ™! x leads us to (ii).
Similarly,

y=tanh™'x ifandonlyif tanhy=x for |x|<1L.
Using Definition (6.43), we may write tanh y = x as

e — e

e)’ + e
Solving for y gives us (ii).
Finally, if we restrict the domain of sech to nonnegative numbers, the
result is a one-to-one function, and we define
y=sech™'x ifandonlyif sechy=x, y>O0.

Again, introducing the exponential form leads to (iv). =.




e

Theorem 6.48
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In the next theorem, u = g(x), where g is differentiable and x is suit- Theorem 6.49

ably restricted. E 1M
du = sinh™ Z+C’ a>0

1
0 [-—
) \/a?‘—l*u2

3 n 1
1 & ® [
Vu? 4 1dx 1
(i) f

d 1 du:cosh"lg-i-C, OD<a<u
(0] ;l;(smh u) =

1
du = —tanh™' = + C, lu| <a
a a

d 2_ .2
(i) E)‘j(COSh”I u) = "__*i____f_if‘_ u>1 Cilan
L c)f L =
d V) | ————du = —— =t 5 a
o) < Ganh~ ) = —L 941 wya® —u? ¢ ¢
dx 1 —wu-dx
o d oL ~1  du
(iv) ;l;(sech uy = \/_—_id_;’ D<u<l If we use Theorem (6.47), then each of the integration formulas in
uv'l—u the preceding theorem can be expressed in terms of the natural logarithm
function. To illustrate,
: 1 u
PROOF By Theorem (6.47)(i), f——-——du:sinh_l—-i—c
Y Hheoem 0490 Vo v z
d, ., d - ;
il - & W u
Ir (sinh™" x) pm (In(x +vx“+ 1)) = ln(f_z + (E) + 1) + C.
— __1_ _x* We can show that if @ > 0, then the last formula can be written as
PRV | S | ! /5,2
f—-—du:ln(u+ a2+u2)+D,
o x2+1—|—x va2+u2
- /2 /2 where D is a constant. In Section 7.3, we shall discuss another method for
v+ hvai+d evaluating the integrals in Theorem (6.49).
1
Y ) . 1
x“+1 EXAMPLE=S Evaluatefidx.
_ 1 V25 +9x2
This formula can be extended to (d/dx)(sinh " u) by applying the SOLUTION Wemay express the integral as in Theorem (6.49)(i), by

chain rule. The remaining formulas can be proved in similar fashion. == : P
using the substitution

M=3X, du = 3dx.

EXAMPLE=4 If y =sinh™'(tanx), find dy/dx. Since du contains the factor 3, we adjust the integrand by multiplying by 3
. and then compensate by multiplying the integral by 1 before substituting:
SOLUTION Using Theorem (6.48)(i) with u = tan x, we have ’ 1 ’

1 1
d 1 d f——dx:—f————3dx
d_y:—__—tanxz#seczx V254 9x* 3) 5%+ (3x)?
X tan?x +19x Vsec?x 1 1
=— | ———du
secx|? = [secx]. 3JV52+“2
l

- |sec x

L%y
3 5
1. 43
The following theorem may be verified by differentiating the right- = 3 sinh 5 +C

hand side of each formula.




Figure 6.46

Hanging cable

X

A0,,)"

LY

ws

Tcos 6

T sin 8
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X
dx.

EXAMPLE=6 Evaluatefl "
— e

SOLUTION Substituting u = €*, du = ¢* dx and applying Theorem
(6.49)(iii) with a = 4, we have

e* 1
f—dezfﬁede
16 — e** 47 — (&9
1
=f42—u2du

1 u
= —tanh™' = + C
glamh gt

X

1 e
= —tanh™ ! =+ C
gt

for |u| < a (thatis, e* < 4).

We now consider how the hyperbolic cosine and the inverse hyperbolic
sine functions are used in describing the shape of the curve along which a
hanging cable lies. We first derive a differential equation for the function
whose graph is the curve, and then we solve the differential equation.

Figure 6.41 shows a hanging cable in the form of a power line strung
between two towers. A section of the cable is shown in Figure 6.46, where
we have set up a coordinate system with the vertical y-axis running through
the lowest point A(0, y,) of the cable. Consider a section of the cable
running upward from A to a point P. Figure 6.46 also shows the forces
acting on the cable: There is a horizontal tension H at the point A, a
tangential tension 7' at the point P, and a downward gravitational force
ws.

The tangential tension can be resolved in a horizontal component
T cos @ and a vertical component T sinf, where @ is the angle that the
tangent line to the cable at P makes with the horizontal. (This angle is also
the angle of inclination of the tangent line.) Thus, the derivative dy/dx at
P is equal to tan 8. The force due to gravity is equal to the weight of the
section of the cable, expressed as ws, where w is the weight per unit length
and s is the length of the section.

Since the cable is not moving, the forces acting on any section of it
must cancel out. Since the cable is not moving to the right or the left, the
magnitude of the horizontal tension at point A equals the magnitude of the
horizontal tension at point P:

TcosO=H

But the cable is also stationary in the vertical direction, so the magnitude
of the gravitational force equals the vertical tension at P:

T sinf = ws

We can now write
ws T sin®

dy
= =tanf = —,
H T cos @ dx

6.8 Hyperbolic and Inverse Hyperbolic Functions

or simpfy, d_y = E‘

dx H
If we differentiate this equation with respect to x and use Theorem (5.17),
we obtain

—_——
|

dzyﬁwds_w h dy\?
dx* Hdx HY dx )~
Letting a = w/ H gives

Ay | [y
— =aqa,/l -,
dx? \ dx
for some constant a, as the differential equation satisfied by the equation

y = f(x) of the curve formed by a hanging cable. We can now solve the
differential equation to find an explicit expression for the function f.

EXAMPLE=7 Solve the differential equation

d2 [ (dyY’
=a, )14+ |—
dx Y (dx>

to find an explicit formula for the curve of a hanging cable.

<

|

3%}

SOLUTION The differential equation

pe——
&za 1+ i 2
dx? dx

is a second-order differential equation, because it involves the second
derivative of y with respect to x. We first reduce it to a first-order dif-
ferential equation by the substitution

dy
dx
2
so that d_y:id_yz_d_z_

dx?  dxdx dx

This result converts the original differential equation to a first-order equa-

tion
d fa—

dx

Z

in which the variables separate. Dividing each side by v' 1 + z* and inte-
grating, we obtain
1
f dz = f adx.
1+ 72

The integrand on the left-hand side of the equation, 1/v'1 + Z2, is the
derivative of the inverse hyperbolic sine of z. By Theorem (6.49)(i), we
have

sinh™!'z =ax+ C andhence z = sinh(ax + C).




CHAPTER 6 Transcendental Functions

Since z = dy/dx, the last equation becomes

d_y = sinh(ax + C).
dx

Because (0, y,) is the minimum point on the curve, the tangent line to the
curve at (0, y,) is horizontal. Thus, at x = 0, dy/dx = 0, and
0 = sinh(a - 0 4+ C) = sinh C.

dy .
Therefore, C=0 and T = sinhax.

X

1
Thus, y = fsinhax dx = —(coshax) + C.
a

To find the constant of integration, we first use the fact that y = y, at
x=0

1 1 I
y0=—(cosh0)+C:_(1)+C:_+C
a a P

Hence, if we choose our coordinate system so that y, = 1/a, we have
C = 0 and the equation for the hanging cable is

i
y = —(coshax).
a

Note that if the coordinate system has already been established in such
a way that y, # 1/a, then the equation for the catenary has the more
general form

1 . 1 b
= —_— —coshax.
y Yo s e
Another commonly used form for the equation of the catenary is
X
y=b+ acosh(—),
a

where a and b are constants and the lowest point on the curve occurs at
x=0.

EXAMPLE® 8 A cable television line hangs between two 30-ft poles
that are 36 ft apart. At its lowest point, the cable is 16 ft above the level
ground. Determine the height of the cable above a point on the ground that
is 6 ft from the poles.

SOLUTION  We use the form
y =b+acosh<§)

and determine first the values of the constants a and b. Since the lowest
point occurs at x = 0, we have

16=b+acosh(9) =b+acoshO=b+a,
a
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so that b=16—aq.

We also have y = 30 when x = 18 since the poles are 36 ft apart. Thus,

30=b+ acosh(g),
a

1
or b=30—a cosh(—8>
a

Equating the two expressions for b, we have
1
16—a=30—-a cosh(—g)
a

or, equivalently,
18
a— acosh(—) + 14 =0.
a

We use Newton’s method to solve for a, obtaining a ~ 13.42. So b =
16 — a ~ 2.58, and the equation for the catenary becomes

X
—2.58 + 13.42 cosh( —— ).
Y M (13.42)

At a point 6 ft from one of the poles, we have x = £12. When x =
+12, y = 2.58 + 13.42 cosh(£12/13.42) ~ 21.73. Thus, at a point 12 ft
from the lowest point on the cable television line, the height of the cable is
approximately 21.73 ft.

The analysis we have seen for hanging cables also applies to the
Gateway Arch to the West in St. Louis. All the internal forces are in
equilibrium when a cable hangs freely. There are no transverse forces
pushing the cable out of shape. Constructing an arch in the shape of an
inverted hyperbolic cosine creates a structure for which there are also
no transverse forces that might cause the arch to collapse. This inherent
stability of the inverted catenary, along with its beauty, led Saarinen to
choose it for his design of the Gateway Arch.

As with other functions that we have studied, we can gain an under-
standing of compositions of functions that use inverse hyperbolic functions
as components by combining the techniques of calculus with the graphs
that a graphing utility can display. The next example illustrates this pro-
cess.

EXAMPLE=?9

(a) determine the domain of the function f
(b) find the derivative f’

(<) use a graphing utility to plot both the function and its derivative in the
viewing window —5 <x <5,-1 <y <1.5

For the function f(x) = In[sinh~!(x? 4 1)],




Figure 6.47

—S5<x<5-1<y<15

y =1

y 4+

y=f'w

- EXERCISES 6.8

l—i—l Exer. 1-2: Approximate to four decimal places.

I (a) sinh4
(d) coth 10

2 (a) sinhIn4
(d) coth(—10)

(b) coshin4
(e) sech 2

(b) cosh 4
(e) sech(—2)
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SOLUTION

(a) The function f is a composition of functions, requiring that we first add
1 to the square of x, then compute an inverse hyperbolic sine, and finally
determine the natural logarithm of the resulting number. Since x? + 1 and
the inverse hyperbolic sine are defined for all real numbers, the only step
that may cause difficulty in computing f (x) is that the natural logarithm is
defined only for positive values.

We note first that by Theorem 6.47(i),

sinh~!(x2 + 1) = In [(x2 FDEVEE+ 1)+ 1] — Inu,

where u = x> + 1+ /(x> + 1)* + 1. Now u is strictly positive and has its
minimum value 1 + +/2 when x = 0. Hence,

sinh ™ (x2 + 1) > In(1 + v/2) ~ In2.4142136 ~ 0.8813736.

Since sinh~!(x? + 1) is always positive, f (x) = In(sinh~'(x? + 1)) is de-
fined for all real numbers x. Thus, the domain of f consists of all real
numbers.

(b) We use the chain rule twice to find the derivative:

1
Csinh '@+ D) VeI D+

sinh ! (x* + 1) sinh™'(x2 + 1)

(x2+ 1)

700

2x
V& + 1D? + Isinh ' (x2 + 1)

(c) We use a graphing utility to plot f and f’ in the specified viewing
window, as shown in Figure 6.47. From the figure, it appears that the
graph of f is symmetric about the y-axis and the graph of f’ is symmetric
about the origin. We can confirm these observations by substituting into the
expressions for the function and its derivative to find that f(—x) = f(x)
and that f'(—x) = — f'(x). Using the trace feature, we find that f" has a
maximum of 0.6580 at approximately x = 0.7477, where the graph of f
has a point of inflection. By symmetry, there is also a point of inflection
for f at x = —0.7477, where f’ has a minimum.

Exer. 3-14: Find f'(x) if f(x) is the given expression.

(c) tanh(—3) 3 sinhSx 4 sinh(x? + 1)
(f) csch(—1) 5 cosh(x®) 6 cosh’x

(c) tanh 3 7 /xtanh /x 8 arctantanhx
(f) cschl 9 coth(1/x) 10 cothx/cotx

Exercises 6.8

13

ch(x?
se2 & ) 12 +/sech 5x

x“+1
csch? 6x 14 x csch e®

Exer. 15-18: (a) Find the domain of the function.
(b) Find f'(x). (c) Plot f and f’ in the indicated viewing
window.

15

16

17

18

f(x) =coshv4x®+3; -3<x<3, -25<y<50

1 h
fay=TONE g x<8 —S<y=<2
1 —coshx
1
= . 3<x<3 -25<y<50
f(X) tanhx + 1 =X= Y
f(x) =In|tanhx|; —2<x<2 -10<y<10

Exer. 19-30: Evaluate the integral.

19

21

23

25

27

29

31

32

33

34

35

1
fx2 cosh(x3) dx 20 f dx
sech 7x

inh

f sinh /X 2 f x sinh(2x?) dx
Jx
1
f ———dx 24 f sech?(5x) dx
cosh” 3x

f csch®(x) dx 26 f (sinh4x) ™2 dx
j tanh3x sech 3xdx 28 f sinh x sech®x dx
f cosh x csch’x dx 30 j coth 6x csch 6x dx
Find the points on the graph of y = sinh x at which the

tangent line has slope 2.

Find the arc length of the graph of y = coshx from
0, 1)to (1, coshl).

If A is the region shown in Figure 6.43, prove that
t =2A4A.

The region bounded by the graphs of y = coshx, x =
—1,x =1, and y = 0 is revolved about the x-axis. Find
the volume of the resulting solid.

The Gateway Arch to the West in St. Louis has the shape
of an inverted catenary (see figure). Rising 630 ft at its
center and stretching 630 ft across its base, the shape of
the arch can be approximated by

y = —127.7 cosh(x/127.7) + 757.7

for —315 < x < 315.
(2) Approximate the total open area under the arch.
(b) Approximate the total length of the arch.

36

Exercise 35

A uniform flexible cable supported by poles at x = —¢
and x = c takes the shape of the graph of the equation
y = b+ acosh(x/a) for —c < x < c¢ (see figure).

() Find the height of the cable on the poles at each end.
(b) Find the height of tlﬁgble at its lowest point.

(c¢) Find the arc length of the cable hanging between the
two poles.

Exercise 36

Poetie s, | g Iy __" -~ ’:‘I" —

_

Exer. 37 - 40: Refer to Exercise 36.

37

38

39

A power line is strung between two 21-ft poles that are
33 ft apart. At its lowest point, the cable is 16 ft above
level ground. Find the arc length of the cable hanging
between the two poles. ‘

A rope 12 ft long is hung between two 5-ft high poles
that are 10 ft apart. How high will the rope be off the
level ground at its lowest point?

Two children pick up a 15-ft rope to play jump rope.
Each child grasps the rope 6 in. from an end and
holds the rope 3.5 ft above level ground. The two move
together until the rope just touches the ground hanging



608

40

41

42

43

between their hands before they start to swing the rope.
How far apart will they be?

A telephone line is to be strung across a city street
between two 25-ft poles that are 30 ft apart. To allow
large trucks to pass under the line, the lowest point
should be at least 19 ft high. Find the arc length of the
line between the two poles if it has a lowest point of
exactly 19 ft.

If an object falls through the air toward the ground in
such a way that the air resistance is proportional to the
square of the velocity,

(a) show that position y of the object satisfies the
differential equation

Y'=g—a()
(b) make the change of variable
z=y
as in Example 7 and solve the differential equation
in part (a)

If a steel ball of mass m is released into water and the
force of resistance is directly proportional to the square
of the velocity, then the distance y that the ball travels in
¢ seconds is given by

y = kmlncosh( /it),
km

where g is a gravitational constant and k > 0. Show that
y is a solution of the differential equation

d2y+1 dy\*
T’I’ldt2 k dt =mg.

If a wave of length L is traveling across water of depth
h (see figure), the velocity v, or celerity, of the wave is
related to L and 4 by the formula

» gL . 2rch

h—’
2r an L

where g is a gravitational constant.

(a) Find lim, v? and conclude that v &~ veL/(2m)
in deep water.

v

Exercise 43

e——L—

44

[c]as
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(b) If x ~ 0 and f is a continuous function, then, by the
mean value theorem (3.12), f(x) — £(0) ~ f'(0) x.
Use this fact to show that v ~ /gh if h/L =~ 0.
Conclude that wave velocity is independent of wave
length in shallow water.

A soap bubble formed by two parallel concentric rings
is shown in the figure. If the rings are not too far apart, it
can be shown that the function f whose graph generates
this surface of revolution is a solution of the differential
equation yy” = 1+ (y), where y = f(x). If A and
B are positive constants, show that y=AcoshBxisa
solution if and only if AB = 1. Conclude that the graph
is a catenary.

Exercise 44

Graph, on the same coordinate axes, y = tanhx and

y= sech’x for0 < x < 2.

(a) Estimate the x-coordinate a of the point of inter-
section of the graphs.

(b) Use Newton’s method to approximate a to three
decimal places.

Graph, on the same coordinate axes, y = cosh? x and

y=2.

(a) Set up integrals for estimating the centroid of the
region R bounded by the graphs.

(b) Use Simpson’s rule, with n = 2, to approximate the
coordinates of the centroid of R.

Exer. 47— 58: Verify the identity.

47
48
49
50
51

52

53
54

55

coshx + sinhx = ¢*

sinh(—x) = —sinh x

sinh(x 4+ y) = sinhx cosh y + cosh x sinh y

cosh(x 4 y) = coshx cosh y + sinh x sinh y

sinh(x — y) = sinh x cosh y — cosh x sinh y
tanh x 4 tanh y

tanh s A
@+ = T3 canhx tanh y

sinh 2x = 2 sinh x cosh x
cosh 2x = cosh? x + sinh? x
sinh? x _ coshx — 1

2 2

Exercises 6.8

n2 x coshx+1
2 2

57 (coshx + sinh x)" = coshnx + sinhnx for every posi-
tive integer n (Hint: Use Exercise 47.)

56 cos

58 (coshx — sinhx)" = coshnx — sinhnx for every posi-
tive integer n

E::l Exer. 59 -60: Approximate to four decimal places.

59 (a) sinh™'1 (b) cosh™' 2
(c) tanh™' (= 1) (d) sech™"]
60 (a) sinh™!(=2) (b) cosh™!5
(c) tanh™' 1 (dy sech™'3

Exer. 61-68: Find f'(x) if f(x) is the given expression.

61 sinh~!5x 62 sinh™!¢&*

63 cosh™! \/x 64 vcosh™'x
65 tanh™!(—4x) 66 tanh~!sin3x
67 sech™!x? 68 sech /T —x

Exer. 69-72: (a) Find the domain of the function.
(b) Find f'(x). (c) Plot f and f’ in the indicated viewing
window.

69 f(x) = Incosh™ ! 4x;
70 f(x) = cosh™ ! In4x;
71 f(x)=tanh'(x+1); —2<x<0, -3<y<S5
72 f(x) = tanh ™! x%;
Exer. 73 - 80: Evaluate the integral.

f ! d 14f L
73 —_—dx P———
V81 + 16x2 J16x2 -9

1 sin x
75 f—z dx 76 J‘iiz dx
49 — 4x \/1 4 cos” x
* 2
77 fie dx 78 f 5 dx
Ve —16 5—3x

1 1
———dx 0 | ——dx

" J‘x\/9—x4 ? J\/S—ezx

81 A point moves along the line x =1 in a coordinate
plane with a velocity that is directly proportional to its
distance from the origin. If the initial position of the
point is (1, 0) and the initial velocity is 3 ft/sec, express
the y-coordinate of the point as a function of time ¢ (in
seconds).

82 The rectangular coordinate system shown in the
figure illustrates the problem of a dog seeking its
master. The dog, initially at the point (1,0), sees
its master at the point (0,0). The master proceeds

up the y-axis at a constant speed, and the dog
runs directly toward its master at all times. If the
speed of the dog is twice that of the master, it
can be shown that the path of the dog is given by
y = f(x), where y is a solution of the differential

equation 2xy” = V1+ ()2 Solve this equation by
first letting z = dy/dx and solving 2x7 = V' 1+ 2%,
obtaining z = %[ﬁ — (1/4/x)]. Finally, solve the
equation y' = 3[v/x — (1//%)].

Exercise 82

Exer. 83 — 86: Sketch the graph of the equation.
83 y= sinh~ ! x 84 y= cosh™' x

85 y= tanh ™! x 86 y= sech!x

Exer. 87 -91: (a) Derive the formula. (b) and (c) Verify
the formula.

87 (a)cosh 'x =In(x +vx*-1), x=>1
1 du

:\/uz—la"

du:cosh_lz-l-C, O<a<u
a

d
(b) E(cosh_l u) u>1

1
© f N

1. 1+x
88 (a)tanh_lxzilnl_x, |x| <1
d _ 1 du
(b) —(tanh 1")=1_u25’ lu| <1

1 1 U
du=tanh™' =~ +C, |u|<a
© J’az—u2 a

1+v1—x?
89 (a) sech_1x=ln——-x—-, 0<x<1
—d— O<u<l

1 du
hlu) = ————,
(b) g Gsech ) = = i

—l sech_llL| + C,
a a

1 du =
© [

O<lu|l<a




1
=tanh_1<—), |x| > 1
x

1 1
90 (a)coth‘1x=51nitl
d 1 du
b) — (coth™ ! u) = -,
(b) - (eoth™" ) = ———5
-———coth’

6.9
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1 1+ x% 1

91 (a)csch™'x =In <_ + JL) — sinh~! (_) ,
x |x| x

x#0

lu| > 1 d _1 -1 du
= _(csch - =
(b) ——(csch™w) WL lu] #0
1 —1| |
+ C, |ul >a (C)fﬁdu _ECSCh + C, u;éo

INDETERMINATE FORMS AND PHOPITAL'S RULE

In Chapter 1, we considered limits of quotients such as

x2-9 . sinx
and lim —.
x—=0 X

lim

x—3 X —
In each case, taking the limits of the numerator and the denominator sepa-
rately gives the undefined expression 0/0. In a limit of the form

lim (cos x — 1)("2),
x—0

we obtain an undefined expression of the form 0° if we take the limits of
the base and the exponent separately. For such indeterminate forms, we
have used algebraic, geometric, and trigonometric methods accompanied
by an ingenious manipulation to calculate limits. In this section, we de-
velop other techniques that allow us to proceed in a more direct manner to
evaluate several different types of indeterminate forms that occur in both
theoretical settings and applications such as electric circuits and insulated
cables.

THE FORMS 0/0 AND oo /cc

We first consider the indeterminate form 0/0 for limits of quotients where
both the numerator and the denominator have limit O and the indetermi-
nate form 0o/ oo where both the numerator and the denominator approach
oo or —oo. The following table displays general definitions of these forms.

Indeterminate form Limit form: lim —-

lim f(x) =0 and lim g(x) =
x—c xX—>C

818 oo

lim f(x) =occor —oo and lim g(x) =o0cor —o0
X—>C X—=>C

6.9

Indeterminate Forms and PHopitals Rule

Cauchy’s Formula 6.50

PHépital’s Rule* 6,51

The main tool for investigating these indeterminate forms is I’Hopital’s
rule. The proof of this rule makes use of the following formula, which
bears the name of the French mathematician Augustin Cauchy (1789-
1857). (See Mathematicians and Their Times, Chapter 9.)

If § and g are continuous on [a, b] and differentiable on (a, b) and
if g’(x) # O for every x in (a, b), then there is a number w in (a, b)
such that

f®) ~ f@ _ f'w)

gb) —gla)  gw)’

PROOF We first note that g(b) — g(a) # 0, because otherwise
g(a) = g(b) and, by Rolle’s theorem (3.10), there is a number c¢ in (a, b)
such that g’(c) = 0, contrary to our assumption about g’.

Let us introduce a new function # as follows:

h(x) =[f(0) — f(@]gx) —[gb) — g(a)l f (x)

for every x in [a, b]. It follows that A is continuous on [a, b] and differ-
entiable on (a, b) and that h(a) = h(b). By Rolle’s theorem, there is a
number w in (a, b) such that #’(w) = O—that is,

[f(®) — f(@)]g' (w) — [g(B) — g@)]f'(w) =0.

This is equivalent to Cauchy’s formula. =

Cauchy’s formula is a generalization of the mean value theorem (3.12)
for if we let g(x) = x in (6.50), we obtain

b) —
[O-@_[W _
—a

The next result is the main theorem on indeterminate forms.

Suppose that f and g are differentiable on an open interval (a, b)
containing c, except possibly at ¢ itself. If f(x)/g(x) has the inde-
terminate form 0/0 or oo/co at x = ¢ and if g'(x) # 0 for x # c,
then

At )

X—>C g(x) x—>c g (x)
provided either
’ V7
x) . fx
xl_r’rg m exists or hmc - (x)

*G. I’Hopital (1661-1704) was a French nobleman who published the first calculus book. The rule
appeared in that book; however, it was actually discovered by John Bernoulli (1667-1748), who
communicated the result to I'Hopital in 1694. (See Mathematicians and Their Times, Chapter 5.)
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PROOF Suppose that f(x)/g(x) has the indeterminate form 0/0 at
x=c and lim__, [f'(x)/g'(x)] = L for some number L. We wish to
prove that lim__ [ f(x)/g(x)] = L. Let us introduce two functions F and
G as follows:

X~=>C

F(x)=f(x) ifx#c and F(c)=0
Gx)=gkx) ifx#c and G()=0

Since lim F(x) = lim f(x) =0= F(c),
X=—>C X—C

the function F is continuous at ¢ and hence is continuous throughout
the interval (a, b). Similarly, G is continuous on (a, b). Moreover, at ev-
ery x # ¢, we have F'(x) = f'(x) and G'(x) = g'(x). It follows from
Cauchy’s formula, applied either to the interval [c, x] or to [x, c], that
there is a number w between ¢ and x such that

F(x)—F() Fw) f'(w)

G(x)—G() G gw’
Using the fact that F(x) = f(x), G(x) = g(x), and F(c) = G(c) =0
gives us

F@ _ f'w)
gx)  g'(w)
Since w is always between ¢ and x (see Figure 6.48), it follows that
/ /
fim £& i Ly L

x—>c¢ g(x) x—>c g/(w) w—c g’(w) -
which is what we wished to prove.
A similar argument may be given if lim _, [f'(x)/g'(x)] = co. The
proof for the indeterminate form oo/ oo is more difficult and may be found
in texts on advanced calculus.

L'Hobpital’s rule is sometimes used incorrectly, by applying the quotient
rule to f(x)/g(x). Note that (6.51) states that the derivatives of f(x)
and g(x) are taken separately, after which the limit of f'(x)/g’(x) is
investigated.

cosx +2x — 1

EXAMPLE®=1 Find lim
x—0 3x

SOLUTION Both the numerator and the denominator have the limit
0 as x — 0. Hence the quotient has the indeterminate form 0/0 at x = 0.
By I'Hopital’s rule (6.51),
. cosx+2x—1 . —sinx+2
lim —— = lim —,
¥—0 3x =0 3
provided the limit on the right exists or equals co. Since
. —sinx+2 2
lim —— = -,
x—0 3 3

6.9 Indeterminate Forms and ’Hépital’s Rule

it follows that

. cosx+2x—1 2
lim —m8M = —,
x—0 3x 3

Sometimes it is necessary to use I’Hopital’s rule several times in the
same problem, as illustrated in the next example.

X -X _
EXAMPLE®2 Find lim ¢ —2.
x—0 1 —cos2x

SOLUTION The given quotient has the indeterminate form 0/0. By
I’Hopital’s rule,
e te =2 e —e*
lim —— = lim ———,
x>0 1 —cos2x x—0 2sin2x
provided the second limit exists. Because the last quotient has the indeter-
minate form 0/0, we apply ’'Hopital’s rule a second time, obtaining

e —e* et +e™ 2

1
Iim —————=1lm — = — = —,
x—0 2s8in2x x—0 4cos2x 4 2

It follows that the given limit exists and equals %

L’Hopital’s rule is also valid for one-sided limits, as illustrated in the
following example.

EXAMPLE®3 Find lim — 2%
x—>r/2)- 1 +secx

SOLUTION The indeterminate form is 0o/co. By I’Hopital’s rule,

. 4tan x . 4sec’ x . 4secx
lim —= 1lm — = im i
x>@/2” 1 +secx  x-(n/2)” secxtanx  x—(z/2)” tanx

The last quotient again has the indeterminate form oco/oo at x = 7/2;
however, additional applications of 1’Hopital’s rule always produce the
form oo/oo (verify this fact). In this case, the limit may be found by using
trigonometric identities to change the quotient as follows:

4secx 4/cos x 4
tanx sin x/cos x = sinx
Consequently,
dtanx . i:f:4.

im ——— im —
=@/ 1 +secx  xo(x/2)” sinx 1
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There is another form of I"’Hopital’s rule that can be proved for x — oo
or x — —oo. Let us give a partial proof of this fact. Suppose that

lim f(x) = lim g(x) =
X—=> 00 X—=>00
If we let u = 1/x and apply I'Hopital’s rule, then

S LCONN [ VL) S (d/du)(f(1/u))
x>0 g(x)  u—0' g(1/1)  u—0r (d/du)(g(1/u)).

By the chain rule,

d d
S (fU/w) = F'A/w=1/u®) and  —-(e(1/w) = g'(1/u)(~1/u?).
Substituting in the last limit and simplifying, we obtain
tm L) _ gy L0 S
v~ g(x)  u-0' g'(1/u) x>0 g'(x)

We shall also refer to this result as I’Hopital’s rule. The next two examples
illustrate the application of the rule to the form oo/ 0.

EXAMPLE=4 FmdxlgrgoT

SOLUTION The indeterminate form is co/oc. By I"Hopital’s rule,

1i — lim /%

im —— im ——-.

xX—00 f xX—00 1/(2ﬁ)

The last expression has the indeterminate form 0/0. However, further ap-

plications of 1’"Hopital’s rule would again lead to 0/0 (verify this fact). If,
instead, we simplify the expression algebraically, we can find the limit as

follows:
2
lim ——— = lim ﬁ = lim
(o0}

=0
xX—>00 1/(2[) x=0q X

Sl

3x
EXAMPLE®=5 Find hme—— if it exists.

X—=>0Q x2 ’

SOLUTION The indeterminate form is oco/oco. We apply 1I’Hopital’s
rule:
e?ax 3 e3x

lim — = lim
X—00 x2 x—>00 2x

The last quotient has the indeterminate form oc/oo, so we apply
I’Hopital’s rule a second time, obtaining
3 e3x 9 e3x

lim = lim
x—o00 2x X— 00

= Q.

Thus, >* / %2 has no limit, increasing without bound as x — oo.

6.9 Indeterminate Forms and I’Hépital’s Rule

Figure 6.49

V

It is extremely important to verify that a given quotient has the inde-
terminate form 0/0 or co/co before using I’Hopital’s rule. If we apply
the rule to a form that is not indeterminate, we may obtain an incorrect
conclusion, as illustrated in the next example.

X -X

EXAMPLE®6 Find lim % if it exists.

x—0 x2

SOLUTION The quotient does not have either of the indeterminate
forms, 0/0 or 0o/ 00, at x = 0. To investigate the limit, we write

et +e . B 1
lim ——— =i1_r>%(ex +e™) (x_2>

x—>0 X

1
Since lim(e* +e) =2 and lim — = oo,
x—0 x—0 x

it follows that
. e 4e”
lim ——— = o0.
x—0 X
If we had overlooked the fact that the quotient does not have the in-
determinate form 0/0 or oo/oo at x = 0 and had (incorrectly) applied
r Hopltal’s rule, we would have obtained
X _ =X
lim &2
x—=0 2x
Since the last quotient has the indeterminate form 0/0, we might have
applied I"Hopital’s rule, obtaining
L F—e e 141
lim ————— = lim = = 1.
x—0 2x x—0 2 2

This would have given us the (wrong) conclusion that the given limit exists
and equals 1

The next example illustrates an application of an indeterminate form in
the analysis of an electrical circuit.

EXAMPLE®7 The schematic diagram in Figure 6.49 illustrates an
electrical circuit consisting of an electromotive force V, a resistor R, and
an inductor L. The current / at time ¢ is given by

1%
I=—(1—-e R/
gL=)

When the voltage is first applied (at ¢+ = 0), the inductor opposes the rate
of increase of current and [/ is small; however, as ¢ increases, I approaches
V/R.

(a) If L is the only independent variable, find lim, . I.

(b) If R is the only independent variable, find limp__ ;. I.
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SOLUTION

(a) If we consider V, R, and ¢ as constants and L as a variable, then the
expression for / is not indeterminate at L = 0. Using standard limit theo-

rems, we obtain
\%
lim [ = lim — (1 —e—R’/L)
R

L—0* L—>0*
= — (1— lim e R’/L>
R L—>0"
1% |4
=(1-0)=—.
R( ) R

Thus, if L ~ 0, then the current can be approximated by Ohm’s law [ =
V/R.

(b) If V, L, and ¢ are constant and if R is a variable, then  has the indeter-
minate form 0/0 at R = 0. Applying 1’Hopital’s rule, we have

1— e—Rt/L
Iim I =V lim
R—0" R—0* R
—V fim 0= et —t/L)
R—0" 1

Vv
= V[0 — ()(—t/L)] = —L-t.

This result may be interpreted as follows. As R — 07, the current I is
directly proportional to the time #, with the constant of proportionality
V/L.Thus, att = 1, the currentis V/L; atz = 2,itis (V/L)(2); att = 3,
itis (V/L)(3); and so on.

THE FORMS 0 - 00, 0°, oo?, 1°°, AND oo — oo

There are a number of other indeterminate forms whose limits can be found
by rewriting the expressions as quotients and applying 1’Hopital’s rule. We
begin with products that may lead to the indeterminate form 0 - oo, as
defined in the following table.

Indeterminate form | Limit form: }‘fﬂ. I f()é-) g(x)]
0-00 lim f(x) =0 and lim g(x) =o00o0r —_oo |
X—C Xx—>C

In the exercises, we shall also consider the indeterminate form 0 - oo
for the case x — oo or x — —oo. The following guidelines may be used.

6.9 Indeterminate Forms and PHépital’s Rule

Guidelines for Investigating
lim, . [f(x)g(x)] for
the Form0-oc0 6.52

1 Write f{x)g(x) as

FACI I {C))
1/g(x) 1/f(x)
2 Apply I'Hopital’s rule (6.51) to the resulting indeterminate form
0/0 or 0o/ 00.

The choice in guideline (1) is not arbitrary. The following exam-
ple shows that using f (x)/[1/g(x)] gives us the limit, whereas using
g(x)/[1/f (x)] leads to a more complicated expression.

EXAMPLE=8 Find lim x?Inx.

x—0"
SOLUTION The indeterminate form is O - co. Applying guideline
(1) of (6.52), we write
Inx
1/x*
Because the quotient on the right has the indeterminate form oo/o0 at
x = 0, we may apply "Hopital’s rule:

1 1
lim x?lnx = lim -Il—x—z = lim lc_3
x—07 x—0" 1/x x>0t =2/x

lnx =

The last quotient has the indeterminate form 00/ 00; however, further ap-
plications of 1’Hopital’s rule would again lead to 0o/ 00. In this case, we
simplify the quotient algebraically and find the limit as follows:

1/ 3 2
lim—/—x=imx—=1'm£—=0

x—0" —2/_x3 x>0t —2X x>0t —2
If, in applying guideline (1), we had rewritten the given expression as

x2 x2

1/Inx - (nx)~"

then the resulting indeterminate form would have been 0/0. By I’Hopital’s
rule,

Zlnx =

x2

lim x*Inx = lim —
x—0F x—0" (Inx)

m 2%
20" —(nx)"2(1/x)
= lim [—2x%(nx)?].

x—=07t

The expression —2x%(Inx)? is more complicated than x%Inx, so this
choice in guideline (1) does not give us the limit.

_-.
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EXAMPLE=9 Find lirr/l (2x — w) secx.
x—>(rn/2)”

SOLUTION The indeterminate form is O - oo. Using guideline (1) of
(6.52), we begin by writing
2x—n x-nm

(2x —m)secx = = .
1/secx cosx
Because the last expression has the indeterminate form 0/0 at x = /2,
I’Hoépital’s rule may be applied as follows:

2x — 1 ) 2 2

lim = lim - =—=-2
x—(7/2)” COSX x—(r/2)” —SInx -1

The indeterminate forms defined in the next table may occur in investi-
gating limits involving exponential expressions.

Indeterminate form Limit form:  lim F(x)8®
- 0° lim f(x)=0 and lim g(x)=0
x—>c x—c
oo lim f(x) =occor —oo and limg(x)= 0
X—C X—>C
1°° lim f(x)=1 and lim g(x) =ocoor —o0
x> x—c

[

In exercises, we will also consider cases in whichx — ocorx — —oc.
One method for investigating these forms is to consider

y =[x
and take the natural logarithm of both sides, obtaining
Iny =Inf(0)f™ = g(x)In f(x).

If the indeterminate form for y is 0° or 00, then the indeterminate form
for Iny is O - oo, which may be handled using earlier methods. Similarly,
if y has the form 1°°, then the indeterminate form for Iny is oo 0. It
follows that

if limlny=In <lim y) — L, then limy=el;
X—>C

X—>C X—>C

that s, lim f(x)8® = el.
X—>C

This procedure may be summarized as follows.

I Lety= f(x)8¥,
2 Take natural logarithms in guideline (1):

Iny =1In f(x)¥%) = g(x)1In f(x)

- m———

6.9 Indeterminate Forms and PHoépital’s Rule

3 Investigate lim Iny = lim{g(x) In f(x)] and conclude the fol-
X—>C B O
lowing:
(@ Iflimlny=L, then lim y = ¢~.
X—>C X—>C
(b) IflimIny= oo, then lim y = oco.
X=>C X—>C
(¢) Iflimlny= —o0, then lim y = 0.

X—>C X—>C

A common error is to stop after showing lim_ Iny = L and conclude

that the given expression has the limit L. Remember that we wish to find

the limit of y. Thus, if Iny has the limit L, then y has the limit e%. The
guidelines may also be used if x — oo orif x — —oo or for one-sided
limits.

EXAMPLE® 10 Find lim x*.

x—0"

SOLUTION The indeterminate form is 0°. (See the discussion and
graph of the function x* in Example 5 of Section 6.5.) Using Guidelines
(6.53), we proceed as follows:

Guideline | y = x*

Guideline2 Iny =xInx

Guideline 3 This expression has the indeterminate form 0 - 0co. We apply
guideline (1) of (6.52) to write

1
xlnx = —ni

Since the quotient on the right has the indeterminate form oco/oc at x = 0,
we may apply 1’Hopital’s rule:

. . . Inx . 1/x
lim Iny = lim xInx = lim — = lim =
x—07 x—0F x—0" l/x x—07F —l/x

We can evaluate this last limit by an algebraic simplification:

1 2
fim 7 _ i (-x—) — lim (=x) = 0

x—0" —1/x2 x—0* X x—0"

Since lim,_ ;+ Iny = 0, by guideline (3a) of (6.53), we have

lim x* = lim y=¢"=1.
x—0t x—0t

Here we have a rigorous proof of a property of x* that we observed from
the graph in Figure 6.23.
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The final indeterminate form we shall consider is defined in the follow-
ing table.

| Indeterminateform | Limit form: lim{f(x) — 200 ‘

lim f(x) =cc and lim g(x) = 00 ‘
—C X—cC

When investigating oo — 0o, we try to change the form of f(x) — g(x)
to a quotient or a product and then apply I’Hopital’s rule or some other
method of evaluation, as illustrated in the next example.

) . 1 1
Find lim = ——1}.
=0t \er —1 X

SOLUTION The form is oo — oo; however, if the difference is writ-
ten as a single fraction, then

I 1 1 lim x—e*+1
im —— )= lim ———.
=0t \ert—1 x =0t xef —x

This gives us the indeterminate form 0/0. It is necessary to apply
I’Hdpital’s rule twice, since the first application leads to the indeterminate
form 0/0. Thus,

EXAMPLE=I|I

oox—e 41 1—-¢*
im ———— = lim ————
=0t Xe —x x—0t xe* +e* — 1
! —e* 1
= lim —/—— = ——.
x—0t xe* + 2e* 2

EXAMPLE®=]2
lated cable is given by

The velocity v of an electrical impulse in an insu-

2
o=t (3).
R R
where k is a positive constant, r is the radius of the cable, and R is the
distance from the center of the cable to the outside of the insulation, as
shown in Figure 6.50. Find
(b) lim v

(@) lim v
R—rt r—0"

Figure 6.50

Insulation

Cable

Exercises 6.9

k. r? k
=—-— lim { — :——2(O)=0.
R%r—0"\ —2 R
- EXERCISES 6.9
Exer. 1-36: Find the limit, if it exists. a2 43+ 1 R
sin x 5% 19 lim e 20 lim —
I lim ——~ 2 lim — ¥ Sxt x4 4 x=oo Inx
x—0 2x x—0 tan x " .
. Xx e
2 i i
A limm_z 4 lim 2 4+2x—3 21 xll)ngoex,n>0 22 xll)ngo —,n >0
x>5  x2-25 x>-32x2+3x—9
2 3 23 lim 0% 24 fim 2D
5 lim o —H2 gy X Z 32 £ x +1nx 2 (x -2
x>25x2 —Tx — 6 =1 x2 —2x — 1 .1 .
i : : 25 Tim sin” - 2x 26 lim tan x — sinx
7 lim w 8 lim £+—_e x—>0 sin_l X x—0 _x3 tanx
x—>0tanx — x x—0 x2
. . . 3 -3
9 lim ~_0* 10 lim 180X 27 lm S
x—0 x3 x—mn/2 COSX
3 2
1 ; . 2x7 —5x“4+6x-3
i lim —Sm¥ 12 lim 22X 28 lim —
x-7/2 cos®x x—0* cotx x=>1 x7 —2x“+x—1
2 2 4_ 3 _3,205¢_2
13 dim ZESEE gy gy 2 29 lim X O
x—>(z/2)~ 3tanx x—>o00 Inx x=>1x" =57+ 9% —Tx+2
Insi X _ =X _ 9 4 3 _ 2.2
15 Tim ns.lnx 16 lim e —e : 2sinx 30 lim x4 x 3x x+2
x—0" Insin2x x—=0 X sinx xas1x* —5x3 4 9x2 _7x 42
. XCOSX i 2¢" —3x —e™* —tan™! 3/2 -
17 lim 228X FE 18 lim 22— "°¢ " 31 Lim X 32 Iim S Tox =4
x—=0 X x—0 x2 x>0 xsinx x—>00 xlnx

SOLUTION

(a) The limit notation implies that r is fixed and R is a variable. In this
case, the expression for v is not indeterminate, and

‘ r\2 r
lim v=—k I (—) 1 (—)=—k121 — —k(0) = 0.
et o \R) AR (DT = —k©® =0
(b) If R is fixed and r is a variable; then the expression for v has the
indeterminate form O oo at » = 0, and we first change the form of the
expression algebraically, as follows:

lim v = —k lim
r—0%

The last quotient has the indeterminate form co/occ at r = 0, so we may

r—0* (r/R)™2

apply 1’Hopital’s rule, obtaining

lim v=—— lim

R2 r—0* —2}’_3

In(r/R) &k

(1/r)-0

Inr —1InR

=—— lim
R? r—0* r2




’ x2+1 2% +Inx

B L
—1/x
— COS . e
35 lim 2% 36 lim
X—>00 X x—=0t X

Exer. 37 - 38: Predict the limit after substituting the indi-
cated values of x for k =1, 2, 3, and 4.

In(t
37 lim n(inx—ﬂ; x=10"%
=0 In(x? + 1)
2/ —1
t
38 fim PG D) ok

x—=0 1 —cos[In(1 + x)]

39 An object of mass m is released from a hot-air balloon. If

the force of resistance due to air is directly proportional

’ to the velocity v(¢) of the object at time ¢, then it can be
shown that

' v(t) = (mg/k)(1 — e~ &™),

where k > 0 and g is a gravitational constant. Find
lim,_, o+ v(2).

40 If a steel ball of mass m is released into water and the
force of resistance is directly proportional to the square
of the velocity, then the distance s(¢) that the ball travels
in time ¢ is given by

s(t) = (m/ k) Incosh(v/ gk/mt),

where k > 0 and g is a gravitational constant. Find
lim, _, ,+ 5(2).

41 Refer to Definition (3.24) for simple harmonic motion.
The following is an example of the phenomenon of
resonance. A weight of mass m is attached to a spring
suspended from a support. The weight is set in motion
by moving the support up and down according to the
formula h = Acoswt, where A and w are positive
constants and ¢ is time. If frictional forces are negligible,
then the displacement s of the weight from its initial
position at time ¢ is given by

Aw?
s=— 5 (coswt — cos wyt),
a)o —

with w, = v'k/m for some constant k and with @ # wy,.

Find lim , o, s, and show that the resulting oscillations

increase in magnitude.

42 The logistic model for population growth predicts the
size y(t) of a population at time ¢ by means of the
formula y(t) = K/(1 +ce™ ™), where r and K are
positive constants and ¢ = [K — y(0)]/y(0). Ecologists
call K the carrying capacity and interpret it as the
maximum number of individuals that the environment
can sustain. Find lim, ,  y(¢) and lim,_, _ y(¢), and
discuss the graphical significance of these limits.
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43 The sine integral Si(x) = Jy [(sinu)/u] du is a special
function in applied mathematics. Find
Si(x) L Six) —x
lim — b) lim ——=—
@ xl—% X ( )xl—% x3 '
44 The Fresnel cosine. integral C(x) = f(;c cosu® du is
used in the analysis of the diffraction of light. Find
C . Cx)—
(@) Tim &% _(b) lim %
x—=>0 x x—0 x

E 45 (a) Refer to Exercise 44. Use Simp'son’s rule, with

n = 2, to approximate C(x) for x = ‘—1‘, % %, and 1.

(b) Graph C on [0, 1] using the values found in part (a).

46 Refer to Exercise 45. Let R be the region under the
graph of C from x =0 to x =1 and V the volume

of the solid obtained by revolving R about the x-axis.
Approximate V by using Simpson’s rule, with n = 2.

47 Letx > 0.1f n # —1, then J{ " dt = ["T!/(n + D],
Show; that
X X
lim | "dt =f tLdr.
n—>—1J1 1

48 Findlim__ f(x)/g(x) if
X
f(x):f e dr and g(x) = ™).
0

Exer. 49-76: Find the limit, if it exists.

49 1im+x1nx 50 lin/l tan x In sin x
x—0 x—(r/2)”
51 lLim (22 — e ™ 52 lim xtan~'x
X—>00 X—>—00
53 lime *sinx 54 lim sinx Insinx
x—0 x—0"
1
55 lim xsin— 56 lim x sec” x
x—>00 b x—0
S5x
57 lim (1 + —) 58 lim (¢* + 3x) /%
X—> 00 X x—=0
59 lim (¢f — 1)* 60 lim X1/
x—0
61 lim (tanx)” 62 lim (1 4 3x)%°~
x—(/2)” x—0
2 2
: cotx : x _ d
63 lim (2x+1) 64 Jing, (x—l x+1)
1 1 .
65 lim (- - —) 66 lim (1 — x)"*
x—07 \ X Sin x x—=1"

1 1

67 lim | — — —
x—>07 (\/x2 +1 x)
69 lim cot2xtan”'x 70 lim+(1 + ax)

x—0" x—0

68 lim (cot® x — csc® x)
x—0

b/x

Hm (1 + cosx)™"*
x—>(w/2)”

72 1 ( ad ! )
im —
x>-3 \x2+2x—3 x+3

7
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73 lim+ (x + cos 2x)5¢3*

x—0

74 lim (v”x4 + 5x2 E - xz)
X—>00 !

75 lim (sinhx — x)
X—=>00

76 lim [In(4x + 3) — In(3x + 4)]
X—>00

Exer. 77~78: Graph f on the given interval and use the
graph to estimate lim,__, f(x).

77 f() = (xtanx)®:  [=1,1]
- 1/x
78 f<x>=[w] . [=05.05]
tan x

Exer. 79-80: (a) Find the local extrema and discuss
the behavior of f(x) near x =0. (b) Find horizontal
asymptotes, if they exist. (c) Sketch the graph of f for
x > 0.

79 flx) =x/* 80 f(x) =xV¥
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Exer. 1-2: Find f~1(x).
I f(x) =10~ 15x
2 f(x)=9-2x%, x<0

Exer. 3-4: Show that the function f has an inverse
function, and find [(d/dx)(f‘l(x))] for the given

number a. =

3 fx)=2x>-8x+5 —l<x<I1; a=5

4 fx)=e"+2" -5 x>0 a=-2
Exer. 5-26: Find f'(x) if f(x) is the given expression.

5 In|4—5x3 6 (1—2x)In|1 — 2x|

7ln(3x+2)4 6x -5 g Inx

8x -7 e 41
1 X
In(2x? + 3) Inx

I e+ 12 In(e* +9)
13 10% log x 14 5% + (3x)°
15 Vin/x 16 (1+ /)¢
17 12~ 18 Ve +e73%
19 10nx 20 7inlx|

623

81 The geometric mean of two positive real numbers a and
b is defined as +/ab. Use I’'Hopital’s rule to prove that

1/x 1/x\*
vab = lim (a ;b‘ )

X—>00

82 If a sum of money P is invested at an interest rate of
100r percent per year, compounded m times per year,
then the principal at the end of ¢ years is given by
P+ rm_l)"”. If we regard m as a real number and
let m increase without bound, then the interest is said
to be compounded continuously. Use I’Hopital’s rule to
show that, in this case, the principal after z years is Pe’".

83 Refer to Exercise 39. In the velocity formula
v(t) = (mg/k)(1 — e~ ®/mhy,

m represents the mass of the falling object. Find

lim,, ,  v(¢) and conclude that v(z) is approximately

proportional to time ¢ if the mass is very large.

21 x* 22 In|tanx — secx

23 csce > cote™ 24 3sin3x

25 lﬁ cos‘{ 4x 26 (sinx)°%%*

Exer. 27 -28: Use implicit differentiation to find y’.
27 14+ xy=e¢"

28 In(x +y) +x2 —2y* =1

Exer. 29-30: Use logarithmic differentiation to find
dy/dx.

29 y = (x +2)Y3(x — 3)32
30 y=V(GBx— )V2x +5
Exer. 31-54: Evaluate the integral.

31 (a)fﬁiﬁ dx ®) f

32 (a) f x4 dx

1
dx
JxeV*

1 2
(b)f x47% dx
0
T
34 —
fcot (x + 3 ) dx

36 f%l dx
x—=xlnx

33 fx tan x% dx

35 fxe dx




37

39

41

43

45

47

49

51

53

55

56

57

58

59

60

61

1 X 2 2x 3x42
f———( ) i 38 f(e TV
e e
2 1/x
J ’;2 dx 40 fez dx
X X
4/x?
fe 3 dx 42 jT‘xTrdx
X xT4+2x 41

X
Ti—e—x dx 44 J(l +e 32 dx

xy/logx

Je *sine ™ dx 48 jtanxesecx sec x dx

.
5%e* dx 46 J dx

cos 2x

2
CSC™ X
X 4 50 | 5%
. fl — 2sin2x

1+ cotx
1

e* tane” dx 52 f sec(l/x) 2/x) dx
X

f (cse3x + 1)% dx 54 f (cot9x + csc9x) dx

X

Solve the differential equation y” = —e > subject to

the conditions y = —1 and y’ = 2if x = 0.

In seasonal population growth, the population g(z) at
time ¢ (in years) increases during the spring and summer
but decreases during the fall and winter. A differential
equation that is sometimes used to describe this type of
growth is ¢'(¢)/q(t) = ksin2xz, where k > Oand 1 =
0 corresponds to the first day of spring.

(2) Show that the population g(2) is seasonal.

(b) If g, = ¢(0), find a formula for g(1).

A particle moves on a coordinate line with an accelera-
tion at time 7 of e/2 cm/sec?. Att = 0, the particle is at
the origin and its velocity is 6 cm/sec. How far does it
travel during the time interval [0, 417

Find the local extrema of f(x) = x?Inx forx > 0.
Discuss concavity, find the points of inflection, and
sketch the graph of f.

Find an equation of the tangent line to the graph of the
equation y = xe!* 41n|2 — x?| at the point P(1, e).

Find the area of the region bounded by the graphs of the
equations y = ey = x/(x2 4+1),x=0, and x = 1.

The region bounded by the graphs of y = e x =
—2,x =-3, and y = 0 is revolved about the x-axis.
Find the volume of the resulting solid.

62

63

64

65

66

67

[c] 68
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The 1993 population estimate for India was 907 million,
and the population has been increasing at a rate of about
2% per year, with the rate of increase proportional to
the number of people. If ¢ denotes the time (in years)
after 1993, find a formula for N(z), the population (in
millions) at time ¢. Assuming that this rapid growth
rate continues, estimate the population and the rate of
population growth in the year 2000.

A radioactive substance has a half-life of 5 days. How
long will it take for an amount A to disintegrate to the
extent that only 1% of A remains?

The carbon-14 dating equation 7 = —83101nx is used
to predict the age T (in years) of a fossil in terms of the
percentage 100x of carbon still present in the specimen
(see Exercise 19, Section 6.6).

(a) If x = 0.04, estimate the age of the fossil to the
nearest 1000 years.

(b) If the maximum error in estimating x in part (a)
is +0.005, use differentials to approximat? the
maximum error in 7. |

|

The rate at which sugar dissolves in water is
proportional to the amount that remains undissolved.
Suppose that 10 1b of sugar is placed in a container of
water at 1:00 PM., and one half is dissolved at 4:00 P.M.
(a) How long will it take two more pounds to dissolve?

(b) How much of the 10 1b will be dissolved at 8:00
PM.?

According to Newton’s law of cooling, the rate at which
an object cools is directly proportional to the difference
in temperature between the object and its surrounding
medium. If f(¢) denotes the temperature at time ¢,
show that f(t) =T + [f(0) — Tle X, where T is the
temperature of the surrounding medium and k is a
positive constant.

The bacterium E. coli undergoes cell division approxi-
mately every 20 min. Starting with 100,000 cells, deter-
mine the number of cells after 2 hr.

By letting 2 = 0.1,0.01, and 0.001, predict which of
the following expressions gives the best approximation
of e for small values of A:

A+ A+h+RYE A+ h+ DY

Exer, 69-84: Find f'(x) if f(x) is the given expression.

69
71

70 tan~'(In3x)
72 Zarctaan

arctan /x — 1

xZ arcsec (xz)
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73 Intan™'(x?) 74 1°%
arccos x
75 sin~! V1 — x? 76 (tanx+tam_1x)4

78 ¥ sec ! ¥

80 ¢ *sinhe™

77 tan_l(tan#1 x)
79 coshe™>*

sinh x

cosh x — sinh x 82 Intanh(5x + 1)

83 sinh~!(x?) 84 tanh~!(tanh J/x)

Exer. 85-98: Evaluate the integral.

1 x
85 f dx 86 fi
4+ 9x2 4 + 9x2 dx
2x X
87 f ¢ i 88 f i
‘/1_e2x /l_eZX
89 f — _ix 90 f sinhnx) o
sech (x*) X
1/2 1 /2
91 f —dx 92 f _COSx 4
~1/24/1 — x? 0o 1+sin’x

1
93 f‘dx 94 f_x_dx
V9 — 4x? V9 — 4x?
1
926 f —— dx

|
95 fidx
xv9 — 4x? xvV4x? -9

X 1
97 17,_ > dx 98 fii dx
V25x% + 36 V25x% + 36

99 Find the points on the graph of y = sin ! 3x at which
the tangent line is parallel to the line through A(2, —3)
and B(4,7).

100 Find the points of inflection, and discuss the concavity

of the graph of y = x sin™! x.

101 Find the local extrema of f(x) =8secx + cscx on

Fhe interval (0, 7/2), and describe where f(x) is
increasing or is decreasing on that interval.

102 Find the area of the regjon bounded by the graphs of

y=x/x*+1),x=1, andy =0.

103 Damped oscillations are oscillations of decreasing

magnitude that occur when frictional forces are con-
sidered. Shown in the figure is a graph of the damped
oscillations given by f(x) = e */2

(a) Find the x-coordinates of the extrema of f for
0<x<2m.

sin 2x.

(b) Apprdximate the x-coordinates in part (a) to two
decimal places.

104

105

106

107

Exercise 103

*)’

0.5

Lo

T ' T U :
X

| t
i 1

Find the arc length of the graph of y = Intanh %x from
x=1tox =2.

A balloon is released from level ground, 500 m away
from a person who observes its vertical ascent. If the
balloon rises at a constant rate of 2 m/sec, use inverse
trigonometric functions to find the rate at which the
angle of elevation of the observer’s line of sight is
changing at the instant the balloon is at a height of
100 m. (Disregard the observer’s height.)

A square picture with sides 2 ft long is hung on a wall
with the base 6 ft above the floor. A person whose eye
level is 5 ft above the floor approaches the picture at
a rate of 2 ft/sec. If 6 is the angle between the line of
sight and the top and bottom of the picture, find

(a) the rate at which 0 is changing when the person is
8 ft from the wall

(b) the distance from the wall at which.6 has its
maximum value

A stunt man jumps from a hot-air balloon that is
hovering at a constant altitude, 100 ft above a lake.
A movie camera on shore, 200 ft from a point directly
below the balloon, follows the stunt man’s descent (see
figure). At what rate is the angle of elevation 6 of
the camera changing 2 sec after the stunt man jumps?
(Disregard the height of the camera.)

Exercise 107

m\é_ =,




(a) Show that if f is a function such that ' = f and
fx+y)= fx)f(y) forall x and y, then f must
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108 A person on a small island 7, which is k miles from the Exer. 109 - 120: Find the limit, if it exists. Use the fundamental theorem of calculus and other

results to establish properties of the functions S and

closest poiDt A -~ straight shoreline, wishes to regch 109 lim In@ — x) 110 lim sin2x — tan 2 C. Show that §'(x) = C(x) and C'(x) = —S(x). Is be either the natural exponential function or the
a camp that is d miles downshore from A by swimming 30 1+ ™ G0 x? it true that $%(x) + C%(x) = 1 for all x? function that is identicall

to some point P on shore and then walking the rest ) e o - o _ 151 .entlca .yzero.

of the way (see figure). Suppose the person bums ¢, O dim +2x+3 N2 tm e ¢ 4x (e) Suppgse we define the sine, cosine, and tangent (b) Prove that if f is continuous and if f(x +y) =
calories per mile while swimming and ¢, calories per x—>o0 In(x + 1) x— x3 functions by the formulas sinx = S(x), cosx = f(x)f(y), then either f is identically zero or

fx) = [fT for all x.

C(x), and tanx = T(x). Do these functions have

mile while walking, where ¢; > c,. %€ . . .
(2) Find a formula for the total number ¢ of calories 13 lim. = 114 lim2 ~cosxlncosx ! all the same p.ropeqrtles as the usual sine, cosine, and (c) Prove that if f is a continuous function defined
burned in completing the trip. y x> (x/2) e ’ talllgf}?t él.mi‘tloni- If S(;,dwéla_t affh thte'advantage.:s on the positive real numbers such that f(xy) =
. . x and the disadvantages of defining the trigonometri "
(b) For what angle AIP does ¢ have a minimum value? 115 xli)ngo (1 —2¢"*)x 116 )}% (14 8x%) P ag 5 g g eiric f(x) + f(y) for all positive numbers x and y, then
y 7 S is identically zero or f(x) = f(e)Inx for all
Eerciee 108 117 lim (" + 1) /x 118 ~lim ( o l) 3 To what extent are exponential and logarithmic x>0
x—>00 x—0* \tanx  x functions determined by their arithmetic properties? In
> particular, do the following.
JEr 4o
19 lim —— 120 lim —
xX—00 X =00 x7 41

121 Find lim,_, fx)/gx) if fx)= flx(sint)z/3 dr
and g(x) = x2.

X

122 Gauss’s error integral erf (x) = (2/4/7) fo e du is
used in probability theory. It has the special property

lim___ erf (x) = 1. Find lim _, __ e®"[1 — erf(x)].

X—>00

- EXTENDED PROBLEMS AND GROUP PROJECTS

I For each positive integer n, let (b) Define the function

dt.

1 1 1 1 *
Sn:—+—+—+"'+;. A(X):L

1 23 1412

Show that A is differentiable and increasing for all
real numbers x. What can you say about the range
of the function A?

(c) Define T as the inverse of the function A of part (b).
What properties does the function T have? What is
T’(x)? What are the similarities between T(x) and

By the use of circumscribed and inscribed rectangles,
show that

In(n+1) <s, <1+Inn.

Estimate the size of s; 5y gop- HOW large must n be
to guarantee that s, > 100? What happens to s, as
n— 0o?

2 In our development of calculus, we took the trigono-

metric functions as basic and then defined the inverse
trigonometric functions. Show that we can give a rigor-
ous development of the ordinary trigonometric functions
that reverses the process. In particular, do the following.

(a) Show that the function f(r) = 1/(1 + ¢2) is contin-
uous and positive for all ¢ > 0.

tan x?
(d) Define S as the inverse of the function B, where

X
1
B(x) =J dr for—1<x <1,

0 V1—1¢2

and define C as the inverse of the function D, where

X
-1
D(x):J dr for—1<x<1.

0 V1-—1¢2




