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N 1948, THE FINNISH-BORN AMERICAN ARCHITECT Eero
Saarinen (1910—1961) submitted the winning design for a
new national park, the Thomas Jefferson Westward Expansion
Memorial in St. Louis. The center of his design was a great gleaming
stainless-steel arch. Saarinen wanted “to create a monument which
would have lasting significance and would be a landmark of our time. An
absolutely simple shape . . . seemed to be the basis of the great memo-
rials that have kept their significance and dignity over time.” Saarinen
designed his arch to be the purest expression of the forces within. This
arch .. .is a catenary curve—the curve of a hanging chain—a curve in
which the forces of thrust are continuously kept within the center of
the legs of the arch. The mathematical precision seemed to enhance
the timelessness of the form, but at the same time its dynamic quality
seemed to link it to our own time.

To understand the mathematics of Saarinen’s Gateway Arch to the
West, we need to examine the natural exponential function. This func-
tion and its inverse, the natural logarithm, are perhaps the most im-
portant functions in applications of calculus to the natural world. They
are examples of transcendental functions, the main topic of this chapter.
We begin in Section 6.1 with a brief review of inverse functions and
develop a formula for the derivative of an inverse function that will be
useful throughout the entire chapter. Next, we employ a definite integral
to introduce in Section 6.2 the natural logarithm function, which is then
used to define in Section 6.3 the natural exponential function as the in-
verse of the natural logarithm. The natural logarithmic and exponential
functions occur in many indefinite integral problems, a number of which
are studied in Section 6.4. There are many other pairs of exponential
and logarithmic functions; we analyze the general case in Section 6.5.
After developing the theory of logarithms and exponentials, we explore
in Section 6.6 a number of applications that involve these functions as
solutions to first-order separable differential equations, an important

modeling tool.

- In Sections 6.7 and 6.8, we introduce other important transcendental
functions: the inverse trigonometric functions and the hyperbolic func-
tions and their inverses. We derive the equation for the catenary curve
as an application of the hyperbolic functions. The chapter concludes
with 'Hépital’s rule, which provides a direct way to evaluate limits of
quotients in which both the numerator and the denominator approach
0 or both approach co or —oo. Such limits often occur when dealing
with transcendental functions.

Transcendental functions frequently
occur in the descriptions of curves that
possess both aesthetic appeal and
important structural properties of
stability,
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CHAPTER 6 Transcendental Functions

THE DERIVATIVE OF THE INVERSE FUNCTION

A function f may have the same value for different numbers in its domain.
For example, if f(x) = x2, then fQ2)=4= f(-2) but2 # —2. In order
to define the inverse of a function, it is essential that different numbers in
the domain always give different values of f. Such functions are called
one-to-one functions.

A function f with domain D and range R is a one-to-one function
if whenever a £ b in D, then f(a) # f(b) in R.

The diagram in Figure 6.1 illustrates a one-to-one function, because
each function value in the range R corresponds to exactly one element in
the domain D. The function whose graph is illustrated in Figure 6.2 is not
one-to-one, because a # b but f(a) = f(b). Note that the horizontal line
y = f(a) (or y = f(b)) intersects the graph in more than one point. Ihus,
if any horizontal line intersects the graph of a function f in more than
one point, then f is not one-to-one. Every increasing function is one-to-
one, because if a < b, then f(a) < f(b), andif b < a, then f(b) < f(a).
Thus, if a # b, then f(a) # f(b). Similarly, every decreasing function is
one-to-one.

If f is a one-to-one function with domain D and range R, then for each
number y in R, there is exactly one number x in D such that y = f(x), as
illustrated by the arrow in Figure 6.3(a). Since x is unique, we may define
a function g from R to D by means of the rule x = g(y). As in Figure
6.3(b), g reverses the correspondence given by f. We call g the inverse
function of f, as in the following definition.

| f(a) 1 f(b) Figure 6.3
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Definition 6.2

Let f be a one-to-one function with domain D and range R. A
function g with domain R and range D is the inverse function of f,
provided the following condition is true for every x in D and every y
in R:

y= f(x) ifandonlyif x=g(y)

6.1
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The Derivative of the Inverse Function

Theorem 6.3

Domains and Ranges of
fand 71 6.4

The following theorem can be used to verify that a function g is the
inverse of f.

Let f be a one-to-one function with domain D and range R. If g is a
function with domain R and range D, then g is the inverse function
of f if and only if both of the following conditions are true:

M g(fix))=x foreveryxinD
@) f(g(y)) =y foreveryyinR

PROOF " Let us first prove that if g is the inverse function of f, then
conditions_(i) and (ii) are true. By the definition of an inverse function,

y= f(x) ifandonlyif x=g(y)

for every x_in D and every y in R. If we substitute f(x) for y in the
equation x = g(y), we obtain condition (i): x = g(f(x)). Similarly, if we
substitute g(y) for x in the equation y = f(x), we obtain condition (ii):
y = f(g(y)). Thus, if g is the inverse function of f, then conditions (i)
and (ii) are true.

Conversely, let g be a function with domain R and range D, and sup-
pose that conditions (i) and (ii) are true. To show that g is the inverse
function of f, we must prove that

y= f(x) ifandonlyif x = g(y)

for every x in D and every y in R.

First suppose that y = f(x). Since (i) is true, g(f(x)) = x—that is,
g(y) = x. Thus,if y = f(x), then x = g(y).

Next suppose that x = g(y). Since (ii) is true, f(g(y)) = y—that
is, f(x) =y. Thus, if x = g(y), then y = f(x), which completes the
proof. M

A one-to-one function f can have only one inverse function. Condi-
tions (i) and (ii) of Theorem (6.3) imply that if g is the inverse function
of f, then f is the inverse function of g. We say that f and g are inverse
functions of each other.

If a function f has an inverse function g, we often denote g by f~'.
The —1 used in this notation should not be mistaken for an exponent—that
is, f~1(y) does not mean 1/ f(y)]. The reciprocal 1/[ f(y)] may be de-
noted by [ f ()]~ L. It is important to remember the following relationships.

domain of ' = range of f
range of f ' = domain of f

When we discuss functions, we often let x denote an arbitrary num-
ber in the domain. Thus, for the inverse function f 1 we may consider




Guidelines for Finding
flin Simple Cases 6.5

CHAPTER é Transcendental Functions

Y (x), where x is in the domain of f~'. In this case, the two conditions
in Theorem (6.3) are written as follows:

O @) =x

@) ff @) =x

In some cases, we can find the inverse of a one-to-one function by
solving the equation y = f(x) for x in terms of y, obtaining an equation
of the form x = g(y). If the two conditions g(f(x)) = x and f(g(x)) = x
are true for every x in the domains of f and g, respectively, then g is the
required inverse function f~!. The following guidelines summarize this
procedure. In guideline (2), in anticipation of finding f~', we shall write
X = f_l(y) instead of x = g(¥).

for every x in the domain of f

for every x in the domain of f~!

I Verify that f is a one-to-one function (or that f is increasing or
is decreasing) throughout its domain.

2 Solve the equation y = f(x) for x in terms of y, obtaining an
equation of the form x = f~!(y).

3 Verify the two conditions

@) =x and f(flx)=x

for every x in the domains of f and f~!, respectively.

The success of this method depends on the nature of the equation y =
f(x), since we must be able to solve for x in terms of y. For this reason,
we include simple cases in the title of the guidelines.

EXAMPLE®= | Let f(x) =3x — 5. Find the inverse function of f.

SOLUTION We shall follow the three guidelines. First, we note that
the graph of the linear function f is a line of slope 3. Since f is increasing
throughout R, f is one-to-one, and hence the inverse function f ~! exists.
Moreover, since the domain and the range of f are R, the same is true for

.
As in guideline (2), we consider the equation
y=3x-5
and then solve for x in terms of y, obtaining
y+35
X=—-
3
We now let +s
- y
o= S
Since the symbol used for the variable is immaterial, we may also write
- x+5
="~

6.1 The Derivative of the Inverse Function

Figure 6.4
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We next verify the conditions (i) £ ~'(f(x)) = x and Gi) fF(fF () = &

O &) =fT'Gx=5)  definition of f
_ Bx=5)+5

3 definition of f~!
=X simplifying
5
G f(f'x) =f (x : ) definition of f~!
5
=3 (x ;_ ) — 5 definition of f
=X simplifying

Thus, by Theorem (6.3), the inverse function of f is given by f~!(x) =
(x +5)/3. )

EXAMPLE®2 Let f(x)=x?— 3 for x > 0. Find the inverse func-
tion of f.
SOLUTION The graph of f is sketched in Figure 6.4. The domain

of f is [0, 00), and the range is [—3, co). Since f is increasing, it is one-
to-one and hence has an inverse function f ~! that has domain [—3, o0)
and range [0, 00).

As in guideline (2), we consider the equation

y= x2=3
and solve for x, obtaining
x==3y+3.

Since x is nonnegative, we reject x = —./y + 3 and let

o) =+/y+3, orequivalently, f~!(x)=+x+3.
Finally, we verify that (i) f ~Iq f(x)) = x for x in [0, c0) and that (ii)
f(f~Yx)) = x for x in [—3, 00):
O ) =16 -3)
== +3=Val=|x|=x ifx>0
@) f(f7 ) =FWx+3)
=Wx+3?-3=x+3)-3=x ifx>-3
Thus, the inverse function is given by f _1(x) =+x+3forx > -3.

There is an interesting relationship between the graph of a function f
and the graph of its inverse function f~!. We first note that b = f(a) is
equivalent to a = f~!(b). These equations imply that the point (a, b) is
on the graph of f if and only if the point (b, a) is on the graph of f ™.
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CHAPTER 6 Transcendental Functions

As an illustration, in Example 2 we found that the functions f and F!
given by

f@)=x>=3 and flx)=+vx+3
s are inverse functions of each other, provided that x is suitably restricted.
Some points on the graph of f are (O —3),(1,-2),(2,1), and (3, 6).
Corresponding points on the graph of f are (—3,0),(—2,1), (1, 2), and

(6,3). The graphs of f and f~! are sketched on the same coordinate
plane in Figure 6.5. If the page is folded along the line y = x that bisects

-

N

AN

AN

\

| & 1 |

f(x) graphs of f and f~!

quadrants T and III (as indicated by the dashed line in the figure), then the
coincide. The two graphs are reflections of each other
through the line y = x. This reflective property is typical of the graph of
every function f that has an inverse function f~'(see Exercise 14).

Figure 6.6 illustrates the graphs of an arbitrary one-to-one function f
and its inverse function f . As indicated in the ﬁgure (c,d) is on the
graph of f if and only if (d, c) is on the graph of f~!. Thus, if we restrict
the domain of f to the interval [a, b], then the domain of f ~1 is restricted
to [f(a), f(b)]. If f is continuous, then the graph of f has no breaks or
holes, and hence the same is true for the (reflected) graph of f~!. Thus,
we see intuitively that if f is continuous on [a, 5], then £~ is contrnuous
on [f(a), f(b)]. We can also show that if f is increasing, then 50 is L
The next theorem states these facts, and Appendix I contains a proof.

Figure 6.6

(f(b), b)

AY

wY

Theorem 6.6
It fis contrnuous and increasing on [a, b], then f has an inverse

function £~ that is continuous and i increasing on [ f (a), f(b)].

We can also prove the analogous result obtained by replacing the word
increasing in Theorem (6.6) with the word decreasing.

6.1

The Derivative of the Inverse Function-

The next theorem provides a method for finding the derivative of an
inverse function.

Th 6.7 h h Ly _
eorem If a differentiable function f has an inverse function g = ! and if

F'(g(c)) # 0, then g is differentiable at ¢ and

e
glo)= @@

PROOF By Definition (2.6),

@) = lim 8%~ 8©)
g )= )}grz o "
Let y = g(x) and a = g(c). Since f and g are inverse functions of each

other, ‘
gx) =y ifandonlyif f(y)=x

and g(c) =a ifandonlyif f(a)=c.
Because f is differentiable, it is continuous and hence, by Theorem

(6.6), so is the inverse function g = f'l. Thus, if x — ¢, then g(x) —
g(c); thatis, y — a.If y — a, then f(y) — f(a). Thus, we may write

g'© = lim £ 2 £
- lm —2 %
y=a f(y) — f(a)
1

= lim ————
28 F () - (@)

y —da

. 1

- f@
lim —————

y—a y—a

1 1

“F@ g

It is convenient to restate Theorem (6.7) as follows.

Corollary (&3 If g is the inverse function of a differentiable function f and if

f'(g(x)) # 0, then 1

8 (x) = fl(g(x))'

Theorem (6.7) and Corollary (6.8) are useful becausp they enahle us
to compute the derivative of the inverse of a function without having an
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explicit formula for the inverse function. In the next example, we need the
derivative of an inverse function so that we can find the slope of the tangent
line to a point on its graph.

EXAMPLE=3 If f(x) = x>+ 2x — 1, prove that f has an inverse
function g, and find the slope of the tangent line to the graph of g at the
point P(2, 1).

SOLUTION Since f'(x) = 3x2 +2 > O forevery x, f is increasing
and hence is one-to-one. Thus, f has an inverse function g. Since f(1) =
2, it follows that g(2) = 1, and consequently the point P(2, 1) is on the
graph of g. It would be difficult to find g using Guidelines (6.5), because
we would have to solve the equation y = x> + 2x — 1 for x in terms of y.
However, even if we cannot find g explicitly, we can find the slope g'(2)
of the tangent line to the graph of g at P(2, 1). Thus, by Theorem (6.7),
, 1 1 1
g£Q2)=— =—=_.
f €@y fa 5

f

An easy way to remember Corollary (6.8) is tolet y = f(x).If g is the
inverse function of f, then g(y) = g(f(x)) = x. From (6.8),

1 1
fley) &)
This shows that, in a sense, the derivative of the inverse function g is the
reciprocal of the derivative of f. A disadvantage of this formula is that it
is not stated in terms of the independent variable for the inverse function.
To illustrate, in Example 3, let y = x> + 2x — 1 and x = g(y). Then

1
3x2 42 3(e()P+2

We may also write this in the form

gy =

gy =

1
C3(g(x)*+2

Consequently, to find g’(x), it is necessary to know g(x), just as in Corol-
lary (6.8).

We may use a graphing utility to obtain the graphs of a function and its
inverse simultaneously by exploiting the result that the point (a, b) is on
the graph of f if and only if the point (b, a) is on the graph of f ~! Once
the utility has plotted a point (a, b), we ask it to plot the point (b, a) as
well. The formal mechanism for achieving this result utilizes parametric
equations, which we will study in more depth in Chapter 9. For now, we
represent the graph of y = f(x) for some domain a < x < b by the points
(t, f(®)) for a <t < b. The variable ¢ is called a parameter. We actually
have a pair of parametric equations:

g'(x)

X =t, y=f@) for a<t<b

6.1 The Derivative of the Inverse Function

Figure 6.7
-9<x=<9,-4<y<8

y=f0), ¥ =\f'1(x)
v

Figure 6.8
0<x=<30=<y<l
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The graph of the inverse function (if it exists) is obtained by reversing the
roles of x and y. This reversal is easily accomplished by plotting a second
pair of parametric equations:

x = f(1), y=t, for a<t<b

If f is not one-to-one on the interval [a, b], then the plot of this second pair
of equations is not the graph of a function. To see that the plot of the first
pair of equations is a reflection of the second pair about the line y = x, we
also plot the line by using a third pair of parametric equations:

X =t, y=t, for a<t<b

In using a graphing utility, we must indicate by special notation or com-
mand that what is being requested is the plotting of parametric equations.

EXAMPLE=4

(a) Use a graphing utility and parametric equations to view the graphs of
the function f given by f(x) = x* + 0.3x — 2, the inverse of [, and the
liney =xfor—1<x <2.

(b) Verify that the function f is one-to-one on this interval.

SOLUTION

(a) We set the graphing utility to plot the following parametric equations:
Xip =T, Yir =TA3 +0.3T — 2 equations for f

Xor = Yar, Yor =T equations for its inverse

Xsp = T, Y3r =T equations for the line y = x

Note that we use an uppercase 7' instead of the lower-case ¢ since most
graphing calculators use uppercase letters. The graphing utility plots each
of the points (¢, 2 +03t — 2), (t3 + 0.3t — 2,¢), and (¢, ¢) for each ¢ in
the interval —1 <t < 2 to produce the graphs shown in Figure 6.7.

(b) Both a visual inspection of the graph and observation of the fact that
f'(x) =3x*+0.3 > 0 confirm that f 1s strictly increasing on [—1, 2],
and hence f is one-to-one on this interval.

EXAMPLE®=S

(a) Graph f(x) = cos[c0s(0.9x)] on the interval [0, 3].

(b) Estimate the largest interval [a, b] with 0 < a < b < 3 on which f is
one-to-one.

(c) If g is the function with domain interval [a, b] such that g(x) = f(x)
for a < x < b, estimate the domain and the range of g~

(d) Make use of parametric equations to view the graphs of g and g~ ! on
the same coordinate axes.

SOLUTION
(a) Using a graphing utility gives the graph shown in Figure 6.8.




Figure 6.9
0<x<27,0=<y<18

y =g '(x)
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(b) From the graph in part (a), we see that as x increases from 0, the
function f initially increases from a value of cos(cos0) ~ 0.5403023
until it reaches a maximum value and then begins to decrease. Using
the trace feature on the graphing utility, we find that the maximum oc-
curs at approximately x = 1.7453293 where the value of the function
is cos[cos(0.9)(1.7453293)] ~ 1. Thus, f is one-to-one on the interval
[0, 1.7453293] and also on the interval [1.7453293, 3]. Since the first in-
terval is longer, we select {a, b] = [0, 1.7453293].

(c) From the analysis in part (b), we have g(x) = cos[cos(0.9x)] with
domain [0, 1.7453293] and range [0.5403023, 1]. Hence, the inverse g_1
has domain [0.5403023, 1] and range [0, 1.7453293].

(d) We use parametric equations to generate the points (¢, cos[cos(0.91)])
and (cos[cos(0.91)], 1) for 0 < < 1.7453293 to obtain the graphs of g
and g~! shown in Figure 6.9.

- EXERCISES 6.1

Exer. 1~ 12: Find £~ 1(x).

I f(x)=3x+5 2 f(xy=T7T—2x
1 1
3f(x)=m 4f(x)=m
3x+2 4x
sf(x)—zx_s 6f(JC)=xT2
7 fx)=2-3x2, x<0
8 f(x)=5x2+2, x>0
9 f(x)=+3—x
10 fx)=vV4—x2, 0<x<2
1 fx)=~x+1 12 fx) =& +1)°

13 (a) Prove that the linear function defined by f(x) =
ax + b with a # 0 has an inverse function, and find

).

(b) Does a constant function have an inverse? Explain.

14 Show that the graph of £~ is the reflection of the graph
of f through the line y = x by verifying the following
conditions:

(i) If P(a, b) is on the graph of f, then Q(b, a) is on
the graph of f -1
(ii) The midpoint of line segment PQ is on the line
y==x.
(iii) The line PQ is perpendicular to the line y = x.

Exer. 15-18: The graph of a one-to-one function f is
shown in the figure. (a) Use a reflection to sketch the
graph of f -1, (b) Find the domain and the range of f.
(<) Find the domain and the range of f -1

15

Exercises 6.1

17 Ay
y=x,7
(3,2
bt b e
X
/7 1
¥4
// T
(_3: —2)
18 Ay
//y=x
©o,1n 7

(3’ _1)

E] Exer. 19-24: Graph f on the given interval. (a) Estimate

the largest interval [a, b] with a < b on which f is one-
to-one. (b) If g is the function with domain [a, b] such
that g(x) = f(x) for a < x < b, estimate the domain and
the range of g~ 1. (c) Use parametric equations to view
the graphs of g and g~! on the same coordinate axes.

19 f(x)=21x>—298x* —2.11x +3; - -1, 2]
20 f(x) = 16x° +8x* —20x° — 8x2 4+ 5x +1; [-1, 1]
21 <f (x) = sin[sin(1.1x)]; -2, 2]

i

22 f(x) =sin(x’ + 2x2 — 0.3); -1, 1]
23 f(x) = 200G, [-3, 2]
24 f(x) = 3% -3-D, -1, 2]

Exer. 25-30: (a) Prove that f has an inverse function g.

(b) State the domain of g.

g(x).
25 f(x) =/2x +3
26 f(x)=5x +2

(<) Use Corollary (6.8) to find

27 f(x) =4 —x%, x>0
28 f(x)=x>—4x+5, x>2
29 f(x)=1/x, x#0
30 f)=V9-x%,  0<x<3

Exer. 31-36: id) Use f’ to prove that f has an inverse
function. (b) Find the slope of the tangent line at the
point P on the graph of f -1,

3 f) =2+ 2 — 1 PG, 1)
32 f(x)=2—x—x%; P(-8,2)
33 f(x)=—2x+@8/x%), x>0; P(=3,2)
34 f(x)=4x> —(1/x%), x>0; PG, 1)
35 fx)=x>+4x—1; P(15,2)
36 f(x)=x°+x; P2, 1)
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Mathematicians and Their Times

LEONHARD EULER

IN THE EIGHTEENTH CENTURY, Europe witnessed a growing conflict
between religion and science and the first of the political revolutions
that overturned monarchies and founded new democratic forms of
government. In his own life, Leonhard Euler (1707-1783), the lead-
ing mathematician and theoretical physicist of his time, balanced tradi-

tional religious beliefs with the demanding
rationalist logic of deductive thought.
Euler was the most prolific mathemati-
cian in history, perhaps the most prolific
author in any field. His writings fill 100
large books and contain contributions to
mechanics, optics, acoustics, hydrodynam-
ics, astronomy, chemistry, and medicine,

as well as especially profound work in ev-
ery branch of pure and applied mathemat-
ics. Born in Switzerland, Euler first studied to become a Calvinist minister
as his father was, but mathematics led him down another path.

As a young man, Euler lost the sight in one eye, from an illness
brought on by prolonged scientific work. Later in life, cataracts took the
vision in his other eye. Although he was completely blind for 17 years,
Euler’s research never slackened. Blessed with a phenomenal memory
and the ability to concentrate on difficult problems while surrounded by
playing children (he had 13!), Euler could accurately complete complex
problems mentally. As the physicist Arago noted, “He calculated without
apparent effort, as men breathe, or as eagles sustain themselves in the
wind.”

In Euler’s time, the major centers of scientific research were often
academies funded by royalty. As a young student of john Bernoulli, Euler
became friends with Bernoulli’s sons Daniel and Nicolaus, who helped
him secure a position at the Russian Academy in St. Petersburg. Euler
remained there from 1727 until 1741 when Frederick the Great invited
him to join the Berlin Academy. Euler did most of his best work during
the quarter century he spent in Berlin. Since relations with Frederick
were never very cordial (the emperor derided Euler as a “mathematical

6.2 The Natural Logarithm Function

Figure 6.10

AY =
F(x) = j f(e) dt
= area under the
graph of f
y = f@)
{ =
a x b t
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cyclops”), Euler gladly accepted the invitation of Catherine the Great to
return to St. Petersburg in 1766.

Besides hundreds of research monographs, Euler also wrote influen-
tial mathematical textbooks at all levels. He introduced or established
the use of many common mathematical notations: f(x) for a function of
x, 7, ey, logx,sinx, cos x, and i. He also discovered the relationship

et +1=0,

the “mystical formula” linking the five most significant numbers in math-
ematics. George F. Simmons accurately describes Euler as “the Shake-
speare of mathematics—universal, richly detailed, and inexhaustible”

THE NATURAL LOGARITHM FUNCTION

In this section, we define the natural logarithm function as a definite inte-
gral. At first you may think it strange to do so; later, however, you will see
that the function we obtain obeys the familiar laws of logarithms consid-
ered in precalculus courses.

Let f be a function that is continuous on a closed interval [a, b]. As in
the proof of Part I of the fundamental theorem of calculus (4.30), we can
define a function F by

F(x) = f f@)dt

for x in [a, b]. If f(¢) > 0 throughout [a, b], then F(x) is the area under
the graph of f from a to x, as illustrated in Figure 6.10. For the special
case f(t) =", where n is a rational number and n % —1, we can find an
explicit form for F. Thus, by the power rule for integrals,

X tn—',—l X
F(x):J. " dt =
p n+1

a

1
= G — g™ty if on £ 1.
As indicated, we cannot use 1! = 1/7 for the integrand, since 1/(n + 1)
is undefined if » = —1. Up to this point in our work, we have been unable

to determine an antiderivative of 1/x—that is, a function F such that
F’(x) = 1/x. The next definition will remedy this situation.
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Definition 6.9 Theorem 6.10

The natural logarithm function, denoted by In, is defined by

T
Inxrzf —dt
1t

for every x > 0.

The expression Inx (read ell-en of x) is called the natural logarithm
of x. We use this terminology because, as we shall see, In has the same
properties as the logarithmic functions studied in precalculus courses. The
restriction x > 0 is necessary because if x < 0, the integrand 1/t has an
infinite discontinuity between x and 1 and hence [ lx (1/¢) dt does not exist.

If x > 1, the definite integral /. lx (1/t) dt may be interpreted as the area
of the region under the graph of y = 1/¢ from ¢ = 1 to ¢ = x (see Figure
6.11a).

Figure 6.11
@) (b)

If 0 < x < 1, then, since

| 1
J —dt:—f —dt,
1 t X t

the integral is the negative of the area of the region under the graph of
y =1/t from ¢t = x to t = 1 (see Figure 6.11b). Thus, In x is negative for
0 < x < 1 and positive for x > 1. Also note that, by Definition (4.18),

|
lnlzj —dt =0.
1 ¢

Applying Theorem (4.35) yields
d (*1 1

E 1 —t- X
for every x > 0. Substituting Inx for flx (1/¢t) dr gives us the following
theorem.

Figure 6.12

I L L Il 1

d 1
—(1 e s
dx(nx) x

By Theorem (6.10), In x is an antiderivative of 1/x. Since Inx is dif-
ferentiable and its derivative 1/x is positive for every x > 0, it follows
from Theorems (2.12) and (3.15) that the natural logarithmic function is
continuous and increasing throughout its domain. Also note that

d? d (d d (1 1
dxz(nx) dx (dx(nx)) dx (x) x%

which is negative for every x > 0. Hence, by (3.18), the graph of the
natural logarithmic function is concave downward on (0, 00).

Let us sketch the graphof y = Inx. If 0 < x < 1, thenInx < 0 and the
graph is below the x-axis. If x > 1, the graph is above the x-axis. Since
In1 = 0, the x-intercept is 1. We may approximate y-coordinates of points
on the graph by applying the trapezoidal rule or Simpson’s rule. If x = 2,
then, by Example 3 in Section 4.7,

21
In2 = f ;dt ~ (.693.
1

We will show in Theorem (6.12) that if a > 0, then Ina” = r1na for every
rational number r. Using this result yields the following:

In4 =1n2? = 21In2 ~ 2(0.693) ~ 1.386
In8 =1n2’ =31n2 ~ 2.079
Inl=12""= -2~ -0.693
In;=m2"2=-2In2~ —1.386

Inl =12 = -3In2~ -2.079

Plotting the points that correspond to the y-coordinates we have calcu-
lated and using the fact that In is continuous and increasing gives us the
sketch in Figure 6.12.

At the end of this section, we prove that

lim Inx =00 and lim lnx = —oo0.

X—>00 x—>0t
The first of these results tells us that y = In x increases without bound as
x — 00. Note, however, that the rate of change of y with respect to x is
very small if x is large. For example, if x = 10°, then

EJZ} _ 1] _ i6 — 0.000001.
dx 106 X 106 10

Thus, the tangent line is almost horizontal at the point on the graph with
x-coordinate 10%, and hence the graph is very flat near that point. The
fact that lim __, ,+ Inx = —o0 tells us that the line x = 0 (the y-axis) is a

vertical asymptote for the graph (see Figure 6.12).
The next result generalizes Theorem (6.10).
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If u = g(x) and g is differentiable, then

@) ——*(lnu)—lff—lf if u>0
udx

(i) ~—»(Inl ()—-_é— if u#0

PROOF

(i) If we let y = Inu and u = g(x), then, by the chain rule and Theo-

rem (6.10),
dy dy du l du

dx  dudx  udx’
(i) If u > 0, then \u] = u and, by part @,

i(111 )=

L anfuy = L anw = %
—(In = -(lou

uwdx’
If u <0, then |u| = —u > 0 and, by part (i),

d d 1 d
E(ln |u|) = E(ln(_u)) = _—ua(—u)

In examples and exercises, if a function is defined in terms of the
natural logarithm function, its domain will not usually be stated explicitly.
Instead we shall tacitly assume that x is restricted to values for which
the logarithmic expression has meaning. Thus, in Example 1, we assume
> /6. 1In Example 2, we assume x + 1 > 0.

EXAMPLE®| If f(x) = In(x? — 6), find f'(x).

SOLUTION Letting u = x* — 6 in Theorem (6.11)(i) yields

2x
2_6 .
—6dx )= %2 —-6

flx) = (1n(x -6)) =

EXAMPLE®2 Ify=In+/x+ 1, find dy/dx.

SOLUTION Letting u = +/x + 1 in Theorem (6.11)(i) gives us
dy

—(1 NCED
dx
1 d 1 1
= (VA )= ——— -~ + 1)
x+1dx( ) Y 2(x )
1 1 1 1

Tt 2 5kl 26+ 1)

6.2 The Natural Légariihm Function

Laws of Natural Logarithms 6.12

EXAMPLE®3 If f(x) =1In|4 +5x —

SOLUTION Using Theorem (6.11)(ii) withu = 4 + 5x — 2x3 yields

fl(x)= (ln |4+5x —2x3 |)

1

5 —6x2
— U+ -2Y) =
4+5x—2x3dx( )

N 4455 —2x3

The next result states that natural logarithms satisfy the laws of loga-
rithms studied in precalculus mathematics courses.

If p> 0Qand g > 0, then
() lnpg=Inp+ing
(i) lnzl-=lnp~—lnq

(i) Inp” =rinp for every rational number r

PROOF
(i) If p > 0, then using Theorem (6.11) with u = px gives us
d 1 d 1 1
—(npx)=——(px)="—p=—.
dx px dx px X

Thus, In px and Inx are both antiderivatives of 1/x, and hence, by
Theorem (4.2),

Inpx=Inx+C
for some constant C. Letting x = 1, we obtain
Inp=mnl1+C.
Since In 1 = 0, we see that C = In p, and therefore
Inpx =Inx 4+ 1np.
Substituting ¢ for x in the last equation gives us
Inpg =Ing +1np,

which is what we wished to prove.
(ii) Using the formula In p +1ng = In pg with p = 1 /q, we see that

1 1
1n—+1nq=1n<—-q)=ln1=0
q q

1
and hence In— = —Ing.
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Consequently,
p 1 1
In==In{p-—])=lhp+In—=Inp—Ing.
q q q

(iii) If 7 is a rational number and x > O, then, by Theorem (6.11) with

u=x",
d 1 d 1 1 r
—A1 N (x"Y= — r_1= — )= —.
dx(nx) xrdx(x) P r(x) x
By Theorems (2.18)(iv) and (6.7), we may also write
d( Inx) d (Inx) 1 r
—(rlhnx)=r—(nx)=r{—)=—.
dx dx o " X X

Since Inx” and r Inx are both antiderivatives of r/x, it follows from
Theorem (4.2) that

Inx"=rlnx+C
for some constant C. If we let x = 1 in the last formula, we obtain
Inil=rnl+4C.
Since In 1 = 0, this implies that C = 0 and, therefore,
Inx" =rlnx.

In Section 6.5, we shall extend this law to irrational exponents. Bl

As shown in the following illustration, sometimes it is convenient to
use laws of natural logarithms before differentiating.

ILLUSTRATION

6.2 The Natural Logarithm Function m

f(x) after using
f(x) laws of logarithms b))
(G +2Gx =] In(xr+2) +10Gx — 5) PR P
X — X X — .3 =
DX 2" 3x—5 (x +2)3x — 5)
x+2 1 1 ~11
1 2) — In(3x — 5 - 3=
=3 nx+2)—IGx =3 mE T3S x+2)(3x—5)
1 10
In(x? + 1)° 5In(x? + 1) 5. 2x=
x“+1 x“+1
ST L N 111
Invx+1 5n(x+ 2 X+l 2G40

An advantage of using laws of logarithms before differentiating may
be seen by comparing the method of finding (d/dx) In+/x + 1 in the pre-
ceding illustration with the solution of Example 2.

In the next two examples, we apply laws of logarithms to complicated
expressions before differentiating.

EXAMPLE®4 If f(x) = In[v6x — 1(4x + 5)%], find f'(x).

SOLUTION We first write v/6x — 1 = (6x — 1)"/2 and then use
laws of logarithms (i) and (iii):

f(x) = In[(6x — DV?(4x + 5)%]
= In(6x — D¥2 + In(4x + 5)°
= 11n(6x — 1) +3In(4x + 5)

By Theorem (6.11),

1 1 1
o= 9+ )

3 12
N 6x—1+4x+5
_ 84x + 3

T (6x — )(dx +5)°

12
EXAMPLE=S Ify_ln - ﬁdd—y
x“+1 dx

SOLUTION  We first use laws of logarithms to change the form of y

as follows:
1/3
y=In x> -1 / 1 I %2 -1
= = — In
x?+1 35\ 2241

= iInG* — 1) — In(x* + 1))

Next we use Theorem (6.11) to obtain

dy 1 1 1
d—);—g(x—z_l 2x — PR Zx)

_2x(
3 \x2-1 i2 )

_ 2x [ :l
(x* - 1)(x +1) 3(x% — 1)(x +1)

Given y = f(x), we may sometimes find dy/dx by logarithmic differ-
entiation. This method is especially useful if f(x) involves complicated
products, quotients, or powers. In the following guidelines, it is assumed
that f(x) > 0; however, we shall show that the same steps can be used if

fx) <O
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I y=f(x) given

2 Iny=Inf(x) take natural logarithms and simplify

3 i(ln y) = -fi—(ln f(x)) differentiate implicitly
dx dx

1 dy _4
4 Gy~ (1 fx)

d
5 == fx )——(m £G))

by Theorem (6.11)

maultiply by y = f(x)

Of course, to complete the solution we must differentiate In f(x) at
some stage after guideline (3). If f(x) < O for some x, then guideline
(2) is invalid, since In f(x) is undefined. In this event, we can replace
guideline (1) with |y| = |f(x)| and take natural logarithms, obtaining
In|y|=I|f (x)] If we now differentiate implicitly and use Theorem
(6.11)(ii), we again arrive at guideline (4). Thus, negative values of f(x)
do not change the outcome, and we are not concerned whether f(x) is
positive or negative. The method should not be used to find f'(a) if f(a) =
0, since In 0 is undefined.

EXAMPLE®=6 If
(5x—4)3
«/Zx—{—l

use logarithmic differentiation to find dy/dx.

SOLUTION Asin guideline (2), we begin by taking the natural log-
arithm of each side, obtaining
Iny =In(5x —4)> —Inv2x + 1
=3In(5x —4) — 1In2x + 1).

Applying guidelines (3) and (4), we differentiate implicitly with respect to
x and then use Theorem (6.8) to obtain

1d 1 1 1
Y _ (3. 5 —=(=. 2
ydx 5x —4 2 2x+1

o 25x+19
T Bx—H2x+ 1)’

6.2 The Natural Logarithm Function

Finally, as in guideline (5), we multiply both sides of the last equation by
y (that is, by (5x — 4)*/+/2x + 1) to get
dy  25x4+19 (5x—4)°
dx~ 5x—HQ2x+1) Vx+1
_ (25x +19)(5x — 4)°
Qx4+ 12

We could check this result by applying the quotient rule to y.

An application of natural logarithms to growth processes is given in
the next example. Many additional applied problems involving In appear
in other examples and exercises of this chapter.

EXAMPLE®=7 The Count model is an empirically based formula
that can be used to predict the height of a preschooler. If A(x) denotes the
height (in centimeters) at age x (in years) for 1 <x <6, then h(x) can be
approximated by

h(x) = 70.228 + 5.104x +9.222Inx.

(a) Predict the height and rate of growth when a child reaches age 2.
(b) When is the rate of growth largest?

SOLUTION
(a) The height at age 2 is approximately

h(2) =70.228 +5.104(2) +9.2221n2 ~ 86.8 cm.

The rate of change of i with respect to x is
1
h(x) =5.104 + 9.222(—).
x

Letting x = 2 gives us
H'(2) = 5.104 4+ 9.222(3) = 9.715.

Hence the rate of growth on the child’s second birthday is about 9.7 cm/yr.

(b) To determine the maximum value of the rate of growth A’(x), we first
find the critical numbers of /’. Differentiating 4’ (x), we obtain

1 222
h'(x) = 9.222<——2> e
X

x2

Since h”(x) is negative for every ¥ in [%, 6], A’ has no critical numbers
in (%, 6). It follows from Theorem (3.15) that 4’ is decreasing on [%, 6].

Consequently, the maximum value of 4’(x) occurs at x = %; that is, the
rate of growth is largest at the age of 3 months.
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li COMPUTATIONAL METHOD The graphs of the functions 4 As x approaches zero through positive values, 1/x increases without bound
and ' on the interval [0.25, 6] are shown in Figure 6.13. Using the trace and, therefore, so does In(1/x). Consequently, — In(1/x) decreases with-

operation, we find that h(2) ~ 86.8. We also see that k' decreases on the out bound and

Figure 6.13
025<x<60<y<120

S y = hx) interval so that its maximum is at the left endpoint, x = 0.25. lim+ Inx = —o0.
x—0
180
) We conclude tl}is section by.examjninxg Inxasx — ooandasx — 0F. f - EXERCISES 6.2
y= 100 If x > 1, we may interpret the integral f;"(1/1) df = In.x as the area of the TR e e
T 20N region shown in Figure 6.14. The sum of the areas of the three rectangles
! B e #——= | shown in Figure 6.15 is
: ! ! : ! g Exer. 1-34: Find f'(x) if f(x) is the given expression. 43 (x2 +3)° a4 2 +3)¥33x — 4)*
1,1 1 y=— =
lplel=18 I In(9x +4) 2 In(x* +1) Vx+1 Y Vx
Since the area under the graph of y = 1/¢ from ¢ = 1tot =4 is In4, we 3 In(B3x* —2x + 1) 4 In(4x3 — x> +2) 45 Find o e;lua;tion ;’f thehtang_ent line to the graph of
see that 5 In|3 - 2x| 6 In|4 - 3x| y =x"+InQ2x —5) at the point P(3,9).
46 Find an equation of the tangent line to th h of
n4> 8 >1. 5 2 4 g ¢ o the graph o
W 7 In|2 —3x]| 8 In|5x° — 1|3 y = x +Inx that is perpendicular to the line whose
It follows that if M is any positive rational number, then 9 Inv7—2x3 10 In6x +7 equation is 2x + 6y = 5.
. 47 Shown in the figure is a graph of y = 5Inx — 1x. Find
M Il xInx 12 In(Inx g a graph ol y nx — 5.x. H
Mn4d> M, or Ind" > M. . ( \ ) ; the coordinates of the highest point, and show that the
. . . . . & 14 :
If x > 4™, then since In is an increasing function, 8vx+ i ln; + (nx) graph is concave downward for x > 0.
1 1 x“
Inx > 4" > M. Boar 16— Exercise 47
This proves that Inx can be made as large as desired by choosing x suffi- 17 In[(5x — 7)*Q@x +3)°] 18 In[/4x — 5(3x +8)°] Y
ciently large—that is, Vil 41 2@2x — 1)
lim Inx = o0 19 In ) 20 In 2
avepel . Ox —4) (x+5) s
. . 2
To investigate the case x — 0%, we first note that 21 In x2 —1 2 m |4t x
2
1 x+1 4—x
—_— = 1 —_ = —_ = — .
In-=Inl-lnx=0-Inx=—lnx 23 In(x + V% — 1) 24 In(x + Vx> + 1) +—t—1—N—
1 25 ‘Incos 2x 26 cos(In2x) 30
Hence, lim Inx = lim |{—In—}. 3 )
0t 0t X 27 Intan” 3x 28 Incot(x”)
29 Inlnsec2x 30 Incsc? 4x
Figure 6.14 Figure 6.15 31 In|secx] 32 In|sinx|
A Ay 33 In |secx + tan x| 34 In |cscx — cotx| 48 Showr} in the‘ ﬁgure.: is a graph of y = In(x? + 1). Find
the points of inflection.
Exer. 35 - 38: Use implicit differentiation to find y'.
35 3y —x? +Inxy =2 36 y2 +1In(x/y) — 4x = =3 Exercise 48
37 xlIny—ylnx =1 38 Y2+ x’Iny=5x+3 AY
Exer. 39-44: Use logarithmic differentiation to find il
dy/dx. i
39 y = (5x +2)36x + 1)? 4
40 y= (x + D2 + 2% +3)* o
_ 3 : L1 : | | 1 _}| | : : | o
41 y=4x+7(x —5) T LN LU >
42 y=,/(3x%+2)/6x — 7 T




49 An approximation to the age T (in years) of a fe-
male blue whale can be obtained from a length mea-
surement L (in feet) using 7 = —2.57 In[(87 — L)/63].
A blue whale has been spotted by a research vessel, and
her length is estimated to be 80 ft. If the maximum error
in estimating L is %2 ft, use differentials to approximate
the maximum error in T'.

50 The Ehrenberg relation, In W =1n2.4 + 0.0184#, is
an empirically based formula relating the height A
(in centimeters) to the weight W (in kilograms) for
children aged 5-13. The formula, with minor changes in
constants, has been verified in many different countries.
Find the relationship between the rates of change dW/dt
and dh/dt, for time ¢ (in years).

51 A rocket of mass m, is filled with fuel of mass m,,
which will be burned at a constant rate of b kg/sec. If
the fuel is expelled from the rocket at a constant rate,
the distance s(¢) (in meters) that the rocket has traveled
after ¢ seconds is

m, +m, — bt
s(t)y=ct+ E(m1 +m, —bt)In -2
b m; +m,
for some constant ¢ > 0.

(a) Find the initial velocity and the initial acceleration
of the rocket.

(b) Burnout occurs when ¢ = m,/b. Find the velocity
and the acceleration at burnout.

52 One method of estimating the thickness of the ozone
layer is to use the formula In(Z/ Iy) = —BT, where
I, is the intensity of a particular wavelength of light
from the sun before it reaches the atmosphere, I is the
intensity of the same wavelength after passing through
a layer of ozone T centimeters thick, and 8 is the
absorption coefficient for that wavelength. Suppose that
for a wavelength of 3055 x 1078 cm with g ~ 2.7, I,/ 1
is measured as 2.3.

(a) Approximate the thickness of the ozone layer to the
nearest 0.01 cm.

(b) If the maximum error in the measured value of
Iy/1 is £0.1, use differentials to approximate the
maximum error in the approximation obtained in
part (a).

53 Describe the difference between the graphs of y =
ln(xz) and y =2Inx.
54 Sketch the graphs of

(@ y=hlx| (b)y=|Inx|
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Exer. 55-60: Graph f on the given interval. (a) Approxi-
mate the range of the function defined on this interval so
that the graph just fits in the viewing window. (b) Iden-
tify x-intercepts, y-intercepts, and relative extrema in this
viewing window, if any. Estimate these features to two
decimal places.

55 f(x) = In(sinx); [0.1, 3.1]
56 f(x) = sin(lnx); [0.1, 800]
In[4(x + 1]

57 f(x) = n2e D) [-0.1, 3]
58 f(x)=x"Inx; [0, 2]
59 f(x) =In[x(1.3 + sinx)]; [0.1, 20]

60 f(x)=In(x* — 4x> — 0.8x +5.4); [-3, 3]

Exer. 61-64: Use Newton’s method or a solving routine
to approximate the real root(s) of the equation to four
decimal places. Use a graphing utility to ensure that all
roots are found.

61l mx+x=0

62 In(x> —1.8x +1) =3

63 2 —0.3x — 0.2x2 — In[In(x> + 1.5)] = 0

64 In[x(1 —09cosx)] =0

Exer. 65-68: Use a numerical integration method or

routine to approximate the definite integral to four
decimal places.

4
65 f In(sinx — x cosx) dx
1

50
66 f In(1 +Inx) dx
1

2
In4
67f 2 i
0511‘13)6

5 2
68 f 2 dx
5 Inx
69 Approximate the area bounded by the graphs of y =
Inx,y=1/x,and x = 10.

70 Approximate the volume of the solid generated by
revolving the graph of y = (In x)2/ x, 1 <x <35, about
the x-axis.

71 Approximate the arc length of the part of the curve
y = Inx that lies inside the circle x> + y? = 25.

6.3 The Exponential Function

6.3

Theorem 6.14

Definition 6.15

THE EXPONENTIAL FUNCTION

In Section 6.2, we saw that

lim Inx =00 and lim lnx = —oc0.
L X—00 x—0*

These facts are used in the proof of the following result.

To every real number x there corresponds exactly one positive real
number y such thatlny = x.

PROOF First note that if x = 0, then y = 1. Moreover, since In is an
increasing function, 1 is the only value of y such thatlny = 0.
If x is positive, then we may choose a number b such that

Inl <x <Inb.

Since In is continuous, it takes on every value between In1 and In b (see
the intermediate value theorem (1.26)). Thus, there is a number y between
1 and b such that In y = x. Since In is an increasing function, there is only
one such number.

Finally, if x is negative, then there is a number » > 0 such that

Inb <x <Inl,

and, as before, there is exactly one number y between b and 1 such that
Iny=x. W=

It follows from Theorem (6.14) that the range of the natural logarithms
is R. Since In is an increasing function, it is one-to-one and therefore has
an inverse function, to which we give the following special name.

The natural exponential function, denoted by exp, is the inverse of
the natural logarithm function.

The reason for the term exponential in this definition will become clear
shortly. Since exp is the inverse of In, its domain is R and its range is
(0, 00). Moreover, as in (6.2),

y=expx ifandonlyif x=Iny,

where x is any real number and y > 0. By Theorem (6.3), we may also
write

In(expx) =x and exp(lny) =y.
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Figure 6.16

=¥

As we observed in Section 6.1, if two functions are inverses of each
other, then their graphs are reflections through the line y = x. Hence the
graph of y = expx can be obtained by reflecting the graph of y = Inx
through this line, as illustrated in Figure 6.16. Note that

lim expx =oc0 and lim expx =0.
X—>00 X—=>—00

By Theorem (6.14), there exists exactly one positive real number whose
natural logarithm is 1. This number is denoted by e. The great Swiss
mathematician Leonhard Euler was among the first to study its properties
extensively. (See Mathematicians and Their Times.)

The letter e denotes the positive real number such that Ine = 1.

Several values of In were calculated in Section 6.2. We can show, by
means of the trapezoidal rule, that

2.71 ‘ 2.8 1
—-dt <1< —dt.
1 ¢ 1t

Applying Definitions (6.9) and (6.16) yields
In2.7 <lne <1n2.8

and hence

27 <e < 28.

Later, in Theorem (6.32), we show that

e = lim(l + k)"
h—0

This limit formula can be used to approximate e to any degree of accuracy.
In Section 6.5, the first five decimal places in the following 32-decimal-
place approximation for e will be justified in this way.

6.3 The Exponential Function

Approximationto e 6.17

Definition of e* 6.18

Theorem 6.19

ILLUSTRATION

e ~ 2.71828182845904523536028747135266

It can be shown that e is an irrational number.
If r is any rational number, then

Ine" =rlne=r()=r

The formula Ine” = r may be used to motivate a definition of e* for every
real number x. Specifically, we shall define ¢* as the real number y such
that Iny = x. The following statement is a convenient way to remember
this definition.

If x is any real number, then

e =y ifandonlyif Iny=x.

Since exp is the inverse function of In,

expx =y ifandonlyif Iny=ux.

Comparing this relationship with Definition (6.18), we see that
e =expx forevery x.

This result shows the reason for calling exp an exponential function and
referring to it as the exponential function with base e. The graph of y =
e” is the same as that of y = exp x, illustrated in Figure 6.16. Hereafter we
shall use e* instead of exp x to denote values of the natural exponential
function. The most commonly used exponential function in mathematics
and its applications is the natural exponential function exp. For this reason,
the function exp is often called “the exponential function.”

The fact that In(expx) = x for every x and exp(lnx) = x for every
x > 0 may now be written as follows:

@) Ine* =x foreveryx

(i) " =x foreveryx >0

Some special cases of this theorem are given in the following illustration.

Ine’ =5 IneV* ! = /x F1
elnS -5 eln«/x+1 — m
Sx _ G _ 3 ekinx _ G _ &




Theorem 6.20

Theorem 6.21
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To obtain numerical approximations for e¢*, use the natural exponential
function provided by your calculator or computer. It gives a better approx-
imation than entering an approximation for the number e and then raising
this approximation to a power.

The next theorem states that the laws of exponents are true for powers
of e.

If p and g are real numbers and r is a rational number, then
@) ePel = ePtd
7
e -
(i) — =ef™
el

(iii) (e?) = e’

PROOF Using Theorems (6.12) and (6.19), we obtain
Inefe? =Ine? +1ne? = p+q =InePt.
Since the natural logarithm function is one-to-one,
ePel = P,

Thus, we have proved (i). The proofs for (ii) and (iii) are similar. We show
in Section 6.5 that (iii) is also true if 7 is irrational. ==

By Theorem (6.7), the inverse function of a differentiable function is
differentiable, and hence (d/dx)(e”*) exists. The next theorem states that
e* is its own derivative.

d x x
E;(e)—e

PROOF By (i) of Theorem (6.19),
Ine* = x.

Differentiating each side of this equation and using Theorem (6.11)(i) with
u = ¢* gives us the following:

d . d
S(ne) = ()

6.3 The Exponential Function

Theorem 6.22

EXAMPLE=® | If f(x) = x%¢, find f(x).
SOLUTION By the product rule and Theorem (6.21),
d d
) =22 (e) + e ()

= x%¢* + ¢*(2x) = x€* (x + 2).

The next result is a generalization of Theorem (6.21).

If u = g(x) and g is differentiable, then
d du

—(e") = " —.

dx dx

PROOF Letting y = " with u = g(x), and using the chain rule and
Theorem (6.21), we have

d dy dydu Lau

()= =——=¢"—. m

& T T dd &

If u = x, then Theorem (6.22) reduces to (6.21).

EXAMPLE®2 Ify=eV*® ! finddy/dx.

SOLUTION By Theorem (6.22),

dy _d e\/x2+l> _ e«/x2+li (1 I 1)
dx dx , dx

_ er2+1%((x2 + 1)1/2)

— e\/x2+l . _x__
VxZ+1

2
xe x"+1

R

_ e\/ x2+1(%)(x2 + 1)—]/2(2x)

EXAMPLE®=3 The function f defined by f(x) = ¢~*12 oceurs in

the branch of mathematics called probability. Find the local extrema of f,
discuss concavity, find the points of inflection, and sketch the graph of f.




Figure 6.17

©, 1)

fl) = e

B

o T
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SOLUT!ION By Theorem (6.22),

2
’ — —xz/Zi _)C_ — —x%/2 _2_x —__ —x%/2
fx)=e e ( 3 ) e ( > xe .

Since e™*72 is always positive, the only critical number of f is 0. If
x < 0, then f'(x) > 0, and if x > 0, then f/(x) < 0. It follows from the
first derivative test that f has a local maximum at 0. The maximum value
is fO)=eV=1.

Applying the product rule to f’(x) yields

d 2 20 d
f//(x) — _x;i; (e—x /2) +e—x /Za(_x)
= —xe_xz/z(—Zx/Z) — 12
= 2(x2 - 1),
and hence the second derivative is zero at —1 and 1. If —1 < x < 1, then
f"(x) <0 and, by (3.18), the graph of f is concave downward in the
open interval (—1,1). If x < —1 or x > 1, then f”(x) > 0 and, therefore,
the graph is concave upward throughout the infinite intervals (—oo, —1)

and (1, o). Consequently, P(—1, 6—1/2) and Q(1, e_l/z) are poig'lts of
inflection. From the expression

1
f&x) = W
it is evident that as x increases numerically, f(x) approaches 0. We can

prove that lim, _ _ f(x) =0and lim,_,__ f(x) = O—that is, the x-axis
is a horizontal asymptote. The graph of f is sketched in Figure 6.17.

Exponential functions play an important role in the field of radiother-
apy, the treatment of tumors by radiation. The fraction of cells in a tumor
that survive a treatment, called the surviving fraction, depends not only on

6.3 The Exponential Function

"EXAMPLE®=4 If each cell of a tumor has two targets, then the two-

target—one-hit surviving fraction is given by
f)=1-(1-e™)?

where k is the average size of a cell. Analyze the graph of f to deter-
mine what effect increasing the dosage x has on decreasing the surviving
fraction of tumor cells.

SOLUTION First note that if x = 0, then f(0) = 1; that is, if there
is no dose, then all cells survive. Differentiating, we obtain

F) =0—2(1— ety L1 = o)
dx

= —2(1 — e ) (ke ™)
= —2ke (1 — 7).
Since f’(x) < 0 for every x > O and f'(0) = 0, the function f is decreas-

ing and the graph has a horizontal tangent line at the point (0, 1). We may
verify that the second derivative is

fl(x) = 2k%e % (1 — 2¢7%%),

We see that f”(x) = 0if 1 — 2¢7™** = 0—that is, if e ** = L, or, equiva-
lently, —kx = In § = — In2. We thus obtain
1

x=-1n2.

k

It can be verified that if 0 < x < (1/k)In2, then f”(x) < 0, and hence
the graph is concave downward. If x > (1/k)In2, then f”(x) > 0, and

the energy and nature of the radiation, but also on the depth, size, and char- Figure 6.18 the graph is concave upward. The implication is that a point of inflection
acteristics of the tumor itself. The exposure to radiation may be thought of Surviving fraction of tumor cells after a  exists at x-coordinate (1/k) In2. The y-coordinate of this point is
as a number of potentially damaging events, where only one Ait is required radiation treatment
to kill a tumor cell. Suppose that each cell has exactly one target that must A y (surviving fraction) 1 —In2+2
. . e fl-In2})=1-(1—e"")
be hit. If k denotes the average target size of a tumor cell and if x is the

number of damaging events (the dose), then the surviving fraction f(x) is

— 132 _ 3
given by =l-(0-"=73

_ k
fay=e™ l Point of The graph is sketched in Figure 6.18 for the case k = 1. The shoulder

inflection

and is called the one-target—one-hit surviving fraction.

Suppose next that each cell has n targets and that hitting each target
once results in the death of a cell. In this case, the n-target—one-hit surviv-
ing fraction is given by

on the curve near the point (0, 1) represents the threshold nature of the
treatment—that is, a small dose results in very little tumor elimination.
Note that if x is large, then an increase in dosage has little effect on the
surviving fraction. To determine the ideal dose that should be adminis-
tered to a given patient, specialists in radiation therapy must also take into

—k >
fE)=1-(0—=e")" In2 1 2 3 x(dose) account the number of healthy cells that are killed during a treatment,
In the next example, we examine the case where n = 2.




- EXERCISES 6.3

Exer. 1-30; Find f'(x) if f(x) equals the given expression.

1 e 2 &

3 e 4 %

5 V14e 6 1/(e"+1)
7 eVt 8 xe

9 xZe % 10 ve* +2x
1 /6241 12 x/e®)

13 (% —5)3 14 (&3 — e 3)*
15 €% 4 (1/¢) 16 e¥* 4+ e*

e —e*

17 ——— 18 ¢Xlnx

19 e Inx 20 Inée”
21 sine>* 22 Sn3F
23 Incose™™ 24 ¢ 3% cos 3x
25 ¢ tan/x 26 sece >
27 sec?(e~*) 28 ¢ ¥ tan®x
29 xeootx 30 In(csce™)

Exer. 31-34: Use implicit differentiation to find y'.
31 ¥ -3 +3yr =11

32 xe? +2x —In(y +1) =3

33 e*coty = xe?
34 e cosy = xe’

35 Find an equation of the tangent line to the graph of
y = (x — D)e* +31Inx + 2 at the point P(1, 2).

36 Find an equation of the tangent line to the graph of
y = x — e " that is parallel to the line 6x — 2y = 7.

Exer. 37-42: Find the local extrema of f. Determine
where f is increasing or is decreasing, discuss concavity,
find the points of inflection, and sketch the graph of f.

37 f(x) =xe* 38 f(x) =x%e ¥
39 f(x) =e1/x“ 40 f(x) =xe™*
41 f(x)=xlnx 42 f(x) = (1 —Inx)?

43 A radioactive substance decays according to the formula
q(t) = qoe"“, where g is the initial amount of the
substance, ¢ is a positive constant, and g(¢) is the
amount remaining after time ¢. Show that the rate at
which the substance decays is proportional to g (z).
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44 The current I (¢) at time ¢ in an electrical circuit is given
by I(t) = Ioe"R’/ L where R is the resistance, L is the
inductance, and I, is the current at time ¢ = 0. Show
that the rate of change of the current at any time ¢ is
proportional to I(¢).

45 If a drug is injected into the bloodstream, then its
concentration ¢ minutes later is given by

_ k —-bt _ ,—at
CO = — ™ =)

for positive constants a, b, and k.

(a) At what time does the maximum concentration
occur?

(b) What can be said about the concentration after a
long period of time?

46 If a beam of light that has intensity k is projected
vertically downward into water, then its intensity 7(x)
at a depth of x meters is I (x) = ke 14,
(a) At what rate is the intensity changing with respect to
depth at 1 m? S m? 10 m?

(b) At what depth is the intensity one-half its value at
the surface? one-tenth its value?

47 The Jenss model is generally regarded as the most
accurate formula for predicting the height of a
preschooler. If #(x) denotes the height (in centimeters)
at age x (in years) for % < x <6, then h(x) can be

approximated by
h(x) = 79.041 + 6.39x — ¢3261-0993x

(Compare with Example 7 of Section 6.2.)
(a) Predict the height and the rate of growth when a
child reaches the age of 1.

(b) When is the rate of growth largest, and when is it
smallest?

48 For a population of female African elephants, the
weight W(z) (in kilograms) at age ¢ (in years) may be
approximated by a von Bertanlanffy growth function W
such that

W(r) = 2600(1 — 0.51e70071)3,

(a) Approximate the weight and the rate of growth of a
newborn.

(b) Assuming that an adult female weighs 1800 kg,
estimate her age and her rate of growth at present.

Exercises 6.3

(c) Find and interpret lim, _, _  W(z).
(d) Show that the rate of growth is largest between the
ages of 5 and 6.

49 Gamma distributions, which are important in traffic
control studies and probability theory, are determined
by f(x) = cx"e % for x > 0, a positive integer n, a
positive constant a, and ¢ = @"*1/n!. Shown in the
figure are graphs corresponding to @ = 1 for n = 2, 3,
and 4.
(a) Show that f has exactly one local maximum.
(b) If n = 4, determine where f(x) is increasing most

rapidly.

Exercise 49

AY

030 , =2
020 | 4

0.10 - 4

" J

50 The relative number of gas molecules in a container
that travel at a velocity of v cm/sec can be computed
by means of the Maxwell-Boltzmann speed distribution,
F(v) = cv2e "/ (2KT) where T is the temperature (in
°K), m is the mass of a molecule, and ¢ and k are positive
constants. Show that the maximum value of F occurs

when v = /2kT/m.

51 An urban density model is a formula that relates the
population density (in number per square mile) to the
distance r (in miles) from the center of the city. The

2 .
formula D = ae %" where a, b, and ¢ are positive
constants, has been found to be appropriate for certain
cities. Determine the shape of the graph for r > 0.

52 The effect of light on the rate of photosynthesis can be
described by

flx) = aela/b1-x")

for x > 0 and positive constants a and b.
(a) Show that f has a maximum at x = 1.

(b) Conclude that if x;, > 0 and y, > 0, then g(x) =
Yo f (x/x,) has a maximum g(x,) = y,.

547

53 The rate R at which a tumor grows is related to its size
x by the equation R = rx In(K/x), where r and K are
positive constants. Show that the tumor is growing most
rapidly when x = e K.

54 If p denotes the selling price (in dollars) of a commodity
and x is the corresponding demand (in number sold
per day), then the relationship between p and x may
be given by p = pye** for positive constants p, and
a. Suppose p = 300e~%02* | Find the selling price that
will maximize daily revenues (see page 332).

55 In statistics, the probability density function for the
normal distribution is defined by

1 2 xX—u
fx)=——e%/? with z=
o2 o
for real numbers p and o > 0 (u is the mean and

o2 is the variance of the distribution). Find the local

extrema of f, and determine where f is increasing or is
decreasing. Discuss concavity, find points of inflection,
find lim, _  f(x) and lim,__, _  f(x), and skeich the

graph of f (see Example 3).

|Z| 56 The integral [ ab ¢ dx has applications in statistics.

Use the trapezoidal rule, with n = 10, to approximate
this integral if a = 0 and b ="1.

Exer. 57-60: Graph f on the given interval. (a) Ap-
proximate the range of f on this interval. (b) Identify
x-intercepts, y-intercepts, and relative extrema in this
viewing window, if any. Estimate these features to two
decimal places.

57 f)=1-(1—-e) [0, 4]
(This function is the three-target—one-hit surviving frac-
tion, with k = 1; see Example 4.)

150

58 - -5, 25
f0) =1 0w [ 1
59 f(x) = 6e 3% cos(1.87x); [~1, 8]
60 f(x) =In8 +¢€*); [—4, 15]

Exer. 61-64: Use Newton’s method or a solving routine
to approximate the real root(s) of the equation to four
decimal places. Use a graphing utility to ensure that all
roots are found.

6l e ¥ =x

62 & — 5% 475 =2

63 xe* =4

64 0.2¢06% 4+ 13701% = 4 2 842




65 Nerve impulses in the human body travel along nerve
fibers that consist of an axon, which transports the
impulse, and an insulating coating surrounding the
axon, called the myelin sheath (see figure). The nerve
fiber is similar to an insulated cylindrical cable, for
which the velocity v of an impulse is given by v =
—k(r/R)*In(r/R), where r is the radius of the cable
and R is the insulation radius. Find the value of r/ R that
maximizes v. (In most nerve fibers, r/R ~ 0.6.)

CHAPTER 6 Transcendental Functions

Exercise 65

Myelin
sheath il/

| ."' &l w '.: ) :.’Y. ! ',:__‘
LARNE

Theorem 6.23

INTEGRATION USING NATURAL LOGARITHM
AND EXPONENTIAL FUNCTIONS

We may use differentiation formulas for In to obtain formulas for integra
tion. In particular, by Theorem (6.11),

d 1
— (nfg®]) = Pt '(x),

which gives us the integration formula
1
PO '(x)dx =In|g(x)| + C.

This result is restated in the next theorem in terms of the variable u.

If u = g(x) # 0 and g is differentiable, then

f—}iduzlnlu[—!-c.
u

Of course, if u > 0, then the absolute value sign may be deleted. A special
case of Theorem (6.23) is

1
f—dx=1n|x|+C.
x

EXAMPLE® | Evaluatef = Sdx. .

3x° —

SOLUTION Rewriting the integral as

[ESaya
x = xdx
3x2 -5 3x*—5

suggests that we use Theorem (6.23) with u = 3x% — 5. Thus, we make
the substitution

u=3x2—5, du = 6x dx.

6.4 Integration Using Natural Logarithm and Exponential Functions

Introducing a factor 6 in the integrand and using Theorem (6.23) yields

X 1 1 11
—dx = - 6xdx == |—-d
f3x2—5x 6J3x2—5xx 6]14 “

=inful+C=1m3x2-5+C

Another technique is to replace the expression x dx in the integral by % du
and then integrate.

4
dx.

EXAMPLE®=2 Evaluatef

2 — X

SOLUTION Since 1/(9 — 2x) is continuous on [2, 4], the definite
integral exists. One method of evaluation consists of using an indefinite
integral to find an antiderivative of 1/(9 — 2x). We let

u=9—2x, du = —2 dx

and proceed as follows:

j9 P dx = ——f—( 2)dx

111 1

=—1In[9-2x|+C

Applying the fundamental theorem of calculus yields

4
1 4
L T &= —3 [l ]9 —2x|];
—3(n1—1n5)= 15,

Another method is to use the same substitution in the definite integral
and change the limits of integration. Since u = 9 — 2x, we obtain the
following:

M Ifx=2, then u=>5.
Gi) fx =4, then u=1.

4
f 9 2_x :——f ——( 2)dx

1

1 1
= —EL —du= —E[ln|u|:|5

= —%(lnl —In5) = %lnS.

Thus,
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suggests that we use Theorem (6.24) with u = 3/x. Thus, we make the

X
EXAMPLE®=3 Evaluatef . dx. substitution .
u=—, du = —= dx.
SOLUTION Two possible substitutions are ¥ = +/Inx and u = Inx. * x
If we use The integrand may be written in the form of Theorem (6.24) by introducing
1 the factor —3. Doing this and compensating by multiplying the integral by
u=Inx, du = ;dx, —1, we obtain
3/ X 1 3
then fe_zdx — _gfe3/x (__2) dx
/1 1 3/2 X X
f nxdx:fvlnx-—dxzful/zduzu——l—C [
x x 3/2 =—3 | ¢ du
3/2
=2(Inx)¥2 4 C. =—3¢"+C
The substitution u = «/m could also be used; however, the algebraic — 134 ¢
manipulations would be somewhat more involved. 3 )
(b) Using the antiderivative found in part (a) and applying the fundamental
theorem of calculus yields
2 .3
The derivative formula (d/dx)(e8™) = ¢8®) g’ (x) gives us the follow- . f e dx — 1 [ e3/x]2
ing integration formula for the natural exponential function: 1 x? 3 1

= —%(63/2 — ey~ 5.2,

$®) o/ (x) dx = 8@ 4
f erek) We can also evaluate the integral by using the method of substitution.

Asin part (a), we letu = 3/x, du = (—=3/x%) dx, and we note that if x = 1,
thenu =3, and if x =2, thenu = % Consequently,

) 2 e3/x 1 2 3
Theorem 6.24 J —_—dx = —= f e ( ) dx
) 1 1

If u = g(x) and g is differentiable, then X2 2

This result is restated in the next theorem in terms of the variable u.

3/2
fe”du:e”+€. ) =—%f e du
| 3

3/2
=4[ = -l -~ 52

As a special case of Theorem (6.24), if u = x, then
f S dx = e + C. The integral [ e** dx, with a # 0, occurs frequently. We can show that

1
fe”x dx = -+ C
a

EXAMPLE®=4 Evaluate: . )
either by using Theorem (6.24) or by showing that (1/a)e® is an an-

( oY% . X jZ e3/x ., tiderivative of ¢*.
) J x? o 1 ox? gy
| ILLUSTRATION
SOLUTION |
(a) Rewriting the integral as f ¥ dx = %63" +C J e dx = —%e_Sx +C
3/x
fexg dx:feyx;li dx fe_xdx=—e’x+C
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Figure 6.19
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In the next example, we solve a differential equation that contains
exponential expressions.

EXAMPLE®=5 Solve the differential equation
dy
dx
subject to the initial condition y = 4if x = 0.

— 3e2x + 6e—3x

SOLUTION Asin Example 6 of Section 4.1, we may multiply both
sides of the equation by dx and then integrate as follows:

dy = (3e¥ + 6e*) dx
f dy = f (3e¥ +6e ) dx =3 f ¥ dx +6 f e dx
y =31 +6(—De > +C
= %ez" —27 4+ C
Using the initial condition y = 4 if x = 0 gives us
4=3"-2"+Cc=3-2+C.
Hence, C =4 — % +2= %, and the solution of the differential equation is

—3x

y=%e2x—26 +%

EXAMPLE®=§6 Find the area of the region bounded by the graphs of
the equations y = e*, y = 4/x,x =0,and x = L.

SOLUTION The region and a typical rectangle of the type consid-
ered in Chapter 5 are shown in Figure 6.19. As usual, we list the following:
width of rectangle: dx
length of rectangle: e* — /x
area of rectangle: (¢* — /x)dx
We next take a limit of sums of these rectangular areas by applying the
operator fol:

1 1
J (ex—ﬁ)dx=j (e —x"%)dx
0 0

1
= [ex - %x3/2] =e— % ~ 1.05

0

In Chapter 4, we obtained integration formulas for the sine and cosine
functions. We were unable to consider the remaining four trigonometric
functions at that time because, as indicated in the next theorem, their inte-

at =

+ Y

6.4 Integration Using Natural Logarithm and Exponential Functions

grals are logarithmic functions. In the theorem, we assume that u = g(x),
with g differentiable whenever the function is defined.

Theorem 6.25
@ ftanu du = —In|cosu| + C

(i) fcotu du =1In|sinul + C
(i) fsecu du =In|secu +tanu| + C
(iv) fcscu du = In|cscu — cotu| + C
PROOF Itis sufficient to consider the case u = x, since the formulas

for u = g(x) then follow from the Chain Rule, Theorem (4.7).

To find [ tan x dx, we first use a trigonometric identity to express tan x
in terms of sin x and cos x as follows:

sin x 1 .
tanx dx = dx = sinx dx
cos x cos x

The form of the integrand on the right suggests that we make the substitu-
tion '

V = COS X, dv = —sinx dx.

1
ftanxdx:—f—dv.
v

If cos x # 0, then by Theorem (6.11)(ii),

This gives us

Jtanxdx:—ln[‘u| + C = —In|cosx|+ C.

A formula for [ cotx dx may be obtained in similar fashion by first
writing cotx = (cos x)/(sin x).
To find a formula for [ sec x dx, we begin as follows:

secx + tanx
secxdx = | secx—— dx
secx +tanx

sec? x +secxtanx
= dx
secx +tanx
1 2
= ————(secxtanx + sec” x) dx
secx +tanx
Using the substitution

v = secx +tanx, dv:(secxtanx+seczx)dx
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gives us

1
fsecxdx:J’—dv
v

=In|v|+C
=In|secx +tanx| + C.

A similar proof can be given for (iv). ==

If we use cosu = 1/secu, sinu = 1/cscu, and In(1/v) = —In v, then
formulas (i) and (ii) of Theorem (6.25) can be written as follows:

ftanudu =In|secu| + C

fcotudu = —In|cscu|+ C

EXAMPLE=7 Evaluatefxcotxzdx.
/
SOLUTION Toobtain the form [ cotu du, we make the substitution
u =x2, du = 2x dx.

We next introduce the factor 2 in the integrand as follows:
fx cotx’dx = %f(cotxz)Zx dx
Since u = x? and du = 2x dx,
fxcotxzdx = %fcotudu = 1In|sinu| + C

= %ln |sinx2| + C.

/2
EXAMPLE®=S8 Evaluatef

tan = d
an —dax.
X 2

SOLUTION We make the substitution

X a=1ta
u—2, u—2x

and note that u = 0if x =0, and u = /4 if x = n/2. Thus,

/2 x /2 x 1
J tan—dx=2f tan — - —dx
0 2 0 2 2

/4 /4
=2f tanudu=2[1nsecu]g .
0

Exercss .4 (N

In this case, we may drop the absolute value sign given in Theorem
(6.25)(iii), because secu is positive if u is between 0 and /4. Since
Insec(n/4) =Inv/2 = % In2 and Insec0 = In1 = 0, it follows that

/2 x 1
f tan—dx =2--1n2 =1n2 =~ 0.69.
0 2 2

EXAMPLE®=9 Evaluate f e* sec e® dx.

SOLUTION Welet
u=e, du = 2e** dx

and proceed as follows:

J e sece dx = % f (sec e*)2e* dx

=%fsecu du

= 1 In|secu + tanu| + C

= %lnlsecez" —I—tanele +C

EXAMPLE =10 Evaluate f(cscx —1)%dx.

SOLUTION
f(cscx— l)zdx =f(csczx —2cscx +1)dx

= Jcsczxdx —2fcscx dx—{—fdx

= —cotx —2In [cscx — cotx| + x + C.

We shall discuss additional methods for integrating trigonometric ex-
pressions in Chapter 7.

- EXERCISES 6.4
e - ==

Exer. 1-36: Evaluate the integral.

1 L 4x 2 4y
I d b d 3 d b
(a)f2x+7 * ()f_22x+7 * (a)Jx2—9 " ® ) 2%
1 | 3x 2 3
2 d b d 4
@ [ ()f_14_5x . (a)fx2+4dx (b)flx2+4dx




5 (a) f e dx

6 (2) Jx2e3"3 dx

7 (a) Jtaan dx

8 (a)Jcot %xdx
57/3

9 (a) fcsc %x dx (b)J; csc %x dx

/12
10 (a) J sec3x dx (b) f sec 3x dx
0

) 3
||f2x dx lsz dx
x“—4x+9 x* -5 .
: 2 10
241
3 f(x+2) dx 14 f&iﬂ)_dx
x x
1 1 )
5 fﬂdx I6f S dx
x x(lnx)
F
17 f(x+esx)dx 18 fﬁdx
|9J 3sinx I 20[ sec? x d
J1+2cosx 1+ tanx
x 12 X
21 J(e—t)—dx 22 f—e—zdx
e (41
e* —e™* e*
—_— —d
23 je"—ke‘x x 24 fex—{-l x
t3
%d 26 fe"(l+tanex)dx
x

1
27 f dx 28 f(x + csc 8x)dx
cos 2x

—3x
tan
29 J : dx

30 Jecosx sinx dx

e3x
2 2
tan” 2x
30 J'“?s * dx 32 f dx
sin x sec2x
Eszx —Z dx 34 j(tan 3x + sec3x) dx
cos“x —1

35 J(l + secx)2 dx 36 J’cscx(l —cscx)dx

Exer. 37— 38: Find the area of the region bounded by the
graphs of the given equations.
37 y =%, y=0, x=0, x=1In3

38 y=2tanx, y=0, x=0, x=mn/4
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Exer. 39 - 40: Find the volume of the solid generated if the
region bounded by the graphs of the equations is revolved

about the indicated axis.
39 y=e_x2, x =0, x=1, y =0; y-axis

40 y=secx, x=-n/3, x=mn/3, y=0; x-axis

Exer. 41— 44: Solve the differential equation subject to the
given conditions.

41 y =4e¥ 37, y=4ifx=0

42 y' =3¢ -8, y=-2ifx=0

43 y" =3¢ y=—landy =1ifx=0
44 y" = 6e¥; y=—3andy =2ifx =0

Exer. 45-46: A nonnegative function f defined on
a closed interval [a,b] is called a probability density
function if fab f()dx = 1. Determine ¢ so that the
resulting function is a probability density function.

45 f) = for 0<x<3

x2 +
46 f(x) =cxe ™ for 0<x <10

47 A culture of bacteria is growing at a rate of 302 per

hour, with ¢ in hours and 0 < ¢ < 20.

(a) How many new bacteria will be in the culture after
the first five hours?

(b) How many new bacteria are introduced in the sixth
through the fourteenth hours?

(<) For approximately what value of ¢ will the culture
contain 150 new bacteria?

48 If a savings bond is purchased for $500 with interest
compounded continuously at 7% per year, then after ¢
years the bond will be worth 500¢%97* dollars.

(a) Approximately when will the bond be worth $1000?

(b) Approximately when will the value of the bond be
growing at a rate of $50 per year?

49 The specific heat ¢ of a metal such as silver is constant at
temperatures T above 200 °K. If the temperature of the
metal increases from 7 to T,, the area under the curve
y =¢/T from T, to T, is called the change in entropy
AS, a measurement of the increased molecular disorder
of the system. Express AS in terms of 7} ‘and 7,.

50 The 1952 earthquake in Assam had a magnitude of
8.7 on the Richter scale—the largest ever recorded.
(The October 1989 San Francisco earthquake had a
magnitude of 7.1.) Seismologists have determined that if
the largest earthquake in a given year has magnitude R,
then the energy E (in joules) released by all earthquakes
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in that year can be estimated by using the formula

R
E=913x 1012j o1 25% gy
0

Find Eif R =8.

51 In a circuit containing a 12-volt battery, a resistor, and
a capacitor, the current /(z) at time ¢ is predicted to
be I(r) = 10e™* amperes. If Q(t) is the charge (in
coulombs) on the capacitor, then I = dQ/ds.

(2) If Q(0) = 0, find O(r).

(b) Find the charge on the capacitor after a long peﬁod
of time.

52 A country that presently has coal reserves of 50 million
tons used 6.5 million tons last year. On the basis of
population projections, the rate of consumption R (in
million tons/year) is -expected to increase according to
the formula R = 6.5e0'02t, where ¢ is the time in years.
If the country uses only its own resources, estimate how
many years the coal reserves will last.

53 A very small spherical particle (on the order of 5
microns in diameter) is projected into still air with an
initial velocity of v, m/sec, but its velocity decreases
because of drag forces. Its velocity after ¢+ seconds is
given by v(#) = uoe_’/ k for some positive constant k.

(a) Express the distance that the particle travels as a
function of z.
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(b) The stopping distance is the distance traveled by the
particle before it comes to rest. Express the stopping
distance in terms of vy and k.

54 If the temperature remains constant, the pressure p
and the volume v of an expanding gas are related by
the equation pv = k for some constant k. Show that
the work done if the gas expands from vy to v is
kIn(v, / Vg). (Hint: See Example 5 of Section 5.6.)

IE, Exer. 55-58: Use a numerical integration method or
routine to approximate the definite integral to four
decimal places.

1 ) 8 ,
55 f e " dx Sbf e dx
0 —4
6.5 & 3
57f ~dx 58 f Vx + 1€ dx
0.5 X 0

59 Approximate the area bounded by the graphs of y = &*
andy =4 — %2,
E 60 Approximate the volume of the solid generated by
revolving the graph of y = ¢*, —10 < x < 1, about the
X-axis.
E 61 Approximate the arc length of the part of the curve
y = ¢* that lies inside the circle x* 4+ y? = 25.

6.5 GENERAL EXPONENTIAL AND
LOGARITHMIC FUNCTIONS

Throughout this section, a will denote a positive real number. Let us begin
by defining a* for every real number x. If the exponent is a rational number
r, then applying Theorems (6.19)(ii) and (6.12)(ii1) yields

a’ = elna — erlna'

This formula is the motivation for the following definition of a*.

Definition of a* 6.26

a* = exlna

for every a > 0 and every real number x.
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I — o7 In2 ~ e2.1775860903 ~ 8.82497782708
(%)«/5 — oV3I(1/2) o, ,—120056613385 ~, () 301023743931

If f(x) =a", then f is the exponential function with base a. Since
¢* is positive for every x, so is a*. To approximate values of a*, we may
use a calculator or refer to standard tables of logarithmic and exponential
functions.

It is now possible to prove that the law of logarithms stated in Theo-
rem (6.12)(iii) is also true for irrational exponents. Thus, if u is any real
number, then, by Definition (6.26) and Theorem (6.19)(i),

ulna

Ing"* =1lne =ulna.

The next theorem states that properties of rational exponents from ele-
mentary algebra are also true for real exponents.

L E ts 6.27
aws of Exponents Leta > O and b > 0. If # and v are any real numbers, then

a‘a’ =a"** (@)’ =d"  (ab)* =a"b"
u 174
Sy (fl_)“ =
a’ b b*

PROOF Toshowthata“a’ = a**?, we use Definition (6.26) and The-
orem (6.20)(i) as follows:

ata’ = eulnaeulna
- eulna+vlna
— e(u+v)lna

— au+v

To prove that (¢*)” = a*¥, we first use Definition (6.26) with a* in
place of a and v = x to write

(au)v — evlna“‘

Using the fact that Ina” = u Ina and then applying Definition (6.26), we
obtain

(au)v — evulna = g% — g*v.

The proofs of the remaining laws are similar. ==

As usual, in part (ii) of the next theorem, u = g(x), where g is differ-
entiable.

6.5 General Exponential and Logarithmic Functions

Theorem 6.28
0] E(ax) =a"lna

m i My __ (U _C_l_lf
(i) a’x(a )= {(a lna)dx

PROOF Applying Definition (6.26) and Theorem (6.22), we obtain
d Xy __ d xlna
dx @)= dx @

d
:e“n”d—(xlna)
X

= *"%(Ina).

x1lna

Since e = a*, this gives us formula (i):

d
d—(ax) =a“Ilna
X

Formula (ii) follows from the chain rule. .

Note that if a = ¢, then Theorem (6.28)(i) reduces to Theorem (6.21),
since Ine = 1.

ILLUSTRATION
d
—((3*)=3"1In3
) n

d
—(10") = 10" 1In 10
dx

3v*1n3

1
2ﬁ) 2/x
d . . d .
—(108™%) = (10°"* In 10) — (sin x) = (10" In 10) cos x
dx dx

d d
VEN _ ax _ (avx
o BYH =3Y"In 3)d—x (v/x) = (3¥*1n3) (

If a>1, then Ina > 0 and, therefore, (d/dx)(a*) =a*Ina > 0.
Hence a* is increasing on the interval (—oo, oo) if @ > 1.

If0 <a < 1,thenlna < 0 and (d/dx)(a*) = a* Ina < 0. Thus, a~ is
decreasing for every x if 0 < a < 1.
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Figure 6.20 Figure 6.21 SOLUTION
(a) Using (i) of Theorem (6.29) yields

1
Fde = — )3 .
f (ln3>3 +C

| (b) To use (ii) of Theorem (6.29), we make the substitution

: u:xz, du = 2x dx

and proceed as follows:

f x30) gy = | f 39 (2x) dx = 1 f 34 dy

1 1 .
— )3+ C=)3"
<ln3) +C (21n3> +c

EXAMPLE=3 An important problem in oceanography is deter-
mining the light intensity at different ocean depths. The Beer—Lambert
law states that at a depth x (in meters), the light intensity 7(x) (in
calories/cm?/sec) is given by I(x) = I,a*, where I, and a are positive
constants.

2
1
)

The graphsof y =2 and y = (%)x = 27 are sketched in Figures 6.20
and 6.21. The graph of y = a” has the general shape illustrated in Figure
6.200r6.21if a > 1 or 0 < a < 1, respectively.

If u = g(x), it is important to distinguish between expressions of the
form a* and u°®. To differentiate a*, we use Theorem (6.28); for u”, the
power rule must be employed, as illustrated in the next example.

(a) What is the light intensity at the surface?

(b) Find the rate of change of the light intensity with respect to depth at a
depth x.

(o) If a = 0.4 and I, = 10, find the average light intensity between the
surface and a depth of x meters.

(d) Show that I (x) = Ioek" for some constant k.

EXAMPLE®I Findy ify = (x> + 1)!0 4+ 105+, {
SOLUTION Using the power rule for functions and Theorem (6.28),
we obtain

y = 1062 + D°2x) + (10 1In 10) (2x)

= 20x[(x2 + 1)° + 10" In 10].
SOLUTION

(a) At the surface, x = 0'and
10) = [ya°® = I,

The integration formula in (i) of the next theorem may be verified by
showing that the integrand is the derivative of the expression on the right
side of the equation. Formula (ii) follows from Theorem (6.28)(ii), where Hence the light intensity at the surface is .

u=gx). (b) The rate of change of I(x) with respect to x is (x). Thus,

I'(x) = Iy(a" Ina) = (Ina)(Iya®) = (Ina)I(x).
Theorem 6.29

Hence the rate of change I’(x) at depth x is directly proportional to 7(x),
0] f A= (i——) a+C and the constant of proportionality is Ina.
(c) If 1(x) = 10(0.4)*, then, by Definition (4.29), the average value of 1
) fau e (_1___) &+ C on the interval [0, 5] is
B Ina 1 p 5
X — X
I, = "0 5 10(0.4)* dx = ZL 0.4)" dx
’ 1 5 2
EXAMPLE®=2 Evaluate: =2 —— 4" | = ——[(0.4)° — (0.4)°
[1n(0.4)( ) ]0 In(0.4) 1057 = 047
@ J 3dv @ J x3%7 dx _ ZLIZ o6
In(0.4)
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(d) Using Definition (6.26) yields
I(x) — Oax — Ioexlna — Ioekx’

where k = Ina.

If a # 1 and f(x) = a*, then f is a one-to-one function. Its inverse
function is denoted by log, and is called the logarithmic function with
base a. Another way of stating this relationship is as follows.

Definition of log, x 6.30

y =log,x ifandonlyif x=a’

The expression log, x is called the logarithm of x with base a. In this
terminology, natural logarithms are logarithms with base e—that is,

Inx = log, x.

Laws of logarithms similar to Theorem (6.12) are true for logarithm§ with

base a.

To obtain the relationship between log, and In, consider y = log, x, or,
equivalently, x = a”. Taking the natural logarithm of both sides of the last
equation gives us Inx = ylIna, or y = (Inx)/(Ina) and thus proves that

Inx
logax = —n—

Differentiating both sides of the last equation leads to (i) of the next theo-
rem. Using the chain rule and generalizing to absolute values as in Theo-

rem (6.11) gives us (ii), where u = g(x).

Theorem 6.31
b Log o 4 (x)_ L1
@ dx Ea “dx \Ina/ Ina =x
. d d (Inlu] 1 1ldu
0 o - 2 () 1 1

ILLUSTRATION

d 1 ) d (Inx 1 1 1

—(lo e — _ = —. — =

08X =\ ) T2 x T (n2)x

d d {ln]x*-9 1 1 2

— (log, |x2—9|)=— nx | 2x = 4)62__
dx dx In2 (In2)(x*—-9)

_ﬁ.xz—Q

Logarithms with base 10 are useful for certain applications (see Exer-
cises 50-54). We refer to such logarithms as common logarithms and use
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Figure 6.22
—-6<x<15-08<y=<038

/

. -

Al

-

PN

.-""-‘.ﬂ

T,

méll

the symbol log x as an abbreviation for log,, x. This notation is used in
the next example where we perform, in a new context, the familiar task of
determining the tangent line to a graph.

EXAMPLE®=4 If f(x) = logy/(2x +5)%,

(a) find f'(x)
(b) graph both the function f and the line tangent to its graph at x = —0.6.

SOLUTION

(a) Although most graphing utilities can work with both common and nat-
ural logarithms, we express the function in terms of natural logarithms

to make differentiating easier. We first write f(x) = log(2x + 5)2/ 3. The
law logu” = rlogu is true only if u > 0; however, since (2x + 5)%° =
|2x + 5 ]2/ 3 we may proceed as follows:

f(x) =log2x +5)%3

= log |2x + 5|3
= Zlog |2x + 5|
_ 2In|2x +5|
3 Ilo
Differentiating yields
2 1 1
f=% = @ = .
3 nl0 2x+35 32x +5)In10

(b) We begin by using a graphing utility to plot the function f(x) =
log(2x + 5%3 To graph the tangent line, we must first find an equation
for it using the point-slope formula. Since

f(=0.6) = Zlog3.8 ~ 0.386522,

the point of tangency is (—0.6, 0.386522). The slope of the tangent line is

the value of the derivative f’ at x = —0.6. From part (a), we have
"(-0.6) = ———— ~0. .
A ) 11.41n10 0.152384
Thus, an equation for the line tangent to the graph at x = —0.6 is approxi-

mately y = 0.386522 4 0.152384(x + 0.6). We plot the tangent line with
the graph of the function on the same coordinate axes, obtaining the results
shown in Figure 6.22.

Now that we have defined irrational exponents, we may consider the
general power function f given by f(x) = x¢ for any real number ¢. If ¢
is irrational, then, by definition, the domain of f is the set of positive real
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numbers. Using Definition (6.26) and Theorems (6.22) and (6.11)(i), we
have

d c d clnx clnx d
—_ = — = -_ 1
I x%) Tr (e )=e I (clnx)

c c —
— eclnx (_) = x° (_) = cx€ 1'
X X

This result proves that the power rule is true for irrational as well as rational
exponents. The power rule for functions may also be extended to irrational
exponents.

4 V) = J2x V2
dx
d
i(l +eZX)JT — 7T(1 +eZX)7t—1_(1 +62)C)
dx dx

— JT(I 4 er)n——l(zeZX) — 27_[62)5(1 + er)n—l

EXAMPLE®S Ify=x"andx >0,

(a) find dy/dx
(b) graph both the function and its derivative

SOLUTION
(a) Since the exponent in x* is a variable, the power rule may not be used.
Similarly, Theorem (6.28) is not applicable, since the base a is not a fixed
real number. However, by Definition (6.26), x* = ¢* nx for every x > 0,
and hence
44

xInx
dx =)

d
= e“"xd—(x Inx)
o6

= gFinx [x (1> + (l)lnx] =x*(1 +1Inx).
X

Another way of solving this problem is to use the method of logarith-
mic differentiation introduced in the preceding section. In this case, we
take the natural logarithm of both sides of the equation y = x* and then
differentiate implicitly as follows:

Iny=Inx* =xInx

d d
é(lny) = )

1
—d—y(y) =1+Inx
ydx

Z—y(y) =y(l+Ilnx) =x"(1 +1nx)
X
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Figure 6.23

fa)=x"
f(x)y=x*(1+1Inx)
0<x<25-15<y<6

Theorem 6.32

(b) In part (a), we saw that the expression x”* is unusual because both the
base and the exponent are variable. The expression for the derivative f' is
even more complicated, since it involves both x* and (1 + Inx). To gain a
better understanding of the function f(x) = x*, we use a graphing utility
to plot its graph and the graph of its derivative, as shown in Figure 6.23.
Several features of the function are evident from these graphs. First, when
x = 0, the expression x* becomes the undefined algebraic expression 0°,
but from the graph it appears that the function f(x) = x* approaches 1
as x approaches 0 from the right. We shall prove this result in Section
6.9. Second, if we examine the graph of the derivative f/, we see that
it is negative for 0 < x < @ and positive for x > a. We can determine
the value of a by examining the sign of f’(x). Since x* > 0, f'(x) <0
if 1 +Inx < O or, equivalently, x < e L. Hence, a = ¢! &~ 0.37. Thus,
the function f(x) = x* decreases to an absolute minimum at x = a and
then increases for x > a. It also appears from the graph of the derivative
that it is unbounded in the negative direction as x — 07, so the function
f(x) = x* is not differentiable at x = 0.

We conclude this section by expressing the number e as a limit.

1 n
S 1/h T AN
(0] gm})(l +m P =e (i) nlmgo (1 + n) e

PROOF Applying the definition of derivative (2.5) to f(x) = Inx and
using laws of logarithms yields '

o In(x+h)—Inx 1. x+h
7

=1 = -
fx) Lim = }{Er%)hln -

1 h "
= lim—ln<1+—) = limln<1+—) .
h—0h X h—0 X

Since f/(x) = 1/x, we have, forx =1,

1= lim In(1 + h)"/*,
h—0
We next observe, from Theorem (6.19), that
(1 + B)V/" = en+m*,

Since the natural exponential function is continuous at 1, it follows from
Theorem (1.25) that

lim (1 + #)Y# = lim[e™+M""
h—0 h—0

. 1/h
— e[hmh_)oln(l-i—h) ] — el = e.

This establishes part (i) of the theorem. The limit in part (ii) may be ob-
tained by introducing the change of variable n = 1/A with 2 > 0. ==
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The formulas in Theorem (6.32) are sometimes used to define the num-

ber e. You may find it instructive to calculate (1 + £)

Y for numerically

small values of #. Some approximate values are given in the following

table.

| h

| —0.01
—0.001
—0.0001
—0.00001

—0.000001
—0.0000001

a+m" | h (1 +m)h
2.73199902643 0.01 2.70481382942
2.71964221644 0.001 2.71692393224
2.71841775501 0.0001 2.771814592683

2.71829541999 0.00001 2.71826823717
2.71828318760 0.000001  2.71828046932
2.71828196437 0.0000001 2.71828169255

To five decimal places, e ~ 2.71828.

- EXERCISES 6.5

Exer. 1-24: Find f'(x) if f(x) is the given expression.

17 257

3 gvH 4 9v%

5 log(x* +3x2 + 1) 6 log, |6x — 7|
7 53x~4 8 32—)62

9 (2 + D1o'/x
11 log(3x? +2)°

10 (10* + 107510

12 logvx% +1

2
I3 logs git:’ 14 log |53
I5 loglnx 16 Inlogx
17 x¢+¢* 18 x"n*
19 (x + ¥ 20 x4+
21 2sin2x 22 4sec?:x

23 (a) ¢° (b) x°
24 ()"  (b) x*

© x5 (@ W5 (&) x*
(c) x” (d) 7* (e) x**

Exer. 25 -28: Plot the graph of the function and the line
tangent to the graph at the point (a, f(a)).

25 f(x) =5""%
26 f(x) =32,

a=1

a=-—15

27 f(x) =log(3x*+2)% a=5
28 f(x)=logvVx’+1; a=10
Exer. 29 —44: Evaluate the integral.

29 (a) J 7" dx (b) f_lz 7% dx
30 (a) f 3 dx (b) j_ol 3% dx
31 (a) f 57X dx (b) fl 25*2)‘ dx
32 (a)f23"‘1dx (b) fl 231y
33 flOS"dx 34 fs—SX‘dgc

2% 4 1)2
35 jx(3—x2)dx 36 f(z#dx

2* 3%
37 | ———dx 38 j—— dx

jzx +1 V3 +4
1 10v*

j dx 40 dx
xlogx Jx
Stanx

41 f3°°sx sinx dx 42 f 5— dx
cos” x

Exercises 6.5

43 (a) f ™ dx (b) f xdx
© J X dx @ J 7 dx

44 (2) f  dx ®) f X dx
© f x5 dx @ f W5)* d

45 Find the area of the region bounded by the graphs of
y=2"x+y=1andx = 1.

46 The region under the graph of y =37 from x = 1 to
x = 2 is revolved about the x-axis. Find the volume of
the resulting solid.

47 An economist predicts that the buying power B(¢) of a
dollar ¢ years from now will decrease according to the
formula B(¢) = (0.95)".

(a) At approximately what rate will the buying power
be decreasing two years from now?

(b) Estimate the average buying power of the dollar
over the next two years.

48 When a person takes a 100-mg tablet of an asthma
drug orally, the rate R at which the drug enters the
bloodstream is predicted to be R = 5(0.95)" mg/min.
If the bloodstream does not contain any trace of the
drug when the tablet is taken, determine the number of
minutes needed for 50 mg to enter the bloodstream.

49 One thousand trout, each one year old, are introduced
into a large pond. The number still alive after ¢ years is
predicted to be N(r) = 1000(0.9)".

(a) Approximate the death rate dN/dr at times ¢ = 1
and ¢t = 5. At what rate is the population decreasing
when N = 5007

(b) The weight W(z) (in pounds) of an individual trout
is expected to increase according to the formula
W(t) = 0.2 4 1.5¢. After approximately how many
years is the total number of pounds of trout in the
pond a maximum?

50 The vapor pressure P (in psi), a measure of the volatility
of a liquid, is related to its temperature T (in °F) by
the Antoine equation: log P =a+ [b/(c + T)], for
constants a, b, and c. Vapor pressure increases rapidly
with an increase in temperature. Find conditions on a,
b, and c that guarantee that P is an increasing function
of T.

51 Chemists use a number denoted by pH to describe
quantitatively the acidity or basicity of solutions.
By definition, pH = —log[H'], where [H*] is the
hydrogen ion concentration in moles per liter. For

567

a certain brand of vinegar, it is estimated (with a
maximum percentage error of +0.5%) that [HY] ~
6.3 x 1073, Calculate the pH and use differentials
to estimate the maximum percentage error in the
calculation.

52 The magnitude R (on the Richter scale) of an earthquake
of intensity / may be found by means of the formula
R =log(1/ Iy), where I is a certain minimum intensity.
Suppose the intensity of an earthquake is estimated to
be 100 times 1. If the maximum percentage error in the
estimate is +1%, use differentials to approximate the
maximum percentage error in the calculated value of R.

53 Let R(x) be the reaction of a subject to a stimulus of
strength x. For example, if the stimulus x is saltiness
(in grams of salt per liter), R(x) may be the subject’s
estimate of how salty the solution tasted on a scale from
0 to 10. A function that has been proposed to relate
R to x is given by the Weber—Fechner formula: R =
alog(x/x,), where a is a positive constant.

(a) Show that R = 0 for the threshold stimulus x = x,.

(b) The derivative S = dR/dx is the sensitivity at stimu-
lus level x and measures the ability to detect small
changes in stimulus level. Show that S is inversely
proportional to x, and compare S(x) to S(2x).

54 The loudness of sound, as experienced by the human ear,
is based on intensity level. A formula used for finding
the intensity level « that corresponds to a sound intensity
Iis a = 10log({ /1y) decibels, where I, is a special
value of I agreed to be the weakest sound that can be
detected by the ear under certain conditions. Find the
rate of change of o with respect to [ if

(a) I is 10 times as great as I,

(b) I is 1000 times as great as I,

(c) 1 is 10,000 times as great as I, (This is the intensity
level of the average voice.)

55 If a principal of P dollars is invested in a savings
account for t years and the yearly interest rate r
(expressed as a decimal) is compounded n times per
year, then the amount A in the account after ¢ years is
given by the compound. interest formula:

A= P[1+ (r/m)]".
(a) Let A = r/n and show that
InA=1nP+rtin(l +h)"/".

(b)Let n — oo and use the expression in part (a)
to establish the formula A = Pe¢’* for interest
compounded continuously.

56 Establish Theorem (6.32)(ii) by using the limit in part
(i) and the change of variable n = 1/ h.




