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UCTION CHAPTER - 2

S WE WATCH A FORMATION of swans or geese fly across the

late afternoon sky, our focus may shift back and forth between

the individual and the group. When we consider the individual
bird, we may wonder about its motion: How fast does it fly? How quickly
can it adjust its speed? When our perspective moves to the formation,
we have questions about the smooth curve that we imagine connecting
the birds: How does the curve change shape? Does the same curve occur
in other natural phenomena? What geometric properties does this curve
have? In this chapter, we begin to study the derivative, a principal tool of
calculus designed to help answer some of these questions.

We begin the chapter by considering two applied problems in Section
2.1. The first is to find the slope of the tangent line at a point on the
graph of a function, and the second is to define the velocity of an object
moving along a line. Remarkably, these seemingly diverse applications
lead to the same concept: the derivative,

Our discussion provides insight into the power and generality of
mathematics. Specifically, we eliminate the geometric and physical as-
pects of the two problems and define the derivative in Section 2.2 as the
limit of an expression involving a function f. This allows us to apply the
derivative concept to any quantity that can be represented by a function.
Since quantities of this type occur in nearly every field of knowledge, r )
applications of the derivative are numerous and varied, but each con- i
cerns a rate of change. Thus, returning to the two problems that started
it all, we see that the slope of the tangent line may be used to describe
the rate at which a graph rises (or falls) and velocity is the rate at which
distance changes with respect to time.

Our main objective in Section 2.2 is to define derivatives and develop
rules to find them without using limits. Section 2.3 presents the basic
techniques for differentiation. We examine ways to determine deriva-
tives for polynomials and trigonometric functions (Section 2.4) and for
more complicated functions that can be built up from them by addition,
subtraction, multiplication, division, and composition. We consider the
chain rule, which is fundamental for the differentiation of composite
functions, in Section 2.5. We then turn to derivatives where functions
are described either explicitly or implicitly in Section 2.6, which presents
implicit differentiation techniques.

In the final sections of the chapter, we consider two important appli-
cations of the derivative that involve estimation and approximation: lin-
ear approximations and differentials in Section 2.8 and Newton’s method
in Section 2.9. We shall discuss many more applications in subsequent
chapters.

The flight of a flock of birds suggests
questions about motion and curves
that the derivative helps answer,
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CHAPTER 2 The Derivative

TANGENT LINES AND RATES OF CHANGE

In this section, we examine two general problems whose solutions use
limits of the same form. First, we consider how to define the tangent line
to the graph of a function. Then, we turn to the problem of measuring rates
of change, with particular emphasis on velocity as the rate of change of
position of a moving object.

TANGENT LINES

Tangent lines to graphs are useful in many applications of calculus. In
geometry, the tangent line / at a point P on a circle may be interpreted as
the line that intersects the circle only at P, as illustrated in Figure 2.1. We
cannot extend this interpretation to the graph of a function f, since a line
may “touch” the graph of f at some isolated point P and then intersect
it again at another point, as illustrated in Figure 2.2. Our plan is to define
the slope of the tangent line at P, for if the slope is known, we can find
an equation for / by using the point—slope form of the equation for lines
(p- 14). :

To define the slope of the tangent line / at P(a, f(a)) on the graph of
f, we first choose another point Q(x, f(x)) (see Figure 2.3a) and consider
the line through P and Q. This line is called a secant line for the graph.

We shall use the following notation:

lPQ :
mpqy: theslopeofl,,
m,: the slope of the tangent line [ at P(a, f(a))

the secant line through P and Q

If Q is close to P, it appears that mp, is an approximation to m,,.
Moreover, we would expect this approximation to improve if we take Q
closer to P. With this in mind, we let Q approach P— that is, we (intu-
itively) let Q get closer to P— but Q # P. If Q approaches P from the
right, we have the situation illustrated in Figure 2.3(b), where dashed lines
indicate possible positions for /, ,. In Figure 2.3(c), Q approaches P from

(b)
y

") §
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Tangent Lines and Rates of Change

the left. We could also let Q approach P in other ways, such as by taking
points on the graph that are alternately to the left and to the right of P. If
m p has a limiting value — that is, if m 5 ;, gets closer to some number as
Q approaches P— then that number is the slope m,, of the tangent line /.

Let us rephrase this discussion in terms of the function f. Referring to
Figure 2.3 and using the coordinates of P(a, f(a)) and Q(x, f(x)), we
see that the slope of the secant line [, 0 is

_ S0 - f@

PQ X —a

Note that in order to have a secant line, P and Q must be distinct points,
so we must have x # a. If f is continuous at a, we can make Q(x, f(x))
approach P(a, f(a)) by letting x approach a. This leads to the following
definition for the slope m, of [ at P(a, f(a)):

= tim 0@
x->a X —a
provided the limit exists.

It is often desirable to use an alternative form for m «» Which can be
obtained by changing from the variable x to a variable 4 as follows.

Let h=x—a, orequivalently, x =a+ A.

If h is small, then x is close to @ and the secant line through P and Q
will be close to the tangent line at P. Referring to Figure 2.4 and using
the coordinates P(a, f(a)).and Q(a + h, f(a + h)), we see that the slope
Mpo of the secant line is

+h)—
L )= @

Since x — a is equivalent to &z — 0, our definition of the slope m q Of
the tangent line / may be stated as follows.

Figure 2.4
LY

fla + h)

fla)

o |
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The slope m, of the tangent line to the graph of a function f at
Pa, f(a)) is

et e f(a+h)*f(a)‘
L h

provided the limit exists.

If the limit in Definition (2.1) does not exist, then the slope of the
tangent line at P(a, f(a)) is undefined.

EXAMPLE®= | Letf(x)= x2, and let a be any real number.

() Find the slope of the tangent line to the graph of f at P(a, a%).
(b) Find an equation for the tangent line at R(—2, 4).

SOLUTION
(a) The graph of y = x? and a typical point P(a, a®) are shown in Figure
2.5. Applying Definition (2.1), we see that the slope of the tangent line at
Pis :
) —
_ = Iim fla+h)— f(a)
h—0 h
(@ +h)? —a*
h—0 h
a® 4+ 2ah + h? — a?
h—0 h
. 2ah+h?
= lim —————
h—>0 h
= lim (2a + h) = 2a.
h—0

(b) The slope of the tangent line at the point R(—2, 4) is the special case
of the formula m o = 2a with a = —2; that is,

m_,=2(-2) = —4.

Using the point-slope form, we can express an equation for the tangent
line as

y—4=—-4x+2), or y=—4x—4

RATES OF CHANGE

Limits of the form given in Definition (2.1) occur in many applied prob-
lems where we wish to measure the rate of change of one variable with
respect to another. Let us begin with the familiar problem of determining
the velocity of a moving object. We consider rectilinear motion, in which

2.1 Tangent Lines and Rates of Change

an object travels along a line. Here the average velocity during a time
interval is the ratio of the net distance traveled to the time elapsed.

Deﬁnitioﬁ 2.2 . ; " ,
The average velocity v, of an object that travels a net distance d in

time 7 is
S d
av t ‘
Figure 2.6 To illustrate, if an automobile leaves city A at 1:00 PM. and travels
1:00 pM. 4:00pm. salong astraight highway, arriving at city B, 150 mi from A, at 4:00 P.M. (see

=R

! |y | Figure 2.6), then using Definition (2.2) with d = 150 and ¢ = 3 (hours)
AN { ﬁ " yields the average velocity during the time interval [1, 4]:
e o v,y = 132 = 50 mi/hr
e ———150 mi ———>

This result is the velocity that, if maintained for 3 hr, would enable the
automobile to travel the 150 mi from A to B.

The average velocity gives no information whatsoever about the ve-
locity at any instant. At 2:30 p.M., for example, the automobile may be
standing still or its speedometer may register 40 or 60 mi/hr. We can esti-
mate the velocity at 2:30 PM. if we know the position near this time. For
example, suppose that at 2:30 P.M. the automobile is 80 mi from A and 5
min later, at 2:35 P.M., it is 84 mi from A, as Figure 2.7 illustrates. The net
distance traveled in this 5 min, or % hr, is 4 mi, and the average velocity

Figure 2.7 ) S - :
during this time interval is

1:00 pM. 2:35 M.

! Note that this result is not necessarily an accurate indication of the velocity
80 mi b at 2:30 P.M., since, for example, the automobile may have been traveling
84 mi ‘ very slowly at 2:30 P.M. and then increased speed considerably to arrive
at the point 84 mi from A at 2:35 pM. Evidently, we obtain a better ap-
proximation by using the average velocity during a smaller time interval,
say from 2:30 P.M. to 2:31 P.M. The best procedure seems to require taking
smaller and smaller time intervals near 2:30 P.M. and studying the aver-
age velocity in each time interval. The approach leads us into a limiting
process similar to that discussed for tangent lines.
To make our discussion more precise, let us represent the position of
an object moving rectilinearly by a point P on a coordinate line /. We

Figure 2.8 sometimes refer to the motion of the point P on [, or the motion of an
0 object whose position is specified by P. We shall assume that we know the
U position of P at every instant in a given interval of time. If s(z) denotes

the coordinate of P at time z, then the function s is called the position
function for P. If we keep track of time by means of a clock, then, as

? {D — illustrated in Figure 2.8, for each 7 the point P is s(¢) units from the origin.
0 s(t) ! To define the velocity of P at time a, we first determine the average
Time Position of P velocity in a (small) time interval near a. Thus, we consider times a and
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Figure 2.9 a + h, where h is a (small) nonzero real number. The corresponding posi- instant it is dropped, t = 0 and
tions of P are s(a) and s(a + h), as illustrated in Figure 2.9. The amount _ _
of change in the position of P is s(a + ) — s(a). This number may be s(0) = —-16(0) + 512 = 512 ft.

positive, negative, or zero. Note that s(a + &) — s(a) is not necessarily To find the velocity of the sandbag at ¢t = a, we use Definition (2.3),
the distance traveled by P, between times a and a + k since, for example, obtaining
P may have moved beyond the point corresponding to s(a + &) and then

. S s(a+h) —s(a)
s(@) sta+h 1 returned to that point at time a. T

v = lim
-a h—

Figure 2.10

‘the limit, as h approaches 0, of v

Definition 2.3

ay» s in the following definition.

Suppose a point P moves on a coordinate line / such that its coordi-
nate at time ¢ is s(¢). The velocity v, of P at time g is

— lim s(a+h) —s(a)
Ya = ;0% h :
provided the limit exists.

The limit in Definition (2.3) is also called the instantaneous velocity of P
at time a.

may, of course, be used.

We shall return to the velocity concept in Chapter 3, where we will
show that if the velocity is positive in a given time interval, then the point
is moving in the positive direction on /. If the velocity is negative, the
point is moving in the negative direction. Although these facts have not
been proved, we shall use them in the following example.

EXAMPLE®=2 A sandbag is dropped from a hot-air balloon that is
hovering at a height of 512 ft above the ground. If air resistance is dis-
regarded, then the distance s(¢) from the ground to the sandbag after ¢
seconds is given by

s(t) = —16t* + 512.
Find the velocity of the sandbag at
(@t =asec (b)t=2sec (c) the instant it strikes the ground

SOLUTION

(a) As shown in Figure 2.10, we consider the sandbag to be moving along
a vertical coordinate line ! with origin at ground level. Note that at the

0 "~ h
| Ch?;%: in pgsl:;r;ieolfnp i +BhyisDeﬁmt10n (2.2), the average velocity of P between times a and L [—16(a + 1) + 512] — (—16% + 512)
' change in distance ~ s(a + k) — s(a) h=0 ) f )
av = change in time = A . — lim —16(a” + 2ah + h*) + 512 + 16a” — 512
As in our previous discussion, we assume that the closer 4 is to 0, the h=0 2 h
closer v, is to the velocity of P at time a. Thus, we define the velocity as = lim th_l?h_
h—0

= ’}in})(—SZa — 16h) = —32a ft/sec.

The negative sign indicates that the motion of the sandbag is in the nega-
tive direction (downward) on /.

(b) To find the velocity at ¢t = 2, we substitute 2 for a in the formula
v, = —32a, obtaining

vy, = —32(2) = —64 ft/sec.

(<) The sandbag strikes the ground when the distance above the ground is
zero — that is, when

s(t) = —162 +512=0, or 1*=32=132,

,';;';
15 'If s'(t) is measured in centimeters and 7 in secpgds, t‘hen the u1.11t of ve- This result gives us = /33 = 4:/2 ~ 5.7 sec. If we use the formula
o locity is centimeters per second (cm/sec). If s(¢) is in miles and ¢ in hours, — 304 1 art ith a = 42 btain the following i

A then the unit of velocity is miles per hour. Other units of measurement v, = —32a from part (a) with a = » We obtain the tollowing impact

velocity:
—32(4+/2) = —128+/2 ~ —181 fi/sec

There are many other applications that require limits similar to those
in (2.1) and (2.3). In some, the independent variable is time ¢, as in the
definition of velocity. For example, over a period of time, a chemist may
be interested in the rate at which a certain substance dissolves in water;
an electrical engineer may wish to know the rate of change of current
in part of an electrical circuit; a biologist may be concerned with the
rate at which the bacteria in a culture increase or decrease. In the social
sciences, an economist may wish to determine the rate at which the gross
national product is growing; a demographer or geographer may wish to
analyze the rate of urbanization of a population; a sociologist may study
the rate at which measures of alienation fluctuate; a political scientist may
be concerned with the rate at which the public’s approval of' a national
leader changes.

We can also consider rates of change with respect to quantities other
than time. To illustrate, Boyle’s law for a confined gas states that if the
temperature remains constant, then the volume v and pressure p are related




Definition 2.4

CHAPTER 2 The Derivative

by the formula v = ¢/ p for some constant c. If the pressure is changing, a
typical problem is to find the rate at which the volume is changing per unit
change in pressure. This rate is known as the instantaneous rate of change
of v with respect to p. To develop general methods that can be applied to
different problems of this type, let us use x and y for variables and suppose
that y = f(x) for some function f. (In the preceding illustration, y = v,
x = p, and f(x) = c/x.) We define rates of change of a variable y with
respect to a variable x as follows.

Let y = f(x), where f is defined on an open interval containing 4.

(i) The average rate of change of y = f(x) with respect to x
on the interval {a, a + k] is

_fa+h - f@

y av h
(i) The instantaneous rate of change of y with respect to x at
ais
A) —
i L@ @
h—>0 h
provided the limit exists.

We shall use the phrase rate of change interchangeably with instantaneous
rate of change.

If, in Definition (2.4), ‘we consider the special case x =t (time) and
y = s(t) (position on a coordinate line), we obtain the following interpre-
tations for rectilinear motion:

average velocity (v, ): the average rate of change of s with respect to ¢
in some interval of time
velocity v : the instantaneous rate of change of s with respect
to ¢ at time a.

To interpret Definition (2.4)(ii) geometrically, imagine a point P trav-
eling from left to right along the graph of y = f(x) in Figure 2.11. The

Figure 2.11 Ay

Slope m,, |

/

\_Slope m,.

fx)

Slope m,,

Q _—
S f—— ——— e — ——
o —_—_—_————

X
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mJ

instantaneous rate of change of y with respect to x gives us information
about the rate at which the graph rises or falls per unit change in x. In
Figure 2.11, m, (the slope of the tangent line at A) is less than m, (the
slope of the tangent line at B), and the rate y, at which y changes with
respect to x at a is less than the rate y, at which y changes with respect
to x at b. Also note that since m, < 0, the slope of the tangent line. at C is
negative, and y decreases as x increases.

The next two examples are physical and social science applications of
Definition (2.4).

EXAMPLE=3 The voltage in a certain electrical circuit is 100 volts.
If the current (in amperes) is I and the resistance (in ohms) is R, then by
Ohm’s law, I = 100/ R. If R is increasing, find the instantaneous rate of
change of I with respect to R at

(a) any resistance R (b) a resistance of 20 ohms

SOLUTION

(a) Using Definition (2.4)(ii)) with y =1, x =R, and f(R) = 100/R
yields the instantaneous rate of change of I with respect to R at a resis-
tance of R ohms:

L SRED = f(R)
R _h—->0 h

100 100
Rih R

. 100R — 100(R+ h)
= lim
h—0 h(R+ MR

—100h
T iSO R(R+ R
= lim —7_100
=0 (R+ h)R

The negative sign indicates that the current is decreasing as the resistance
is increasing.

(b) Using the formula 7, = —100/ R? from part (a), we find the instanta-
neous rate of change of I with respect to R at R = 20 to be

Lo _lo_ 1
205 7 592 4

Thus, when R = 20, the current is decreasing at a rate of % ampere per
ohm.
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f;: gzM P LE=4 The ex;‘)ress‘ion P = \/at + b, witha = 920 and b = To find slopes of tangent lines and instantaneous rates of change, we
o Unitgiivgia?e%%(:ii apptrl(l)XImgtlgnlgfgr() thei 91)90(]);)u1ation P (in millions) of need to determine limits of the form given in Definition (2.1). In Examples
uring the perio - , where ¢ = O corresponds | 1 -4, we have determined the limits algebraically. In Section 2.3, we will

:g ;h;[ year 1950. Find the instantaneous rate of change of P with respect | discuss other algebraic techniques for evaluating similar limits. Calculators
, and computers can help us approximate values for such limits by evaluat-

(@) any time (b) # = 39 (the year 1989) | ing the difference quot%ent [ f a+h)-—f (g)]/ h for values of h close to
1 0, but there are some difficulties to be considered. For example, difficulty

SOLUTION in evaluating calculations can occur for values of i extremely close to 0.
Most computing devices perform arithmetic with a finite number of sig-

nificant digits, usually between 7 and 14 digits. When 4 is close to 0, the
numerator f(a + k) — f (a) may be difficult to evaluate because the terms
f(a + h) and f(a) differ by an amount too small for the calculator to dis-

(a.) Using .Deﬁnition 24)Gi) with y=P, x =¢, and f(t) =~/at +b
gives the instantaneous rate of change of P with respect to ¢ at time ¢

years:
Fl+h) - £ tinguish from zero. Hence, the approximations of the difference quotient
P = }}in}) — may get worse rather than better, as illustrated in the next example.
_ lim Ja(it+h)+b— Jat +b |_§: EXAMPLE®S5 Use Definition (2.1) to approximate the slope m , of
h—0 h ‘ 1 the tangent line to the graph of f(x) = sin(sinx) at P(a, f(a)) when

Evaluating this limit by rationalizing the numerator and then simplifying a=1bylettingh = 1007 forn =1,2,....7

yields
| SOLUTION We use a calculator to generate the results in the fol-
| P — lim YU +D +b—ai+b Jalt+h) +b+at+b lowing table:
i p ;
L_:: h—0 h \/a(t + h) +5+ «/at +b = — jp— - - | —— = - - _ _f_(a " h)_ f(a) |
| _ i @@+ h) + 6]~ (at +b) o h f@+h @ fa+h-f@ T
I h—0 h i == — i — . y - = — = 1 e —
;;. (Va(t+h) +b+Var +b) 1 0.01 0.749185709107 0.745624141665 0.003561567441 0.356156744109
42 = lim = attah+b—at—b | 2 0.0001 0745660141723 0.745624141665 | 3.600005706E-5  0.3600005706
= h—0 ¢ = = — ! — — = — | = - i - -
l | (Wa(t +h)+ b+ at +b) 3 0.000001 0.745624501705 0.745624141665 3.6003911E-7 0.36003911
It I = }}iﬁi ;{\/ ah | 4 0.00000001 0.745624145266 0.745624141665 3.60045E-9 0.360045
) -0 t+h i R — —- — - - v —— — —
* | (Va(t+h)+b++Jat +b) | 5 0.0000000001 0.745624141702 0.745624141665 3.605E-11 0.3605
1 ) a | = — | e 1l i | = = _
= ]}1_1)% v/a TN (h #0) ‘ 6 R 0.009000000001 B 0.7i562414_1666 | 0.745624141625 . 4_E—13 ] 0;4 B -
7 0.00000000000001 0.745624141665 0.745624141665 0 0
_ a | | —_— M I SN
at+b t+b L. )
v Tyt It appears from the table’s first four lines that the limit is approximately
-2 f 0.36004. Examining a graph of the function indicates that this approximate
2/at +b ) value appears to be correct for the slope of the tangent line. Figure 2.12
) Figure 2.12 shows a graph of f and a graph of the tangent line through (1, sin(sin 1))
(b) Using the formula for P, from part (a), with @ = 920 and b = 151.3?, ' T y with slope 0.36004. In Section 2.5, we will see that this approximate value
# l\;ve find the instantaneous rate of change of P with respect to ¢ at¢ = 39 to . Slope m, ~ 0.36004 is correct to five significant digits.
= © 1+ e Note that below the fourth line of the table, where the values of h are
920 460 ‘ extremely small, the estimates of the difference quotient are not getting
' Py = \/ 5= ~ 1.897. closer to 0.36004, but rather, farther away. Because of -finite precision
K 2y920(39) + 151.3 V/58,771.69 arithmetic, the numbers in the third and fourth columns become so close

that there are few significant digits in the fifth column. When A gets so
small that both f(a + k) and f(a) round to exactly the same value in the
calculator, the value 0 is obtained in the last two columns.

|| Thus, in 1989, the United States population was growin i
! . > . at
i rate of 1.9 million people per year. y  fhan approximate
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- EXERCISES 2.1

Exer. 1-6: (a) Use Definition (2.1) to find the slope of the
tangent line to the graph of f at P(a, f(a)). (b) Find an
equation of the tangent line at P(2, £(2)).

| f(x)=5x%—4x 2 f(x)=3—2x2
3 fx)=x° 4 f(x)=x*
5 f(x) =3x+2 6 f(x)=4-2x

Exer. 7-10: (a) Use Definition (2.1) to find the slope of
the tangent line to the graph of the equation at the point
with x-coordinate a. (b) Find an equation of the tangent
line at P. (c) Sketch the graph and the tangent line at P.

7Ty=vx P42
8 y=2Jx; P(-8,-2)
9y=1/x; P2}
10 y=1/x% P2, b

Exer. 11-12: (a) Sketch the graph of the equation and the
tangent lines at the points with x-coordinates —2, —1, 1,
and 2. (b) Find the point on the graph at which the slope

of the tangent line is the given number m.
I|y=x2; m==6 I2y=x3; m=9

Exer. 13-14: The position function s of a point P moving
on a coordinate line / is given, with ¢ in seconds and s(¢)
in centimeters. (a) Find the average velocity of P in the
following time intervals: [1, 1.2], [1, 1.1], and [1, 1.01].
(b) Find the velocity of Pat ¢ = 1.

13 5(t) =412 + 3¢ 14 s(t) =2t — 32

I5 A rescue helicopter drops a crate of supplies from a
height of 160 ft. After ¢ seconds, the crate is 160 — 16¢2
feet above the ground.

(a) Find the velocity of the crate at ¢ = 1.
(b) With what velocity does the crate strike the ground?
16 A projectile is fired directly upward from the ground

with an initial velocity of 112 ft/sec. Its distance above
the ground after ¢ seconds is 112¢ — 16¢2 feet.

(2) Find the velocity of the projectile at t = 2, t = 3,
and t =4,

(b) When does the projectile strike the ground?
(c) Find the velocity at the instant it strikes the ground.

17 In the video game shown in the figure, airplanes fly from
left to right along the path y = 1 + (1/x) and can shoot
their bullets in the tangent direction at creatures placed

CHAPTER 2 The Derivative
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along the x-axis at x =1, 2, 3, 4, and 5. Determine
whether a creature will be hit if the player shoots when
the plane is at

(a) P(1,2)

() 03,3

Exercise 17

I8 An athlete runs the hundred-meter dash in such a way
that the distance s(¢) run after r seconds is given by
s(t) = %tz + 8¢ meters (see figure). Find the athlete’s
velocity at

(a) the start of the dash (b)t =5 sec
(<) the finish line
Exercise 18
A
I
=< $() — % —

Exer. 19-20: (a) Find the average rate of change of y
with respect to x on the given interval. (b) Find the
instantaneous rate of change of y with respect to x at
the left endpoint of the interval.

19 y=x"+2 [3,35] 20 y=3-2x2% [2,24]

21 Boyle’s law states that if the temperature remains
constant, the pressure p and volume v of a confined
gas are related by p = c/v for some constant c. If,
for a certain gas, ¢ = 200 and v is increasing, find the
instantaneous rate of change of p with respect to v at

(a) any volume v (b) a volume of 10

Exercises 2.1

22 Using the Lorentz contraction formula,

L= LO\;"III — U2/C2,

find the instantaneous rate of change of the length L of
an object with respect to the velocity v at
(a) any velocity v
(b) v =0.9¢
23 Graph f(x) = sin(zx) on the interval [0, 2].
(a) Use the graph to estimafe the slope of the tangent
line at P(1.4, f(1.4)).
(b) Use Definition (2.1) with 2 = +0.0001 fo approxi-
mate the slope in part (a).
10cos x
24 Graph f(x) = 214
(a) Use the graph to estimate the slope of the tangent
line at P(—0.5, f(—0.5)).
(b) Use Definition (2.1) with 2 = 4:0.0001 to approxi-
mate the slope in part (a).
(c) Find an (approximate) equation of the tangent line
to the graph at P.

on the interval [—2, 2].

25 An object’s position on a coordinate line is given by

cos? 1 + % sint
s(t) = 2
“+1

where s(z) is in feet and ¢ is in seconds. Approxima.lte
its velocity at + =2 by using Definition (2.3) with
h = 0.01, 0.001, and 0.0001.

IZ' 26 The position function s of an object moving on a

coordinate line is given by

2 -
s(t) = t —2t sin ¢
41
where s(¢) is in meters and ¢ is in minutes.
(a) Graph s for 0 <1 < 10.
(b) Approximate the time intervals in which its velocity
is positive.

Exer. 27-30: (a) Use Definition (2.1) with the given value
of h to approximate the slope of the tangent line at the
indicated points. (b) Graph the function and the three
approximated tangent lines over the given interval.

27 f(x) =sin(mwx)on[0,2]; P(0.7, £(0.7)),
P(1.1, £(1.1)), P(1.4, f(1.4)); h =0.001

28 f(x)=3"% on[=2,2]; P(=0.67, f(—0.67)),
P(0.3, £(0.3)), P(1.14, £(1.14)); h = 0.0002

29 f(x) = 0.625V64 —x* on[-8,8]; P(=7, f(-7)),
P(3, f(3)), P(5, f(5)); h = 0.0005

30 f(x) = 0.4v25+x% on [-10, 10; P(=5, f(=5)),
P(—1, f(=1)), P9, £(9)); h = 0.0001

L]

|Z| 31 An object’s position on a coordinate line is given by

s(t) = sin(sint),

where s(¢) is in miles and ¢ is in hours. Use Deﬁnitiop
(2.3), with k = —0.1, — 0.05, and — 0.001 to approxi-
mate its velocity at

@r=-1 (b)r=2
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Mathematicians and Their Times

PIERRE DE FERMAT

PIERRE DE FERMAT WAS PERHAPS the greatest mathematician of the
seventeenth century. He made fundamental contributions to analytic
geometry, calculus, probability, and number theory. Most astounding to
us in this age of specialized knowledge and major research centers is
that Fermat was not a professional mathematician. He did not even have
a degree in mathematics.

To others, it appeared that Fermat's
life was quiet and uneventful. Born in

Beaumont-de-Lomagne, France, in Au-
gust 1601, Fermat was a shy and retiring

person. His father was a leather merchant.
His mother’s family boasted a number of
public service lawyers; Fermat followed
this occupation. He rose to the rank

of King’s Councilor in the Parlement of
Toulouse and discharged this position with great skill and integrity for
|7 years until his death on January 12, 1665.

Fermat’s vocation may have been the law and public service, but his
passionate avocation was mathematics. Although Fermat and Descartes
were independent inventors of analytic geometry, Fermat went consider-
ably further than Descartes, introducing perpendicular axes and finding
equations for straight lines, circles, ellipses, parabolas, and hyperbolas.

While Newton and Leibniz share credit for the invention of calculus,
Fermat had made critically important discoveries in this field more than
a decade before either of them was born. He found the equations of
tangent lines, located the maximum and minimum points, and computed
the area beneath many different curves, He was also able to solve these
three principal problems of calculus for a wide variety of functions.

Fermat’s favorite branch of mathematics was number theory: the
study of integers and relations between them. For 350 years, the most
famous unsolved problem in. mathematics was Fermat’s Last Theorem.
Next to a passage on integer solutions to the equation x? + y2 = 72
(examples: 3% + 42 = 52,and 52 + 122 = 13?), Fermat penned the most
memorable margin note in the history of science: “I have discovered a

2.2 Definition of Derivative
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truly wonderful proof which this margin is too narrow to contain.” He
meant thatifn > 2, then there are no integer solutions to x” + y" = 7.
In June 1993, Andrew Wiles, a Princeton University mathematician,
announced that he had proved the truth of Fermat’s claim.

Although primarily interested in “pure” mathematics, Fermat also
made profound discoveries in applications as well. He formulated the
idea that the path along which a light ray travels as it moves from one
medium to another — say, from air to water — is the path that minimizes
the total travel time. Fermat’s principle of least time, as it is called today,
led to the calculus of variations and provided the basis for Hamilton’s
principle of least action, a powerful unifying idea in physics.

DEFINITION OF DERIVATIVE

In the preceding section, we examined several different problems whose
solutions all involved similar limits. Whether in determining the slope of
the tangent to a curve, or finding the velocity of an object mov@ng along a
line, or discovering the instantaneous rate of change of an electrical current
with respect to voltage, we ultimately use limits of the form

. fla+h)— f(a)
m ——m,
h—0 h

or, equivalently,

. fx)— fla)
lim —————.

x—a X —da

This limit is the basis for one of the fundamental concgpts of calculus,
the derivative. The derivative occurs throughout calculus‘ in problems con-
cerned with rates of change and thus has applications 1n many fields of

Study' 3 ., . - .
In this section, we begin with equivalent definitions of the derivative,

given in terms of limits, that can be applied to any funcFion. W@: then
look at some simple rules that allow us to find derivatives without d}rec‘tly
evaluating limits. We also consider some basic properties of the derivative

and its notation.
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Definition 2.5

Alternative Definition of
Derivative 2.6

Applications of the Derivative 2.7
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DEFINING THE DERIVATIVE

The derivative of a function f is the function f’ whose value at x is
given by
fx+h)— fx)

h 3

f(X)=}{21%)

provided the limit exists.

The symbol f’ in Definition (2.5) is read f prime. It is important to
note that in determining f'(x), we regard x as an arbitrary real number
and consider the limit as & approaches 0. Once we have obtained f'(x),
we can find f'(a) for a specific real number a by substituting a for x.

The statement f’(x) exists means that the limit in Definition (2.5) ex-
ists. If f’(x) exists, we say that f is differentiable at x, or that f has a
derivative at x. If the limit does not exist, then f 1is not differentiable at x.
The terminology differentiate f(x) or find the derivative of f (x) means to
find f(x). |

Occasionally we will find it convenient to use the following alternative
form of Definition (2.5) to find f(a).

1oy e ) = fla)
f(@—«)}gl}z-———x_a

This formula was first used to define m o (see p. 145).

The following applications are restatements of Definitions (2.1) and
(2.4)(ii) using f’(x). These interpretations of the derivative are very im-
portant and will be used in many examples and exercises throughout the
text.

(i) Tangent line: The slope of the tangent line to the graph of the
function y = f(x) at the point (a, f(a)) is f'(a).

(i) Rate of change: If y = f(x), the instantaneous rate of change
of y with respect to x ata is f'(a).

Asa special case of (2.7)(ii), recall from Definition (2.3) that if x = ¢
denotes time and y = s(z) is the position of a point P on a coordinate line,
then s'(a) is the velocity of P at time a.

EXAMPLE® | If f(x) =3x*— 12x + 8, find
@ f'x)  ®) @, f(-2),and f'(a)

2.2 Definition of Derivative

P
=

o

y=3x>—12x + 8

" SOLUTION

(a) By Definition (2.5),

f&+h)— f(x)
h
_ iy BG h)? — 12(x 4+ k) + 8] — (3x% — 12x + 8)
[N “h
— bm (3x* + 6xh + 3h* — 12x — 12k + 8) — 3x% — 12x 4 8)
h—0 h
6xh +3h% — 12h

= lim = lim (6x + 3h — 12) = 6x — 12.
h—0 h h—0

&) = lim

(b) Substituting for x in f’(x) = 6x — 12, we obtain
4 =64 —12=12,
F(=2) = 6(=2) — 12 = —24,
and f(a) =6a —12.

EXAMPLE®2 If y =3x% — 12x + 8, use the results of Example 1
to find

(a) the slope of the tangent line to the graph of this equation at the point
P@3,-1)
(b) the point on the graph at which the tangent line is horizontal

SOLUTION

(a) If we let f(x) = 3x2 — 12x + 8, then, by (2.7)(i) and Example 1, the
slope of the tangent line at (x, f(x)) is f'(x) = 6x — 12. In particular, the
slope at P(3, —1) is

f'3)=6@3)—12=6.

(b) Since the tangent line is horizontal if the slope f'(x) is 0, we solve
6x — 12 = 0, obtaining x = 2. The corresponding value of y is —4. Hence
the tangent line is horizontal at the point Q(2, — 4).

The graph of f (a parabola) and the tangent lines at P and Q are
sketched in Figure 2.13. Note that the vertex of the parabola is the point

o2, -4).

EXAMPLE®3 As a swan begins its flight, its height above the
ground (in meters) after x seconds is observed to be given by the function

f(x) = x + sin2x.

Use a graphing utility to obtain a graph of f on the interval [0, 3], estimate
the times when the tangent line is horizontal, and interpret the results in
terms of rates of change of the swan’s distance from the ground.
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Figure 2.14 SOLUTION Using a graphing utility and the viewing window
0<x<30<y<3 shown, we obtain the graph of f(x) = x + sin2x in Figure 2.14. If we
sketch or visualize tangent lines at various points on the graph, we can
determine that they have positive slopes on the open interval extending
from 0 to approximately 1.05 and again on the open interval from ap-
proximately 2.10 to 3. On these intervals, the rate of change of the swan’s
height above the ground is positive,:and the distance between the swan
and the ground is increasing. On the open interval extending from 1.05
to 2.10, the tangent lines have negative slopes. During this time interval,
the swan’s height above the ground is decreasing. At approximate times
of 1.05 and 2.10, the tangent lines are horizontal. At these two times, the
swan’s distance above the ground is neither decreasing nor increasing.

BASIC RULES OF DIFFERENTIATION

The process of finding a derivative by means of Definition (2.5) can be very
tedious if f(x) is a complicated expression. Fortunately, we can establish
general formulas and rules that enable us to find f’(x) without using limits.

If f is a linear function, then f(x) = mx + b for real numbers » and
b. The graph of f is the line with slope m and y-intercept b (see Figure

2.15).
Figure 2.15
Ay
;1 =mx + b
! P
'/"{0’ b)
x

As indicated in the figure, the tangent line / at any point P coincides
with the graph of f and hence has slope m. From Definition (2.7)(), we
conclude that f’(x) = m for every x. Thus, we obtain the following rule,
which we can also prove directly from Definition (2.5).

Derivative of a Linear

Function 2.8 If f(x)=mx+b, then f'(x)=m.

The following result is the special case of (2.8) with m = 0.

Derivative of a Constant

Function 2.9 If f(x)=~5b, then f'(x)=0.

.The preceding result is also graphically evident, because the graph of a
constant function is a horizontal line and hence has slope 0.

Some special cases of (2.8) and (2.9) are given in the following illus-
tration.

2.2 Definition of Derivative

ILLUSTRATION

f® 3x—7 —4x+2 Ix x 13 =% Y10
Cfm 3 4 7 10 0 0

Many algebraic expressions contain a variable x raised to some power
n. The next result, appropriately called the power rule, provides a simple
formula for finding the derivative if n is an integer.

P Rule 2.10
owerTd Let n be an integer.

If f(x)=x", then f'(x)=nx""},

provided x £ 0 whenn < 0.

PROOF By Definition (2.5),
fG+h)— fx)

! — 1
;e hl—IH) h
— lim W
- h—0 h ’

If n is a positive integer, then we can expand (x + k)" by using the bino-
mial theorem, obtaining

x" 4+ nx" 4 n__(n27 1)x"_zhz 4+ dnxh® 4 h”] —x"
reo=pim- —
—
= hlin}) nx" n_(nzT 2))c"_zh T A h"_1i|.

Since each term within the brackets, except the first, contains a power of
h, we see that f'(x) = nx""!.

If n is negative and x # 0, then we can write n = —k with k positive.
Thus,
x+h) "k —xk
0 = fim S
xF = (x + h)*

=lim ———.
h—>0 h(x + h)kxk




ILLUSTRATION

| :
fx 2

=

@ 2x

ILLUSTRATION
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As before, if we use the binomial theorem to expand (x + h)k and then
simplify and take the limit, we obtain

F1x) = —kx ™1 = e,
If n =0 and x # 0, then the power rule is also true, for in this case
fx)=x"=1and, by 29), f/(x) =0=0-x""1. wm

Some special cases of the power rule are listed in the next illustration.

3x? 4x%  100x° (—1)x—2=_i2
X

We can extend the power rule to rational exponents. In particular, in
Appendix I we show that for every positive integer n,

if f(x)=x"", then f'(x)= e m-1
n
provided these expressions are defined. By using the power rule for func-
tions (2.27), proved in Section 2.5, we can then show that for any rational
number m/n,

if f@)=x"", then f'(x)= Lxtm/m-1,
n
In Chapter 6, we will prove that the power rule holds for every real number
n. Some special cases of the power rule for rational exponents are given in
the next illustration.

e | e
JE =z ; —1/2 _ %
\736—2-=x2/3 i —1/3_%

Y5 54 %x1/4 s

i B x —%x“‘/?’ = _3;/3

)53% — 32 _%x—s/z _ _2x35/2 |
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Theorem 2.11

Figure 2.16

By using the same type of proof that was used for the power rule (2.10),
we can prove the following for any real number c.

If  f(x)=cx", then f'(x)= (cn)x"L

In words, to differentiate cx", multiply the coefficient ¢ by the exponent n
and reduce the exponent by 1.

EXAMPLE®=4 A spherical balloon is being inflated. Find the instan-
taneous rate of change of the surface area S of the balloon with respect to
the radius x.

SOLUTION Using the formula for surface area S of a sphere, S =
fx)y= 4 x?, and Theorem (2.11), we can readily find the instantaneous
rate of change of the surface area with respect to the radius:

f'(x)=@n 2)x =8nx

CONTINUITY AND DIFFERENTIABILITY

Not every function f(x) is differentiable at every value of x in its domain.
As we shall see from Theorem (2.12), if f is not continuous at a, then f is
not differentiable at a. Moreover, many continuous functions can also fail
to be differentiable.

To formally determine whether a function is differentiable or not, we
must examine the limit in (2.5) or (2.6) and decide whether the limit exists
or not. Informally, however, we can say that a function is continuous at a
point if its graph has no breaks or jumps at the point, and if it is also differ-
entiable, it passes through the point in a “smooth” fashion with no corners
or vertical tangents. Our next example is perhaps the simplest familiar
function that fails to be differentiable at a point where it is continuous.

EXAMPLE®=S , show that f is not differentiable at 0.

If f(x)=|x

SOLUTION Thegraphof f is sketched in Figure 2.16. We can prove
that £(0) does not exist by showing that the limit in Alternative Definition
(2.6) does not exist. With a = 0 and f(x) = |x|, we have

f@ = f@ _ x[=of _ I

XxX—a x—0 X

But, by the definition of the absolute value function,

I E: ifx>0
Xl =71_x #x<0

ifx>0

x| 1
we have < T 1-1ifx<o0
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[
and this expression has no limit as x approaches O (see Example 7 of
Section 1.1). Since lim _ [ f(x) — f(@)]/(x — a) does not exist ata = 0,
the function f(x) = |x| is not differentiable at 0.

We observe from Example 5 that the absolute value function is con-
tinuous at 0 (see Example 1 of Section 1.5), but it is not differentiable at
0. The graph of f(x) = |x| shown in Figure 2.16 displays a geometric
distinction between continuous and differentiable functions. The graph of
f is unbroken and has no jumps as it passes through x = 0, so f is contin-
uous. However, since it has a corner at (0, 0) and therefore no tangent line
at that point, it is not differentiable. (A formal definition of corner is given
later in this section.)

Not every continuous function is differentiable. In contrast, as the next
theorem states, every differentiable function is continuous.

If a function f is differentiable at a, then f is continuous at a.

PROOF Weshall use Alternative Definition (2.6):
f(x)— f(a)

f'(a) = lim
x—a X —a

We may write f(x) in a form that contains [f(x) — f(a)]/(x —a) as
follows, provided x # a:

fx) =

—_f(x) — f(a)_ x—a)+ f(a).
x—a

Using limit theorems, we find that

lim £() = lim L& =/@

x—a x—a X —a
= f'(@ -0+ f(a) = f(a).

Thus, by Definition (1.20), f is continuous at ¢.

- lim (x — @) + lim f(a)
X—>a X—>a

DIFFERENTIABILITY ON AN INTERVAL

Thus far, we have considered the differentiability of a function f(x) at a
particular single value of x. We now extend the concept to differentiability
on an interval.

A function f is differentiable on an open interval if f/(x) exists
for every x in that interval. For closed intervals, we use the following
convention, which is analogous to the definition of continuity on a closed
interval given in Definition (1.22).

2.2 Definition of Derivative

Definition 2.13

A function f is differentiable on a closed interval [a, b] if f is
differentiable on the open interval (a, b) and if the following limits
. fla+h)— f(a)
m

exist:
I and lim fe+h - f(b).
h—>0F h h—0~ h

The one-sided limits in Definition (2.13) are sometimes referred to as
the right-hand derivative and the left-hand derivative of f at a and b,
respectively.

Note that for the right-hand derivative, h — 0T, anda +h approaches
a from the right. In this case, the point Q(a + &, f(a + h)) in Figure 2.17
lies to the right of P(a, f(a)). The quotient [ f{a + k) — f(a)l/h is the
slope of the secant line through P and Q on the graph of f to the right of
P. The right-hand derivative is the limiting value of the slope of the secant
lines through P and Q as Q approaches P from the right.

Figure 2.17

Slope = hli)m f(aw / Q fe + h})l — f(b)

n, Slope = hll)%l—

P(a, f(a))
R(b, f(b))

|
|
|
!
f
a

a

h b+h b
(r <

0) (h <0)

v+t

For the left-hand derivative, h — 0~ and b + h approaches b from the
left. The left-hand derivative is the limiting value of the slope of the secant
lines through P and -Q as Q approaches P from the left.

If a function f is defined only on a closed interval [a, b], then the
right-hand and left-hand derivatives define the slopes of the tangent lines
at the points P(a, f(a)) and R(b, f(b)). Figure 2.17 shows the graph of
such a function f with the tangent lines at P and R. By using one-sided
limits, we can extend Theorem (2.12) to functions that are differentiable
on a closed interval.

Differentiability on an interval of the form [a, b), [a, 00), (a, b], or
(—o0, b] is defined in similar fashion, using a one-sided limit at an end-

oint.
b A number c¢ is in the domain of the derivative f’ if f is differentiable
at ¢ or if ¢ is an endpoint of the domain of f at which the appropriate
one-sided limit exists.

If f is defined on an open interval containing a, then f'(a) exists if
and only if both the right-hand and left-hand derivatives at a exist and are
equal. Thus, a function f may fail to be differentiable at a if either one or
both one-sided derivatives fail to exist, as we will see in Example 7. The
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Figure 2.19
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function may also fail to be differentiable at a if both one-sided derivatives
exist at a but are not equal to each other. In Example 5, we saw that the
absolute value function f(x) = |x| is not differentiable at 0. This function
has a right-hand derivative of 1 and a left-hand derivative of —1 at x = 0.
The functions whose graphs are sketched in Figure 2.18 have right-
hand and left-hand derivatives at a that give the slopes of the lines /, and
1,, respectively. Since the slopes of I, and [, are unequal, f’(a) does not
exist. The graph of f has a corner at P(a, f(a)) if f is continuous at a
and if the right-hand and left-hand derivatives at a exist and are unequal
or if one of those derivatives exists at a and | f’ (x)| > ocoasx —a” or

x—>a+.

Figure 2.18

Ay
b
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As indicated in the next definition, a vertical tangent line may occur
at P(a, f(a)) if f'(a) does not exist. If P is an endpoint of the domain
of f, we can state a similar definition using a right-hand or a left-hand
derivative, as appropriate.

The graph of a function f has a vertical tangent line x = g at the
point P(a, f(a))if f is continuous at  and if

Jlim | f(x)] = oo.

The next example shows a function f with a vertical tangent line at an
endpoint of the domain of f.

EXAMPLE=6
(a) sketch the graph of f  (b) find f'(x) and the domain of f’

SOLUTION
(a) The graph of f is sketched in Figure 2.19. Note that the domain of f
consists of all nonnegative numbers.

(b) Since x = 0 is an endpoint of the domain of f, we shall examine the
cases x > 0 and x = 0 separately.
If x > 0O, then, by Definition (2.5),

: Vi - J%
=

&) = lim
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Definition 2.15

To find the limit, we first rationalize the numerator of the quotient and then

simplify:
Vi+h—x Jx+h+x

h Vi +h+ /X
(x+h)—x

= lim
h—0 h(/x + h + /x)

1
=lim—ou
h—0 /x +h + /%
1 1
T x4 2%

Since x = 0 is an endpoint of the domain of f, we must use a one-sided
limit to determine if f/(0) exists. Using Definition (2.13) with x = 0, we

f/@) = lim

obtain
. fO+h) - fO0 JOFh —A/0
lim = lim ——
h—0" h h—0t h
N 1
= lim — = lim — =

Since the limit does not exist, the domain of f’ is the set of positive real
numbers. The last limit shows that the graph of f has a vertical tangent
line (the y-axis) at the point (0, 0).

Figure 2.20 illustrates some typical cases of vertical tangent lines. In
Figure 2.20(b), f'(x) — o0 as x approaches a from either side. In con-
trast, in Figure 2.20(c), f'(x) — oo as x approaches a from the left, but
f'(x) = —oc as x approaches a from the right. The resulting sharp peak
(or spike) at P is called a cusp, formally defined as follows.

The graph of f has a cusp at P(a, f(a)) if f is continuous at a and
if the following two conditions hold:

() f'(x) = oo as x approaches a from one side
(i) f'(x) — —oo as x approaches a from the other side

Figure 2.20
@) (b) (o)
Ly !
LAy L 4y ! ) ‘
sl P(a, f(a))
y \ a?‘ - )c2 /—‘
J P(a, f(a)) y = f(x)

Q( a, 0) / P(a7 0..)_ - —
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EXAMPLE®7 Determine the nature of the graph of the function
fxy=1+ x%3 near the point (0, 1).

SOLUTION  Since lim_,, f(x) = f(0) = 1, the function f is con-
tinuous at (0, 1). If x # 0, then we have

2 2
’ e VA
f (x) - 3x 3x1/3-
Since lim,_ v f'(x) = 0o and lim,_,, f'(x) = —oo, there is a cusp at

the point (0, 1). The function f(x) =1+ x%3 is not differentiable at 0
because the right-hand and left-hand derivatives do not exist. Figure 2.21
shows a graph of the function f, where the y-axis is a vertical tangent line.

If f is a complicated continuous function, we may have difficulty find-
ing the values of x at which f is not differentiable using only algebraic
techniques. We may be able to make good approximations of such values
by looking for cusps and corners on the graph of f.

EXAMPLE®=8  Graph the function
fx) =2+ |x* —5x% + 4

on the interval [0, 2.5], and estimate the values of x at which the function
is not differentiable.

SOLUTION We have graphed f(x) =2+ |x*—5x%+4| in the
viewing window shown in Figure 2.22. Note that the graph appears smooth
at all values of x on the interval [0, 2.5] except at approximately x = 1
and x = 2, where there appear to be corners. By zooming in near the
point (1, f(1)), we are led to believe that the right-hand and left-hand
derivatives exist at x = 1, but are not equal. A similar situation occurs at
x = 2, and we conclude that f is not differentiable at x = 1 and x = 2.

)
DERIVATIVE NOTATIONS

We conclude this section by considering the various notations for deriva-
tives.

d d
Fly=y = d—){- = —f®) =D, f@) =D,y

All of these notations are used in mathematics and applications, and
you should become familiar with the different forms. For example, we can

now write
S&x+h)— fx)
p .

d
D, f(x) = f(x) = lim

2.2 Definition of Derivative

ILLUSTRATION

oo TR

The letter x in D, and d/dx denotes the independent variable. If we use a
different independent variable, say ¢, then we write

(1) = 4
F'®& =D, f() = —f ().

Each of the symbols D, and d/dx is called a differential operator. Stand-
ing alone, D, or d/dx has no practical significance; however, when either
symbol has an expression to its right, it denotes a derivative. We say that
D, or d/dx operates on the expression, and we call D_y or dy/dx the
derivative of y with respect to x. We shall justify the notation dy/dx in -
Section 2.8, where the concept of a differential is defined.

The next illustration contains some examples of the use of (2.16) and
Theorem (2.11).

d
E(3x7) =3 -7x% =21x°
d 1,12 1 11 11
E(it )= (5 . 12)l = 6¢

d
0% = 9 x' = 12412

d , 8
—2_4 e -— _5:——
) = 2(—4yr S

Note that in (2.16), Dy, y', and dy/dx are used for the derivative of y
with respect to x. If we wish to denote the value of the derivative D.y,y,

or dy/dx at some number x = a, we often use a single or double bracket
and write

dy d
Dyl,_, E} [Dy]._. or [d_)yc]
x=a xX=a

as in the following examples:
i(x3) =[3x?],_s =3(5%) =75
dx 5 ¥=5 .

d
[E(%“”’)] = [12x'3] _, = 12(8"/3) = 24

x=8§

In calculus, we sometimes consider derivatives of derivatives. As we
have seen, if we differentiate a function f, we obtain another function
denoted f”. If f” has a derivative, it is denoted f” (read f double prime)
and is called the second derivative of f. Thus,

1" / 14 d ! d d d2
[ =0f]= = E(;(f(ﬂ())) = dx—z(f(X)),




P
where we use the operator symbol d%/dx? for second derivatives. The third 9 fx)=1/x> P2, ¢) 32 Ay
%ﬁrivative of f, denoted f””, is the derivative of the second derivative. 10 f)=1/x% P, 1 1
us,
J il P 7 { 1 feo =4x% P81, 12) i
@ =1f"®1 = a(f”(x)) = E(ﬁ(f(x))) = ?(f(x». 12 f(x) = 12x'3; P(=27, -36) \
. . R Exer. 13 - 16: Find the first three derivatives. ) =
In general, if n is a positive integer, then f™ denotes the nth derivative = 61n ¢ first three derivatives y =/
of f and is found by starting with f and differentiating, successively, n 13 f(x)=3x LT
n i 4 | I | | |
times. In operator notation, f ™ (x) = o (f(x)), where the integer n is 14 f(x) =6x l _i i 2' ; " x
X o2
the order of the derivative f(x). The following summarizes various 15 fix) = W Exer. 33— 36: Use right-hand and left-hand derivatives
. . . . . _ V 7/3 . - . - - atives 1o
| notations used for these higher derivatives, with y = f(x). 16 f(x)=3x" prove that f is not differentiable at a.
h 17 If z = 25/, find D} z. —lx—5: a=
n Notations for Higher 7z £ find D’; B fO=[x-5) a=5
FE Derivatives 2.17 0, "), F(x), P, ..., F®(x) { 18 If y =3x +5, find Dy y. 34 f(r)y=[x+2; a=-2
f ¥, ¥, ", ¥, Sty B es [ 19 Ify = —4x + 7, find &y 3B f@) =T -2 a=2
R A5 d’y dy d'y 'y dx? 36 f(X)=[x1-2; a=2
k: ar=wrof E—od o o Srr=—gnd LI 2 s ean 2
T L P N 5" | 20 Itz = 64V/7%, find d_2Z Exer. 37 -40: Use the graph of f to find the domain of f’.
D.y, D2y, D3y, Dly, Diy ™ 37 F) = 2;2c ifx <0
f Exer. 21-22: Is f differentiable on the given interval? x° ifx >0
} ! Explain. 3 fon |1 xSl
h—ﬁ. EXAMPLE®9 Find the first four derivatives of f(x) = 4x*>2. 21 f(x)=1/x @10,2]  (b)[L,3) x? ifx>1
22 f(x)=x @I[-1,11  (b)[-2 -1 -2 ifx<-—1
; SOLUTION We use (2.17) and Theorem (2.11) four times: ®) ) 39 FO) =100 103 ifx > —1
” Exer. 23-24: Use the graph of f to determine if f is -
s _ 3y..1/2 .
i flxy=@- 5)x 2 = 6x1/2 differentiable on the given interval. 40 f(x)= x2=2 ifx <0
_ _ -3 ifx >0
o || ff@=6-pxr =312 2 fo=vi-x @[04  (B)[-50 e
N [ Exer. 41-42: Each figure is the h of a functi
4| _ 1v,.—3/2 . 3.-3/2 _Ja_ 2 g graph of a function f.
A |I f7(x) =3(=3)x /2 —5x / 24 f(x)=vV4—-x (@ [=2.21 (b)[-1,1] Sketch the graph of f' and determine where f is not
fl | FP ) = _%(_%) x 32 = % x~3? Exer. 25-30: Determine whether f has (a) a vertical differentiable.
& I ‘ tangent line at (0, 0) and (b) a cusp at (0, 0). 41 Ay
|
B | %5 f0 =2 26 f@)=xV 27 f(x) =22
} ‘ 28 f(x)=x"* 29 fx) =552 30 f(x)=7xY3 +
‘ H 4 Exer. 31-32: Estimate f'(—1), f/(1), f(2), and £ (3)
b B exercises 2.2 whenever they exist, /_ N
I ! | T J| I T —
-|.:_ | 31 Ay -2 -1 1 2 ol
|I.I‘,_',_I Exer. 1-4: (a) Use Definition (2.5) to find f'(x). (b) Find Exer. 5-12: (a) Use (2.8)-(2.11) to find f'(x). (b) Find 1
. the domain of f'. (c) Find an equation of the tangent line the domain of f'. (c) Find an equation of the tangent line 42 T Y
to the graph of f at P. (d) Find the points on the graph at to the graph of f at P. (d) Find the points on the graph at
i which the tangent line is horizontal. which the tangent line is horizontal. !
‘!. - I f(x) =—5x2+8x+2; P(—1,—11) 5 f(x)=9x—2 P(3,25) T
'| 2 f(x)=3x-2x—4; P(2,4) 6 f(x)=—4x+3; P(-2,11) _—\"/—2
y = x
3 f0) =% +x; P(1,2) 7 fx) =37 P(0,37) - —t R
x -2 -1 12 &

4 f(x)=x>—4x; P(2,0) 8 f(x)=n2 PG5, %)
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N Exer. 43 —44: (a) Find the first derivative and the second situations, f’(a) is frequently approximated by the window as the function. Discuss the behavior of the 63 fO)=|x*—2x3—x2+2x| on —15<x<25
derivative on each of the three subintervals of the domain formula derivatives at points where the function has a horizontal 5
: . =v4- _2<x<?2
of the function. (b) Use the right-hand and left-hand fla+h) — fla—h tangent or near points where it is not differentiable. 64 f(x)=+ x on <x<
% derivatives to determine whether f” exists at @ and b. fa) = = = 10 cos x 65 If f is differentiable at a and g is defined by g(x) =
. 43a=3b=5 59 f(x)=— on —2<x<2 x(f (x)) for all x in the domain of f, then use Definition
‘ | a= = 2 . (a) Interpret this formula graphically. x*+4 (2.5) to show that
h 3x-—6x+4+3 ifl<x<a Fa+h - fa—h & (x—x2)sir1x / /
o S =1 -7x>+54x —87 ifa<x<b (b) Show that Jim =————, === = (). ' 60 f@)="—7_1 on —1<x<4 g =x(f(x)+ fx). |
! = 8x2 —96x +288 ifb<x<6 ” 2 L .x + 66 Use the result of Exercise 65 and mathematical f
i ‘5 44a=—-1b=1 (@ If f(x) = ,1/ x*, use the approximation formula to \ 61 f(x) =xsmnx on —x=x=mn induction to give an alternative proof to the power rule ‘
i 3x2 n 3x 41 fx<a eS.tlmate f (1) with 2 = ?1, 001, and 0.001. 62 f(x) — sin(—é—x + 1) on 0 <x< Ax (210) for n > 1. (Hlnt xn-l—l — xxn.) l
\ l 3 3 (d) Find the exact value of f'(1). «;
& fx)y=q1—x ifa<x<bh
I 2 —6x+6x—2 ifx>b 54 (a) Use the approximation formula in Exercise 53 to
ii show that if 2z ~ 0, then
'r. { Exer. 45—-46: Given the position function s of a point P fla+h) —2f@) + fla—h) 2.3 TECHN'QUES OF DIFFERENTIATION
- ; moving on a coordinate line /, find the times at which the a) ~ % ; &
i ‘ locity is the gi lue k. o _
| N veloetyis The gven vERE 2 . " . L/ JHF TRV ER /1" This section contains some general rules that simplify the task of finding
bt a5 s(t) =37 k=4 (b) If f(x) = 1/, use part (a) to estimate f7(1) with ‘ ' g " derivatives. The rules are stated in terms of the differential operator d/dx,
- 46 s() =43 k=300 h.: 0.1,0.01, and 0'001',, where (d/dx)(f(x)) = f'(x). In the rules, f and g denote differentiable
: . , (c) Find the exact value of £7(1). functions, ¢, m, and b are real numbers, and n is a rational number. The
S relat.lonshlp between the temperaure P on t~he J first three parts of the following theorem were proved in Section 2.2 and
Fahrenheit scale and the temperature C on the Celsius 71 pyer, 55-56: Use the following table, which lists the are restated here for complet
s o 5 : , pleteness.
scale is given by C = 5(F —32). Find the rate of approximate number of feet s(?) that a car travels in ¢ ‘
change of F with respect to C. seconds to reach a velocity of 60 mi/hr in 6 sec. ’

48 Charles’s law for gases states that if the pressure remains Theorem 2.18

” :—:‘F = ZE

constant, then the relationship between the volume V e — S , W _‘?__ () =0
that a gas occupies and its temperature 7" (in °C) is given t 01 2 3 4 5 6 7 ! dx
_ 1 . . S —— —_— o

i by V = Vy(1 + 573 7). Find therate of change of T'with | gy ¢ 117 42.6 89.1 149.0 220.1 303.7 396.7 d

r.{\l . respect to V. I . - (i) E(m x+b)y=m

L'_:I | 49 Show that the rate of change of the volume of a sphere

= with respect to its radius is numerically equal to the ise 53 : : d

| t te the velocity of the ¢ -

v i | surface area of the sphere. 55 ;Jtse Exercise 53 to approximate the velocity o ar (i) = ") = nx” 1

3 1]

= 50 Poiseuille’s law states that the velocity v of blood in a (@)t =3 (b)yr=6 ¢
| small artery with a circular cross section of radius R is ) . ‘ : _‘i (cf(x) = ci( F£(x))
k: given by 56 Use Exercise 54 to approximate the rate of change of the | (iv) e Cr\x)) = e
Il'fl | ‘ AR velocity of the car with respect to ¢ at ! : . ;
i v = AR, @r=3  ®)r=6 W) (@) +80) = - (fE) + Z-(8(x)
||]i-“ | where r is the disFance/from the center of the artery and E 57 Graph f(x) = |x5 —2x* 4+3x3 — x + 1| on the inter- dx X b
| ! A is a constant. Find v'(r). val [—1, 1] and estimate where f is not differentiable. d d d
Ml LIS ey r — R
:.": ‘ 51 An oil spill is increasing such that the surface covered E 58 Graph f(x) = x4 _3x31+2x—1 on the interval (vi) e (f(x) — g(x) e (f&x)) e (g(x))
i by the spill is always circular. Find the rate at which [—1,3] and estimate the x-coordinates of points at
I the area A of the surface is changing with respect to the which the tangent line is horizontal. e
h» radius r of the circle at |
[ i

‘ (a) any valucof r  (b) r = 500 ft I__c—] Exer. 59-64: (a) Graph the function on the interval. ! FROOE

. | 52 A spherical balloon is being inflated. Find the rate at (b) tFrorlr: th:,h g;apht,. est.imatte dF?fe x-tc.O(l))lidinatei1 of [ (iv) Applying the definition of the derivative to c¢f (x), we have
: which its volume V is changing with respect to the points where the function is not ditlerentiable or where i ) —cf (x x+h) — fx
)}' r radius 7 of the balloon at it has a horizontal tangent line. (c¢) Many graphing i(cf(x)) — lim cfx+h fx) = lim cf ( ) = f)

] Yoy valsie Y utilities can display the function and its first and second dx h—0 h h—0 h
1 () any G (R)g =0 derivatives without explicitly requiring the formulas for (k) — fX) d

{ 53 In some applications, function values f(x) may be the derivatives. If you have access to such a utility, graph =c¢ lim flx = cd—( Fx)).

h—0 h X '

| known only for several values of x near a. In these the first and second derivatives on the same viewing
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(v) Applying the definition of the derivative to f(x) + g(x) yields
[fx+h)+gx+Mm]—1fx)+gx)]

d
Zl;(f(x) +g(x) = lim

h
.y [f(x +h)— f(x) | gx+h)— g(x)}
= lim +
h—0 h h
o SR ) g+ k) — g ()
= lim + lim =——
h—0 h h—0 h

_d d
= )+ = (gx)).

We can prove (vi) in similar fashion, or we can write

fx) —g(x) = f(x) +(=Dgl)

and then use (v) and (iv). =

If we use the differential operator D in place of d/dx, the rules in
Theorem (2.18) take on the following forms:

D, (c) =0,
D, (mx +b) =m,
D (x") = nx" 1,
D, (cf(x)) = ¢D, (f(x)),
D, (f(x) £ g(x)) = D,(f(x)) = D,(g(x)).
Parts (v) and (vi) of Theorem (2.18) may be stated as follows:

v) The derivative of a sum is the sum of the derivatives.
(vi) The derivative of a difference is the difference of the derivatives.

These results can be extended to sums or differences involving any
finite number of functions. We may use these results to obtain casily the
derivative of a polynomial, since a polynomial is a sum of terms of the
form cx™, where c is a real number and »n is a nonnegative integer. The
next example illustrates this process.

EXAMPLE® | If f(x) =2x* — 523 + x2 — 4x + 1, find f'(x).
SOLUTION By Theorem (2.18), we have

d
f(x) = E(Zx“ —5x3+x2—4x+1)

I P S P P
—dx(ZX) dx(5x )+dx(x) dx(4X)+dx(1)

= 8x3 — 15x% + 2x — 4.

2.3 Techniques of Differentiation

Figure 2.23

—4<x<6,-3<y<3

P

p

-

To find the equation of a tangent line to the graph of a function f at
a particular point P(a, f(a)), we need to find the slope of the line, which
we know is given by f'(a). We may use the differentiation rules to first
determine the general form for the function f ’(x) and then substitute a for
x to compute f'(a), as in the next example.

EXAMPLE®=2

(a) Find an equation of the tangent line to the graph of the function y =

127x% — (0.8//%) at P(L, 0.4).
(b) Use a graphing utility to graph the function and the tangent line.

SOLUTION
(a) We first express y in terms of rational exponents and then use Theorem
(2.18) to find dy/dx:

y= 1.2x%% — 0.8x71/2

d
dy _ 4 1023y~ Logx2)
dx dx

dx
=0.8x" 3 — (—0.4x7%/?)
08 04
- x1/3 x3/2

To find the slope of the tangent line at P(1, 0.4), we evaluate dy/dx at
x=1:

= — 4+ —=1.2.
dx

dy] 08 04
e 11

Using the point-slope form, we can express an equation of the tangent line
as

y—04=12(x—-1),
or =1.2x —0.8.

(b) We use equal scaling and the viewing window shown in Figure 2.23
to graph the function f(x) = 1.2v/x%* — (0.8/+/x) and the tangent line
L(x) = 1.2x — 0.8. We observe that both the tangent line and the curve
are rising as x increases through values near 1. We also note that the
tangent line remains close to the curve near the point of tangency.

Formulas for derivatives of products or quotients are more compli-
cated than those for sums and differences. In particular, the derivative of
a product generally is not equal to the product of the derivatives. We may
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illustrate this fact by using the product x% - x° as follows:

%(x2 -xs) = c—;i;(x7) = 7x%
%(ﬁ) : %(xS) = (2x) - (5x*) = 10x°
LR N L
Hence P x“-x7) # I (x) I (x>).

The derivative of any product f(x)g(x) may be expressed in terms of
derivatives of f(x) and g(x) as in the following rule.

Product Rule 2.19

17 d d
d—;(f (x)gx) = f (x)d—;(g(x)) + g(x);[;(f (x)

PROOF Lety= f(x)g(x). Using the definition of the derivative, we

1 :;, write

¥ dy _ . Fe+meGth) — f@ek)

. :'-4 1 dx ~ h—0 h '

] | ‘

.| | To change the form of the quotient so that the limit may be evaluated, we
lff.___.:' subtract and add the expression f(x + A)g(x) in the numerator. Thus,

4y _ i fOx+hgx+h) — fx+h)gkx)+ flx+h)gkx) — fx)gx)
dx ~ h>0 h

glx+h)—gx)
h

|
:'lll |‘
&l dy
|
|

+g(x) -

0 h

. fesn=ro]

o
; — h) —
) = fm e+ i BRIt PSS

Since f is differentiable at x, it is continuous at x (see Theorem (2.12)).
Hence, lim,_,, f(x +h) = f(x). Also, lim, _, g(x) = g(x), since x is
bl fixed in this limiting process. Finally, applying the definition of derivative
to f(x) and g(x), we obtain

| l dy ’ ’

-l i f@)E ) +g@) f(x). wm

The product rule may be phrased as follows: The derivative of a product
i equals the first factor times the derivative of the second factor, plus the
| second times the derivative of the first.

2.3 Techniques of Differentiation
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EXAMPLE=3 Ify=(x’+ 1)2x?+ 8x — 5), find dy/dx.

SOLUTION  Using the product rule (2.19), we have

dy 3 dy . 2 dy
—_— = +1D=02x“+8 —5)+ 4 8x — 5)—2(x3
» (x ) x( X 8x —5 + (2x 8x —95) x(x + 1)

= (x> + 1)@x + 8) + 2x> + 8x — 5)(3x?)
= (4x* + 8x3 + 4x + 8) + (6x* + 24x> — 15x%)
= 10x* + 32x% — 15x% + 4x + 8.

EXAMPLE®=4 If f(x) =x"/?(x? —3x +2), find

@ f'(x)
(b) the x-coordinate of the points on the graph of f at which the tangent
line is either horizontal or vertical

SOLUTION
(a) By the product rule (2.19),

d d
fl(x) = x1/3d—(x2 —3x+2)+ (2 =3x+2)— "3
X dx

=x"3Q2x = 3) + 2 - 3x + 2)(3x7P?)
C3x(2x—3)+ (x* —3x+2)

B 3523

CTxP—12x +2

- 3y 2/3

(b) The tangent line to the graph of f is horizontal if its slope is zero.
Setting f/(x) = 0 and using the quadratic formula, we obtain

_12+4/144-56  12£4/88  6++22
B 2(7) ST

Referring to f’(x), we see that the denominator 3x”/° is zero at
x =0. Since f is continuous at 0 and lim _ | f'(x)| = oo, it follows
from Definition (2.14) that the graph of f has a vertical tangent line at
x = 0—that is, the point (0, 0) (the origin).

X

2/3

We shall next obtain a formula for the derivative of a quotient. Note
that the derivative of a quotient generally is not equal to the quotient of the
derivatives. We may illustrate this with the quotient x%/x? as follows:

d x5 d 3 2
== =13
dx (x2> dx(x ) (]




Quotient Rule 2.20
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d
d x5 a(xs)
Hence —l=1# .
—(x9)

dx

The derivative of any quotient f(x)/g(x) may be expressed in terms
of the derivatives of f(x) and g(x) as in the following rule.

d d
_d_(f(x)) » g(x)a(f(x)) — f(x)gx—(g(x))
dx\gx)/) (g(x))*

PROOF Lety= f(x)/g(x). From the definition of derivative,

f+h)  fx)
dy _ . 8Gth &)

dx h1—>0 h
— lim g(x)f(x+h)— f(x)gx +h)
G hg(x + h)g(x) '

Subtracting and adding g(x) f (x) in the numerator of the last quotient, we
obtain

dy _ lim g(xX)f(x +h)—gx) f(x)+g(x) f(x) — f(x)g(x + h)
dx ~ h—>0 hg(x + h)g(x)
— lim g fx+h) — fx)]— fX)gx +h) —gkx)]
h—0 hg(x + h)g(x)
h) — h) —
g(x)[f(x+ ;l f(x)]_f(x)[g(x-l' 2 8(x)]
- PP—I;I}) g(x +h)gx)

Taking the limit of the numerator and the denominator gives us the quotient
rule. m

The quotient rule may be stated as follows: The derivative of a quotient
is equal to the denominator times the derivative of the numerator minus the
numerator times the derivative of the denominator, divided by the square
of the denominator.

d 3x2—x+2
EXAMPLE=5 Find—iify:x——)H_—.

d 42 +5

2.3 Techniques of Differentiation
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SOLUTION By the quotient rule (2.20),

d
(4x? + 5)d—(3x2 —x+2) -G —x+ 2)i(4x2 +5)
X dx

dy
dx (4x? + 5)
C @x?+5)6x — 1) — 3x* — x +2)(8x)
- (4x* + 5)
(2453 — 4x2 +30x — 5) — (24x> — 8x% + 16x)
- @x? +5)2
_ 4x* 4 14x -5

(4x2 + 5)°

If we let f(x) = 1 in the quotient rule (2.20), then, since (d/dx)(1) =
0, we obtain the following.

Reciprocal Rule 2.21 ;
o (g(x))

i( 1 )__d
dx \ g(x) (g(x))?

ILLUSTRATION
4
d (1 __dx(X)_ 1
dx\x/) (x)? X2

d
E(3x2 —5x+4)

i( 1 )__ _ 6x —5
dx \3x2 — 5x +4) Gx2—5x+4)?2  (Gx?—5x+4)?

The differentiation formulas in Theorem (2.18) are stated in terms of
the function values f(x) and g(x). If we wish to state such rules without
referring to the variable x, we may write

f) =cf, (f+8) =f+g, and (f-g)'=f—¢"

Using this notation for the product, quotient, and reciprocal rules and at
the same time commuting some of the factors that appear in (2.19) and
(2.20), we obtain

/ 7 _ 7 l _ ’
(fe) = f'g + fg', <£> =_f_g_2£, and (_):—i-
8 8 8 g

You may find it helpful to memorize these formulas. To obtain the quotient
rule, change the + sign in the formula for (f g)’ to — and divide by gz.
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Figure 2.24

Object ~ _—
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The next example gives an application that makes use of the quotient
rule for differentiation.

EXAMPLE=6 A convex lens of focal length f is shown in Figure
2.24. If an object is a distance p from the lens as shown, then the distance
g from the lens to the image is related to p and f by the lens equation

1 I 1

fp q

If, for a particular lens, f = 2 cm and p is increasing, find

(a) a general formula for the rate of change of g with respect to p
(b) the rate of change of ¢ with respect to p if p =22 cm

SOLUTION

(a) By (2.7)(ii), the rate of change of ¢ with respect to p is given by the
derivative dg/dp. If f = 2, then the lens equation gives us

1 1 1 1 1 1 p—2

—=—4+—, O —=—-——=—

2 p g g 2 p 2p
Hence q=—2p.
p—2

Applying the quotient rule (with x = p) yields

d d
dq (r— 2)%(217) - (217)%(17 -2)

dp (p—27

_ @ -2@-ep@)

(p—2)?
4
PR
(b) Substituting p = 22 in the formula obtained in part (a), we get

dq 4 4 1
3;],,222 T (22-27% 400 100°

1

Thus, if p = 22 cm, the image distance g is decreasing at a rate of 155

centimeter per centimeter change in p.

We have introduced several rules in this section that ease the task of
finding derivatives of functions. These rules permit us to differentiate a
complicated function that has been built up from simpler functions in par-
ticular ways (addition, subtraction, multiplication, and division) by com-
bining the derivatives of the simpler functions in the correct manner. These
formulas and others to be studied later make differentiation a relatively
straightforward process of applying the various rules.

Exercises 2.3

- EXERCISES 2.3

Enem. VTR

In recent years, the possibility ot carrying out these rules with the assis-
tance of computational devices has become a reality. We discussed earlier
how calculators and computers can provide numerical estimates for deriva-
tives. Computer scientists have also created sophisticated programs that
accept and operate on algebraic expressions and functions. Such programs
can perform a variety of algebraic operations on command, including sym-
bolic differentiation. These programs, called computer algebra systems
(CAS) or computer mathematics systems (CMS), combine the capabil-
ity for algebraic manipulation with provisions for graphing and numerical
evaluations. In effect, a CAS has stored the rules for differentiation. It
performs pattern matching on a given symbolic expression to determine
which rules to apply, much as you are learning to do.

Since electronic devices can perform symbolic differentiation, you may
well ask whether we still need to learn the rules for differentiation. The an-
swer is yes, for much the same reasons that the ability of calculators to
add and multiply numbers quickly and accurately has not ended the need
to learn the rules of arithmetic. In both instances, the emphasis shifts away
from developing great skill in applying the rules to very complicated ex-
pressions to a greater need for understanding and interpretation. The prop-
erties of differentiation reflected in the rules are used throughout calculus
and other branches of mathematics to gain new insights.

If you were going to add a few small integers, you would probably
do so mentally, instead of searching for a calculator. Similarly, you will
find it easier to differentiate a polynomial or a rational function on paper
than to type these expressions into the CAS. When you must perform a
very important, complicated differentiation, the speed and accuracy of a
CAS provides a valuable tool. In summary, the availability of a CAS no
more replaces the need to perform basic symbolic manipulation than the
availability of a calculator replaces the need to perform basic arithmetic
operations.

Exer. 1-34: Find the derivative.

g =673
h(z) = 82°/2
Fls) =15 —s +4s* — 5s*

1 h(r) =r*Gr* = 7r +2)

12 k(v) = v’ (=20% + v —3)

13 g(x) = (8x% — 5x)(13x> + 4)
14 HZ) = (2> —23) (T2 +2—8)

2
3
4 f()=12-3*+4°
Fx) =322 4+ vx*
g =x* =%

5
6

7 g(0) =& —7)2x*+3)

8 k(x) = 2x% — 4x + 1)(6x — 5)
f) =x"2@2+x -4

10 h(x) = x33x2 —2x +5)

0

4x — 5 8x2 — 6x + 11
15 = 16 hix) = -
FO =577 2 x—1
8 — z + 37 2w
17 h(z)=—2jz_ 18 f(w)= w7
3
-1 8t + 15
19 G = 20 1) = - Sy
) v+l A ?2—2t+3
%)
Vi VX
= 22 =
2080 =737"73 I =0 aivs



23 fx)=——5—
7 1+x+x>+x°
11 1
24 px) =1+ -+ 5+
X X X

25 h(x) = — 26 k()= -0

x°+5 Z4z-1

28 s(x) =2x+ i
2x

30 W(s) = (3s)*

1
27T Foy=1*+
t

29 K(s) = (3s)*
31 h(x) = (5x — 4)? 32 S(w) = Quw + 1)°
33 g(r)=(5r—9H72 34 S(x) = Gx+1)72

Exer. 35 —40: (a) Find the derivative. (b) Plot the function
and its derivative in the given viewing window.

35 f(x)=x> —5x% 4 8x — 25,
-35=<x<7,-150 <y <150

36 fx)=x*—x3—13x2+x+ 12,
—4<x<4,-70<y<110

37 f(x) = <4+ 1) (6x - %)
X X

-3<x<3,-50=<y=<50

1 1
o= (v ) (¥ z).

-3 <x<3-50<y<50
(4x + 1)(x —3)

39 = -
f@® 342
—-6<x<6, —15<y<10
x+3
40 = {1V (x2 —2x —
fx) (x_H)(x x— 1),

-11<x<5 -25<y<35
Exer. 41 -44: Solve the equation dy / dx = 0.
41 y=2x>—3x2 —36x+4
42 y =4x> +21x% —24x + 11

2

R
Exer. 45— 46: Solve the equation d?y/dx* = 0.
45 y = 6x* +24x° —540x> +7
46 y = 6x° —5x* —30x> + 11x

Exer. 47-50: Find dy/dx by (a) using the quotient
rule, (b) using the product rule, and (c) simplifying
algebraically and using Theorem (2.18).

3x—1 x2+1
) 48 y= 7

47 y =

X X
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2
-3 2
x X 50 y = x+3

Va2 Ve
Exer. 51-52: Find d?y/dx?.
_ 3x+4 x+3

51 = 52 y=
J x+1 Y 2x +3

49 y =

Exer. 53-54: Find an equation of the tangent line to the
graph of f at P.

5

54 f(x) =3x*—2Jx; P(4,44)
55 Find the x-coordinates of all points on the graph of

y=x>+ 2x2 — 4x + 5 at which the tangent line is
() horizontal (b) parallel to the line 2y + 8x = 5

56 Find the point P on the graph of y = x> such that the
tangent line at P has x-intercept 4.

57 Find the points on the graph of y = x3/% — x1/2 at which

the tangent line is parallel to the line y — x = 3.

58 Find the points on the graph of y = 3+ 53 at VL/hich
the tangent line is perpendicular to the line 2y 4+ x = 7.

Exer. 59-60: Sketch the graph of the equation and find
the vertical tangent lines.

59 y= \/_ —4
61 A weather balloon is released and rises vertically such
that its distance s(¢) above the ground during the first 10
sec of flight is given by s(t) = 6 + 2 + t2, where s (1)
is in feet and ¢ is in seconds. Find the velocity of the
balloon at
(@)r=1,tr=4,andr =8
(b) the instant the balloon is 50 ft above the ground

60 y=x/342

62 A ball rolls down an inclined plane such that the distance
(in centimeters) that it rolls in 7 seconds is given by
s(t) = 263 4+ 362 + 4 for 0 <t < 3 (see figure).

(a) Find the velocity of the ball at t = 2.
(b) At what time is the velocity 30 cm/sec?

Exercise 62
s(0) AN

N
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Exer. 63-64: An equation of a classical curve and its
graph are given for positive constants a and b. (Consult
books on analytic geometry for further information.)
Find the slope of the tangent line at the point P.

3
a ) .
63 Witch of Agnesi:  y=——5 Pla, a/2)
a” +x
AY
a\
x
abx

64 Serpentine curve: = : P(a, b/2)
erp y 22 n 2

Yy

|

Exer. 65—66: Find equations of the lines through P that
are tangent to the graph of the equation.

65 P(5,9); y=x> 66 P(3,1); xy=4

Exer. 67-70: If f and g are functions such that
f@=3, f(=-1, g2)=-5, and g(2)=2, eval-
uate the expression.
67 @) (f+9@ G F-'Q () @NHD
@ ()@ (e) (f/8) @ ) A/ @
68 (a) g—N'Q@ (b)/NHQ
(c) 49 () (d) (J/‘f)’(?-)

69 (a) 2f —g) (2 (b) (5f+39)'®2
’ 1 !
(o) (8)' (d) (——f " g) %)

70 (a) B3f —28)'(2) (b) (5/8)'(2)
, f )'
6f)(2 d)|{——) @2
(c) 6/)(2) ()(f+g @
71 If f, g, and h are differentiable functions of x, use the
product rule to prove that

d
e = f'gh+ fg'h+ fgh'.

T |

As a corollary, let f = g = h to prove that
d 3 2 g7
d—(f(x)) =3 () f(x).
X

72 Extend Exercise 71 to the derivative of a product of four
functions, and then find a formula for (d/ dx)(f (x))4.

Exer. 73-76: Use Exercise 71 to find dy/dx.
73 y = 8x — D2 +4x + (x> = 5)

74 y = (3x* — 10x? + 8)(2x* — 10)(6x +7)
75 y = x(2x3 = 5x — (62> +7)

76 y =4x(x — 1)(2x — 3)

77 As a spherical balloon is being inflated, its radius 7 (in
centimeters) after ¢ minutes is given by r = 3./t for
0 <t < 10. Find the rate of change for each of the
following with respect to ¢ at ¢ = 8:

(a) the radius (b) the volume V of the balloon
(c) the surface area S of the balloon

78 The volume V (in cubic feet) of water in a small
reservoir during spring runoff is given by the formula
V = 5000(¢ + 1) for ¢ in months and 0 < ¢ < 3. The
rate of change of volume with respect to time is the
instantaneous flow rate into the reservoir. Find the flow
rate at times ¢ = 0 and t = 2. What is the flow rate when
the volume is 11,250 f£?

79 A stone is dropped into a pond, causing water waves that
form concentric circles. If, after ¢ seconds, the radius of
one of the waves is 40¢f centimeters, find the rate of
change, with respect to 7, of the area of the circle caused
by the wave at
(ayr=1 (b)t=2 ()t =3

80 Boyle’s law for confined gases states that if the
temperature remains constant, then pv =c, wherq 4
is the pressure, v is the volume, and ¢ is a constant.
Suppose that at time f (in minutes) the pressure is
20 + 2 centimeters of mercury for 0 <7 < 10. If the
volume is 60 cm> at ¢ = 0, find the rate at which the
volume is changing with respect to £ at ¢ = 5.

81 When a bright light is directed toward the eye, the pupil
contracts. Suppose that the relationship between R, the
area of the pupil (in square millimeters), and x, the
brightness of the light source (in lumens), is given by

_40+423.7x*

14395
The rate of change dR/dx is called the sensitivity at
stimulus level x.

(a) Show that R decreases from 40 to 6 as x increases
without bound.
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b) Find a formula for the sensitivity as a function of x. 83 (a)If f(x)= -2 +2, approximate f'(1) using
(b)

(c) Using the result of part (b), plot the graph of the
sensitivity as a function of x for x > 0. Approximate
the value of x for which the absolute value of the
sensitivity is largest.

To win a point in racquetball, a player must have the

serve and then win a rally. If p is the probability of

winning a rally, then the probability § of achieving a

shutout (winning 21-0) is given by

s_1tp <__P - _>”
2 \i-p+p*)
provided each player is equally likely to have the

initial serve. Note that a probability is always a number
between O and 1.

(a) Find the rate of change of S with respect to p.

,E](b) Estimate this rate of change when p = %

Exercise 53 of Section 2.2 with A = 0.1.

(b) Graph the following on the same coordinate axes:
y = f(x), the secant line I, through (1, f(1))
and (1.1, f(1.1)), and the secant line [, through
0.9, £(0.9)) and (1.1, f(1.1)).

(¢) Find f'(1) and explain why the slope of [, is a better
approximation to f'(1) than is the slope of /,.

E 84 )If f(x) = 3+ 1, approximafe £'(0) using Exer-

cise 53 of Section 2.2 with i = 0.1.

(b) Graph the following on the same coordinate
axes: y = f(x), the secant line through (0, £(0))
and (0.1, £(0.1)), and the secant line through
(—0.1, £(—0.1)) and (0.1, £(0.1)).

(c) Why don’t the slopes of the secant lines in part (b)
approximate f”(0)?

2.4  DERIVATIVES OF THE TRIGONOMETRIC FUNCTIONS

2.4 Derivatives of the Trigonometric Functions

Theorem 2.22

=
o

@5 v In this section, we examine limits and derivatives involving the trigono-

metric functions. To obtain formulas for the derivatives of these functions,
we must first prove several results about limits. Whenever we discuss lim-
its of trigonometric expressions involving sin @, cos ¢, tan x, and so on, we
shall assume that each variable represents the radian measure of an angle
or a real number.

Let 6 denote an angle in standard position on a rectangular coordinate
system, and consider the unit circle U in Figure 2.25. According to the
definition of the sine and cosine functions, the coordinates of the indicated
point P are (cosd, sind). It appears that if & — 0, then siné — 0 and
cos 6 — 1. This suggests the theorem on the following page.

Figure 2.25 '

P(cos 8. sin 6)

sin 6

0 :'M A(L0)  x

= C0os 6>

Theorem 2.23

0] gl_l;.%SIHQ =0

-8 - 9 _—
(i) égl}) cOs 1

PROOF

(i) Let us first show that lim,__ 5, sinf = 0. If 0 < ¢ < 7/2, then, re-
ferring to Figure 2.25, we see that

O0<MP < A/P,

where M P denotes the length of the line segment joining M to P and
N\
AP denotes the length of the circular arc between A and P. By the
definition of radian measure of an angle, A/I\’ = @, and therefore the
preceding inequality can be written
0 <sinf < 8.

Since limy_, ,+ @ = 0 and lim,__ 4+ 0 = 0, it follows from the sandwich
theorem (1.15) that lim,,_, . sinf = 0.

To complete the proof of (i), it suffices to show that lim, - sinf =
0.If —7/2 < 0 < 0, then 0 < —6 < 7/2 and hence, from the first part
of the proof,

0 < sin(—60) < —6.

Using the trigonometric identity sin(—6) = — sin8 and then multiply-
ing by —1 gives us
8 <sinf < 0.

Since lim,_, ,- & = 0 and lim,_ ,- 0 = 0, it follows from the sand-
wich theorem that lim,,_ ,- sin§ = 0.

(ii) Using sin?® +cos’6 =1, we obtain cos® = £v1 — sin?0.
If_ —n/2 <O < m/2, then cosf is positive, and hence cosf =
V1 —sin?6. Consequently,

I
lim cos 6 = lim \/ 1 — sin?6
0—0 0—0

=\/“1im(1—sin29)
0—0
=J/1-0=1. ==

In Section 1.1, we used a calculator and a graph to guess the limit stated
in the next theorem (see page 86), which we can now prove.

inf
lim Gl = ]
80




0

tan 6

Y

2 —

—r

i
]
:{

W e

Theorem 2.24

A(1, 0)
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PROOF If 0 <6 < m/2, we have the situation illustrated in Figure
2.26, where U is a unit circle. Note that

MP =sinfd and AQ =tané.

From the figure, we see that
Area of AAOP < area of sector AOP < area of A AOQ.

From geometry and trigonometry,

Area of AAOP = 1bh = L(1)(M P) = Lsing,

Area of sectorAOP = 3r%0 = 1(1)%9 = 19,

Area of AAOQ = $bh = 1(1)(AQ) = L tang.

Hence the preceding inequality may be written
3sing < 16 < 1tané.

Using the identity tan6 = (sin6)/(cos 6) and then dividing by % sin 6
leads to the following equivalent inequalities:

6 1
l< — < ——
sind  cos@
sin@
1> - > cosé

sin @
cosd < = <

The last inequality is also true if —7/2 < @ < 0, for in this case we have
0 < —0 < 7/2 and hence

in(—0
cos(—~g) < ¢ . ) <1,
Using the identities cos(—60) = cos @ and sin(—6) = — sin6, we again
obtain
sin 6

cosfd < — < 1.
<< 9 <

Since lim,_, ,cosé = 1 and lime_)o 1 =1, the statement of the theo-
rem follows from the sandwich theorem. ==

We shall also make use of the following result.

lim 1 —cosé -0
60 0

PROOF If welet 8 =0 in the expression (1 — cos@)/8, we obtain
0/0. Hence we must change the form of the quotient. Remembering from
trigenometry that 1 — cos® 6 = sin? 9, we multiply the numerator and the

2.4 Derivatives of the Trigonometric Functions

1 —cosf 1 —cos@® 14 cosb

6 6  14cosd
1 —cos®8 sin® 6 sind  sind
:0_(1+cos9)_9(1+0059)_ 6 1+ cosb

Consequently,
.1 —rcosf . sinf sinf
T =3£%(T‘ ﬁ)
— lim sin 6 Mim sin 6 ]
6—>0 6 6014 cosf
=l-——0—:1-0:0. =
1+1

The next three examples illustrate the use of Theorems (2.22), 2.23),
and (2.24) when finding limits of trigonometric expressions.

sinSx

EXAMPLE=1 Find lim .
=0 2x

SOLUTION We cannot apply Theorem (2.23) directly, ;ince the
given expression is not in the form (sint)/t. However, we may 1nt.roduce
this form (with ¢ = 5x) by using the following algebraic manipulation:

sin 5x . lsinSx

lim = lim —
x—0 2x =02 x

5sin5x
m =

1-»02 S5x
in 5
51 sin S5x

=1
Py
zixl—% 5x

It follows from the definition of limit that x — O may be replaced by
5x — 0. Hence, by Theorem (2.23), with = 5x, we see that

5 sin Sx 5 5

. = —(1) = —.

yim =y =2 =3
. tant
EXAMPLE®=2 Find lim —.
—0 2t

SOLUTION Using the fact that tan? = (sint)/(cost) yields

tant _ . <1 sint 1 )
lim— =lm |z — —
tgr(l) 2t 10

T

denominator of the expression by 1 + cos 6 and then simplify as follows:
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EXAMPLE=3 Findlinbz—x-w.
x—> X

SOLUTION We plan to use Theorem (2.24). With this in mind, we
begin by isolating the part of the quotient that involves (I — cosx)/x and
then proceed as follows:

. 2x+1—cosx . 2x 1 —cosx
im —mm—— =lim( —+ ——
x—0 3x =0\ 3x 3x
. 2x . 1 /1—cosx
=lim|{— )+ lim - { -
x—0\ 3x =03 X
.2 1. 1—cosx
= lim - + = lim ———
x—=073 3 x>0 X

We may now establish the formulas listed in the following theorem,
where x denotes a real number or the radian measure of an angle.

Derivatives of the Trigonometric

i d
Functions  2.25 E(sinx) = COS X Ed;(cos X) = —sinx
d d
—(tanx) = sec? x —(cotx) = — cse? x
dx dx

d d
—(secx) = secxtanx —{CSCX) = —CSCx cot x
dx dx

PROOF  Applying Definition (2.5) with f(x) = sinx and then using
the addition formula for the sine function, we obtain

sin(x + h) — sinx

d (sinx) = 1i
—(s —
dx mx m

h—0 h

. sinxcosh +cosxsinh — sinx
= lim

h—0 h

. sinx(cosh — 1)+ cosxsinh
= lim

h—0 h

) l: . (cosh—l) <sinh)]
= lim |sinx { ———— ] + cosx . . .
h—0 h h
By Theorems (2.24) and (2.23),
cosh — 1 sinh

lim ———— = lim — =1
e -

d
and hence E(sin x) = (sinx)(0) + (cos x)(1) = cos x.

2.4 Derivatives of the Trigonometric Functions

We have shown that the derivative of the sine function is the cos.ine
function. We may obtain‘the derivative of the cosine function in similar
fashion:

d . cos(x +h)—cosx
—(cosx) = lim —————
dx h—0 h

cosxcosh —sinx sink — cosx

= lim

h—0 h
. cosx(cosh — 1) —sinxsinh
= lim
h—0 h

. cosh —1 . (ﬂ)]
=}}1_I_>I}) [cosx(T) —sinx P
= (cos x)(0) — (sinx)(1) = —sinx

Thus the derivative of the cosine function is the negative of the sine func-

tion. .
To find the derivative of the tangent function, we begin with the funda-

mental identity tan x = (sin x)/(cosx) and then apply the quotient rule as

follows:
d d /sinx
E(tanx) T dx <cosx)

d . o d
cosxa(smx) - s1nxgx—(cos x)

B cos® x
cos X cosx — sinx(— sinx)
cos® x
2 ")
x + sin”“ x 1
_ XL = = sec’x

N 0082 X COS2 X

For the secant function, we first write sec x = 1/cos x and then use the
reciprocal rule (2.21):

d _d 1 )
E(seox) " dx\cos x

i(cos x)

0082 X

—sinx

0052 X

sin x

COS2 X

1 sinx
= secxtanx

COS X COS X
Proofs of the formulas for (d/dx)(cotx) and (d/dx)(cscx) are left as
exercises. [

o T
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: MPLE®=6 Find dy/do if y = sec6 cot 6.
We can use (2.25) to obtain information about the continuity of the ' EXA Y
trigonometric functions. For example, since the sine and cosine functions SOLUTION We could use the product rule as in Example 5; how-
are differentiable at every real number, it follows from Theorem (2.12) ever, it is simpler to first change the form of y by using fundamental
that these functions are continuous throughout R. Similarly, the tangent i den,tities as follows:
function is continuous onthe open intervals (—x/2, 7/2), (7/2, 31/2), 1 cosé 1
and so on, since it is differentiable at each number in these intervals. y =secfcot § = - = - = csco
cosd sinf  sinf
sin x Applying (2.25) yields
EXAMPLE=4 Findy' ify = —~ dy d
14 cos — = —(cscf) = —cscbcot 6.
oosx a6 = a0?
SOLUTION By the quotient rule and (2.25),
d . . d
(1+cosx)a(s1nx)—smxd—£(l—I—cosx) EXAMPLE=7
y = (1+ cos x)? (a) Find the slopes of the tangent lines to the graph of y = sinx at the
| 0 (0 — s points with x-coordinates 0, /3, /2, 27/3, and 7.
_ (I+cosx)cosx —sin 2)6( — sinx) (b) Sketch the graph of y = sinx and the tangent lines of part (a).
(1 + cosx) (c) For what values of x is the tangent line horizontal?
__cosx + cos? x + sin® x
B (1 + cosx)? SOLUTION
cosx + 1 (a) The slope of the tangent line at the Point,(x, y) on the graph of the
B m 5 equation y = sinx is given by the depva‘uve ¥ = cos x. The slopes at the
] | desired points are listed in the following table.
" T+cosx r i — = n_|
1 I —-— U —_—
| ‘ 3 2 3
In the solution to Example 4, we used the fundamental identity y' =cosx 1 % 0 _% -1 |
; cos®x + sin? x = 1. This and other trigonometric identities~are often = ! —
.'!l-l'- " useful in simplifying problems that involve derivatives of trigonometric .
L' i | functions. (b) A portion of the graph of y = sin x and the tangent lines of part (a) are
f:?l.- | , sketched in Figure 2.27.
i . ; . _ ! =1
f'l II EXAMPLE=S Find g'(x) if g(x) = sec x tan x. ‘ Figure 2.27 N - |
o |' SOLUTION By the product rule and (2.25), e
I ( d d
B} . gx) = secx——(tan x) + tan x — (sec x) TR
8l r | dx dx 2 =0
j | | = sec x sec’ x + tan x (sec x tan x) 1 \ e
o || = sec’ x + sec x tan? x | / i
h = sec x(sec” x + tan? x). : 7 ——4 ? > 1
. , . . T 7T w2 T 2m
_ J The formula for g’(x) can be written in many other ways. For example, 3 372 3
b 1L
| ecause : / m= 1
I_;‘ sec x:tan2x+1, or tan2x=sec2x—l, o
we can write g -
m= -1
g'(x) =secx(2tan? x + D, or g(x)=secx2sec’x— 1.
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(¢) A tangent line is horizontal if its slope is zero. Since the slope of the soLurio N ]
tangent line at the point (x, y) is y’, we must solve the equation (a) The rate of change of R with respect to 6 is given by dR/d6. With
. v = 80, we have R = 400sin 8 cos 6. Using th i
Figure 2.28 V' =0: thatis, cosx — 0. " ‘ g the product rule (2.19) gives
y i o : - : d .
1 Tangent line Thus the tangent line is horizontal if x = 47/2, x = +37/2, and, in gen- i 400 [sm 60 70 (cos8) + cos @ 70 (sin 9)]
R eral, if x = (7/2) + nn for any integer n. Figure 2.30 _ '
y R = 400[sin 6 (—sin0) + cos @ cos 6]
T = 400[—sin® § + cos? 61,
i ~ - i i - 200 + : L
If fisa dlllfferentlable f.‘m(l:ltloll}’ then the no;me.ﬂ line at a point which we can rewrite, using a double-angle formula, as 400 cos 20. Thus
P(a, f(a)) 1911 the grlaph of f is the mezﬂggugh {) that is perpendicular to the rate of change of R with respect to 6 is 400 cos 26 feet per radian. For a
Normal line the tangent line, als illustrated in Flg‘frl‘? 28.1f f (,a) G (f)’ tl/len, by (g)g”) particular value of 6, dR/d6 is an estimate of the number of feet the range
on page 15, Fhe slope pf the normal line is —1/f'(a). It f .(a) = 0, then of the projectile changes for each radian change in 6.
» the tangent line is horizontal, and in this case the normal line is vertical e e
* and has the equation x = . 100 + (b) F.rom part (a), dR/d6 = 400 cos 26, which is positive if cos26 > 0;
that is, if 0 <26 < /2, which corresponds to 0 <8 < 7/4. f 6 is a
positive angle less than 7/4, then a small increase in 6 means a positive
EXAMPLE®=8 Find an equation of the normal line to the graph of value for the rate of change of the projectile’s range. Figure 2.30 shows a
y = tanx at the point P(x/4, 1), and illustrate it graphically. graph of the function R = 400siné cos 6. We see that R is increasing for
— Iy g | , \ - values of 6 between 0 and 77/4 and R is decreasing for values of  between
SOLUTION Since y = sec?x, the slope m of the tangent liie at P T 7 W ¢  m/4 and 7/2. Do not mistake the graph in Figure 2.30 with the graph of
Figure 2.29 is | the path of the projectile.
AY T
| f | | m:seczz=(«/§)2=2
| | | |
| | | | .
s | | and hence the slope of the normal line is —1/m = —1/2. -
} S } } Using the point —slope form, we can express an equation for the normal EXERCISES 2.4
' |1 ' line as . SRR RS e S e R — - 5 e W)
L PN/ L =
} A } i II ,,T\\Tl x y—1= 5 (x - Z) ) Exer. 1-26: Find the limit, if it exists. ' 17 lim 1 —cost 18 lim sin %x
| i i | | Tim x T sin x t—0 sint =0 X
I' ]I |' II or y:_lx_i_z_}_l x—0 sinx x>0 \3/; 9 hmx+tan‘x 20 1 Sin22t
I | | I 2 8 3 lim sin’ ¢ 4 lim 30 + sind x>0  sinx 0 2
I' f I, II The graph of y = tanx for —37/2 < x < 37/2 and the normal line at P 10 (21)3 0—0 0 csc 2x
| | | I are sketched in Figure 2.29. 2 4sinx 1 —cos3t 21 Lim x cotx 22 limy ==
5 lim 6 lim ——
-0 3+4+x t—>0 t sin 3x
2cosf — 2 X241 23 lin%)oz2 csc? o 24 lin}) .
. . — x—>
The next example illustrates an application involving the derivatives of 7 lim 8 lim * .21
; - 8—0 36 x—>0x 4 cosx cos(v + ln) sin? Ly
the trigonometric functions. sin(—3x) X sinx 25 lim ——2—~ 26 lim ——2
9 lim 10 lim v—0 v x—0 sinx
x>0  4x =0 x2 41
1 B0 . .
EXAMPLE®9 Ifaprojectileis fired from ground level with an initial | . 1—cosx gt 27°50: Lsablisth fhe sliits [or 1af tnonzere el
| . L 1l lim ———— numbers a and b.
I, velocity of v ft/sec and at an angle of 6, then the range R of the projectile I x>0  2/3 snar  a 1 — cosax
a . . - . H -
) is given by | ) i 1 —2x2 ~2cosx + cos? x 27 )}1_% e B 28 )}g}x})——bx 0
' i | R = v fcosfd for0 <@ z | =0 ** sinax a . cosax
B _Esm cos OEUES S 2" . 44 + 3tsint . xcosx — x? im — = - 30 lim =
.| | | 13 tlg% 2 14 )}13}) o x—>0sinbx b x—0 cos bx
| 4: (a) If v = 80 ft/sec, find the rate of change of R with respect to 9. cost s Exer. 31-58: Find the derivative.
. . . . . i
(b) Determine the values of 6 for which the rate of change in part (a) is 15 tll_I)I(l) [—sinz 16 o oot 31 f(x) =4cosx 32 H(z) = Ttanz

positive.
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33 G(v) =5vcscv 34 f(x) =3xsinx
35 k(t) =t — > cost
sin 6 1 —cosa

3T fO) =5~ 38 gla) =

39 g(t) =13sint

36 p(w) = w? + wsinw

40 T(r) =r’secr
41 f(x) =2xcotx +x%tanx

42 f(x) = 3x2secx — x> tanx

1 —cosz cos w
43 h(z) = —— 44 R(w) = ———
) 1+cosz (w) 1 —sinw
45 g(x) = ——— 46 k(x) = !
sinx tan x cos x cotx

47 g(x) = (x +cscx)cotx
48 K(0) = (sinf + cos 0)2

49 p(x) =sinxcotx 50 g(t) =csctsint

tan x
51 f(x) = —— 52 h(p) = 50
1+x 1—secé
cscv
53 k(v) = — 54 g(t) =sintsect

sec v
55 g(x) = sin(—x) + cos(—x)
56 s(z) = tan(—z) + sec(—z)
57 H(¢) = (cotp + csc @) (tan ¢ — sin¢)

58 F(x) = 1+sec.x
tanx -+ sinx

Exer. 59'—60: Find equations of the tangent line and the
normal line to the graph of f at the point (/4, f(n/4)).

59 f(x) =secx 60 f(x) =cscx+cotx

Exer: 61-64: Shown is a graph of the function f with
r_estrlcted domain. Find the points at which the tangent
line is horizontal.

61 f(x)=cosx+sinx, 0<x <27

2r X
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62 f(x)=cosx—sinx, 0<x<2mw

AY

63 f(x) =cscx +secx, 0<x<m/2

INERS
oI 4
o |

64 f(x)=2secx —tanx, —n/2<x <mw/2

w Y

~13 T
INIEE S

2.5 The Chain Rule

Exer. 65-66: (a) Find the x-coordinates of all points on
‘the graph of f at which the tangent line is horizontal.
(b) Find an equation of the tangent line to the graph of f
atP.

65 f(x) =x+2cosx; P(0, f(0)
66 f(x)=x+sinx; P(xn/2, f(/2)

67 If y =3+ 2sinx, find
(a) the x-coordinates of all points on the graph at which
the tangent line is parallel to the line y = V2x =5

(b) an equation of the tangent line to the graph at the
point on the graph with x-coordinate /6

68 If y = 1 + 2cos x, find
(a) the x-coordinates of all points on the graph at which
the tangent line is perpendicular to the line

1
y=-—=x+4
NE)
(b) an equation of the tangent line to the graph at the
point where the graph crosses the y-axis

El 69 Graph f(x) = | sin®x — cosx sin(§7x)| on the interval
[0, 5] and estimate where f is not differentiable.

(] 70 Graph f(x) =4/(16sin2x —x) on the interval [0, 4]
and estimate the x-coordinates of points at which the
tangent line is horizontal.

Exer. 71-72: A point P moving on a coordinate line ! has
the given position function s. When is its velocity 0?

71 s(t) =t +2cost 72 s(t)=t—«/§sint

__|

Exer. 73-74: A point P(x, y) is moving from left to right
along the graph of the equation. Where is the rate of
change of y with respect to x equal to the given number
a?
73 y=x3/2+2x; a=28
74 y=x5/3— 10x; a=>5
75 (a) Find the first four derivatives of f(x) = cos x.

(b) Find £ (x).
76 Find f”(x) if f(x) = cotx.

43
77 Find —)3) if y = tanx.
dx

d3
78 Find = if y = secx.
dx

Exer. 79-82: Prove each formula.

79 —(cotx) = —csc™x
dx

d
80 —(cscx) = —cscxcotx
dx
d . . .
8l —x(sm 2x) = 2cos2x (Hint: sin2x = 2sinx cos x.)

d .
82 ZI_(COS 2x) = —2sin2x (Hint: cos2x =1 —2 sin” x.)
X

83 Use Theorem (2.22) and the addition formula for the
sine to show that the sine function is continuous at
x = a. (Hint: Show lim, _ ,sin(a + k) = sina.)

84 Work Exercise 83 for the cosine rather than the sine.

2.5  THE CHAIN RULE

Y VR . % In this section, we will study perhaps the single most powerful tool for
: = differentiation: the chain rule for differentiating composite functions. The

rules for derivatives obtained in previous sections are limited in scope be-

cause they can be used only for sums, differences, products, and quotients

that involve x”, sinx, cos x, tan x, and so on. There is no rule that can be

applied directly to expressions such as sin2x or x% + 1. Note that

d
—(sin2x) # cos 2x,
dx

for if we use the identity sin 2x = 2sin x cos x and apply the product rule,
as in Example 9 of Section 2.4, we obtain

d
— (sin2x) = 2 cos 2x.
dx




|
|
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¥

Since these manipulations are rather cumbersome, we seek a more
direct method of finding the derivative of y = sin 2x. The key is to regard
y as a composite function of x. Thus, for functions f and g,

if y=f(@) and u=g(x), then y= f(g(x)),
provided g(x) is in the domain of f: The function given by y = f(g(x))
is the composite function f o g defined on p. 29. The functions f and g

are called the components of the composition. Note that y = sin2x may
be expressed in this way because

if y=sinu and u=2x, then y=sin2x.
If we can find a general rule for differentiating y = f(g(x)), then, as a
special case, we may apply it to y = sin 2x and, in fact, to y = sin g(x) for
any differentiable function g.

To get an idea of the type of rule to expect, let us consider a com-
posite function that we can easily differentiate by changing its form. If
y = (x* — 1)%, then we can represent y in a composite function form by
letting u = g(x) = x*—1 and fu) = u? so that y = f(g(x)). We can
find the derivative of y with respect to x by expanding the original expres-
sion for y to obtain

y=ul=x -1 =x~2x3+1,

and then differentiating, term by term, to obtain

d
Y =G0 = 7 = 67— 627,
x
which can be written as
6x° — 6x2 = 6x2(x> — 1) = 2(x% — 1)(3x2).
Note here that
3 dy / ) du ’
26 =) =2u=— = f'(g(x)) and 3x° = — = g'(x),
du dx
so we can write the derivative of f(g(x)) in the following equivalent
forms:
d dy du

fw)y= f'wg'x) or [f(gx)) = f'(gx)g'(x) or DDA

dx dudx

These results suggest a rule indicating that the derivative of the composite
function is a product of derivatives of the component functions.

Note too that this rule also holds true for the derivative y = sin2x, for
if we write

y=siny and u=2x

and use the suggested rule, we obtain

d dy di
é = ﬁé = (cosu) (2) =2cosu = 2cos2x.
The fact that the same rule gives the correct answer for both of these

examples-of composite functions is no accident. The chain rule for differ-

2.5 The Chain Rule

Chain Rule 2.26

[ A TR

entiation states that the derivative of a composite function is always the
product of the derivatives of the component functions, provided they exist.

If y= f(u),u = g(x), and the derivatives dy/du and du/dx both
exist, then the composite function defined by y = f(g(x)) has a
derivative given by

dy oy i)idﬁ | 7 ’ e ’ !
e flag'(x) = f(gx)g'(x).

PARTIAL PROOF Using Definition (2.5), we must show that

. fgx+h) — f(g(x)
lim
h—0 h

If A is close to 0 and g(x + k) # g(x), we can write the left-hand side of
the equation as
. [fgx+h)— flgx) glx+h)— g(X)]
lim . :
h—0 glx+h)y—gx) h
If each factor has a limit, then by Theorem (1.8)(ii), the above limit can be
written as

= ['(g(x)g' (x).

g +h)— fgx) . 8&+ h) —8x)

h1—>0 gix+h)—gk) =0 h
By Definition (2.5),
lim 8T Z 80 g'(x),
h—0 h
s0 it remains to be shown that
flgx+h) — fg(x) _ F(e()).

im

h—0  glx +h)—gkx)

To see why this last result is true, first note that since g is differentiable, iF is

continuous. Thus, as & — 0, g(x + &) — g(x). Note too that Alternative
Definition (2.6) can be written in the form

f’(a) — lim I(t) - f(a)

t—a tr—a
If we now let @ = g(x) and ¢ = g(x + h),
fGx+h)—fgx) . f@®)— fla)

= lim
h—0 glx+h)—gkx) h—0 t—a
. f@) — fla)
= lim —_—
g(x+h)—>g(x) t—a
. f(@) — fla)
= umum ———————
t—a t—a

= f(@) = f'(gx)),

which is what we needed to prove. 1l
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: . . /.5 7
In many applications of the chain rule, the function ¥ = g(x) has the EXAMPLE®2 Find f'(x)if f(x) = (x> — 4x + 8)’.

. I
property that g(x + i) £ g(x) for values of h sufficiently close to 0, a . ) s
property that we assumed at the beginning of the proof. If g does not satisfy SoLU .T 10N Using the power rule (2.27) with u = x> — 4x + 8 and
this property, then every open interval containing x contains a number n =T yields
x + h for which g(x + h) = g(x), so that g(x + &) — g(x) = 0. In such fx) = i(xs _dx + 8)7
: cases, our proof is invalid, since the expression g(x + &) — g(x) occurs in dx
the denominator. To construct a proof that takes functions of this type into a5 6 i 5_4 ]
(o account requires additional techniques. A complete proof of the chain rule l =707 —4x+8) dx (x *+8)
E. 18 giVen in Appendix 1. — 7(x5 — 4x + 8)6(5x4 _ 4).
dy
EXAMPLE=| Find—ify = uandu = x>+ 1. dy 1
dx E®*3 Find—ify=—5—"—.
'h' EXAMPL ind — -1ty @x2 +6x —7)°
| SOLUTION If we substitute x2+1foruiny=ﬁ=u1/2, we 5 ; .
L obtain : SOLUTION ) Writing y = (4x* 4+ 6x — 7)™ and using the power
IIZh y = /2 1=+ 1)1/2 rule with # = 4x~ + 6x — 7 and n = —3, we have
' B B ' dy d 2 -3
f — =—(4 6x -7
i We cannot find dy/dx by using previous differentiation formulas; however, dx dx (4" + b )
h ) . d
g using the chain rule (2.26), we have ! — _3(4x? + 6x — 7)_4d_(4x2 +6x—T)
Ir;. dy _ dy du _ 1 _1/2 2 _ §
| ' dx dudx  \2" x_7_; = —3(@4x> 4+ 6x —T)"*(8x +6)
,‘I" . &y N 1 _ —6(4x +3)
‘& and hence o = = 1- , 4_(4x2 T 6x — 7)4
| |
1
{
|| .
o | . ’ . _ 3 2 _
: | In Example 1, the composite function was given by a power of x% + [. EXAMPLE®4 Find f'(x)if f(x) = ‘/3)6 x+4.
s Since powers of functions occur frequently in calculus, it will save us time . 2 1/3 .
| —_ J—
.f'.,-'l_ I to state a general differentiation rule that can be applied to such special ' SOL U TION 5 Writing f (x) = (15 =X + 4)""" and using the power
.1_!; cases. In the following, we assume that n is any rational number, g is a rule with u = 5x° — x + 4 and n = 3, we obtain
. || differentiable function, and zero denominators do not occur. We shall see 1_, o3d o
o || later that the rule can be used for any real number 7. fl(x)= E(Sx, —x+4) E(SX —x+4)
M ; 1 1 10x — 1
B Power Rule for Functions 2.27 = (§> 2 4)2/3 10x —1) = 5_3—_—_— /(5% — x + 4)%
I [|| If y = u" and u = g(x), then | (Sx"—x+4) <
|, T
bl Dy i |
| dx dx’ | EXAMPLE®S Find F'(z) if F(z) = 2z +5)°(3z — D*.
1 d d .
' or, equivalently, 3;(8 (x)" = nfgx)]"! zi‘x“(g (x)). f SOLUTION Using first the product rule, second the power rule, and

then factoring the result gives us
7 S'd 4 _ 41 3
PROOF By the chain rule, l' F(z)=2z+5) d—z(3z — 1)3 +@Bz-1 dz4(22 +5) 2
d_y _ @jd_” — nun—ld_u _ n[g(x)]n—lfl—(g(x)). [ =(2z+ 5)32-4(32 - 13) B+ @Bz—-1)"-32z+5°2)
dx  dudx dx dx . =602z +5)"(Bz—1)’[22z+5) + 3z — 1)]
l = 6(2z +5)*Bz — (72 + 9).
Note that if u = x, then du/dx = 1 and (2.27) reduces to (2.10). |
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EXAMPLE®=6 Findy ify = (3x + 1)%4/2x — 5.

SOLUTION Sincey = Bx+ 1)° 2x — 5)1/2 we have, by the prod-
uct and power rules,

= (Bx + D%42x — 5)722) + (2x — 5)26(3x + 1)°(3)

6
3’% +18Gx + 1)’v2x = 5
=
_Gr+D°+18Bx+1)°x ~5)  (Bx +1)°(39x — 89)

V2x —5 N J2x =5

The next example is of interest because it illustrates the fact that after
the power rule is apphed to [g(x)]", it may be necessary to apply it again
in order to find g’(x).

EXAMPLE®7 Find f/(x)if f(x) = (7x + V%2 + 6)*.
SOLUTION Applying the power rule yields
F1(x) = 4(7x + Mf —(7x+ V3% +6)
= 4(7x + V<2 1 6)° [E(m + d—x(\/x2_+6)] .

Again applying the power rule, we have

d d
ZVE 0 =67 +6) = (2+6) 1/2 — (&7 +6)
X

\/x2-|—6'

— —(2x) =

2\/x +6

Therefore,

) =40x + Vx> + )3(7+ )
X X X m

As another application of the chain rule, we can prove the following.

If u = g(x) and g is differentiable, then

—-d-(sin u) = cosudu d (cosu) = —sin ¥
& S R g e
d du d du
== &= 2% 4 A =8 e 2] e
dx(anu) sec” u T dx(cotu) cscu =

d(secu)*secutanudu d(csc )=—c¢ t 4
s =S i = U) = — CSCU CO ch—

2.5 The Chain Rule

m-l

PROOF Ifwelety=sinu, then, by (2.25),
dy

—— = COoSU.
u
Applying the chain rule (2.26) yields
dy = d_y 511 = cos ud—u.
dx dudx dx

The remaining formulas may be obtained in similar fashion. mm

Note that Theorem (2.25) is the special case of Theorem (2.28) in
which u# = x.

EXAMPLE®8 Ify = cos(5x%), find dy/dx and d*y/dx>.

SOLUTION Using the formula for (d/dx)(cos u) in Theorem (2.28)
with u = 5x3, we have
d_y = i(cos(5)c3))
dx
= —sm(5x3) (5x3)
= —sm(5x3)(15x2)
= —15x2sin(5x).
To find d?y/dx?, we differentiate dy/dx = —15x?% sin(5x%). Using the
product rule and Theorem (2.28) gives us
2
LY ysi (s1n(5x3)) + sm(5x3) —(~15x?)
dx

= —15x2 cos(5x3)a(5x3) + sin(5x%)(=30x)

= —15x% cos(5x)(15x2) — 30x sin(5x>)
= —225x% cos(5x%) — 30x sin(5x3).

EXAMPLE®9 Find f/(x) if f(x) = tan’ 4x.

SOLUTION First note that f(x) = tan®4x = (tan4x)>. Applying
the power rule with ¥ = tan4x and n = 3 yields

d d
f'(x) = 3(tan 4x)za(tan 4x) = (3tan’ 4x)——(tan 4x).
Next, by Theorem (2.28),
—L-i— (tan4x) = sec? 4xi(4x) = (sec2 4x)(4) = 4sec? 4x.
dx dx

Thus
f(x) = (3 tan® 4x) (4 sec? 4x) = 12 tan” 4x sec” 4x.
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EXAMPLE®I0 If f(x) = sin(sinx), find

@ £/
(b) the slope of the tangent line to the graph of f at P(1, f(1)).

SOLUTION
(a) Let u = sin x and apply Theorem (2.28) to obtain

= L (sinuy = cosu ™ — coscsi
x) = I (sinu) = cos udx = cos(sin x) cos x.

(b) By Definition (2.1), the slope of the tangent line at P is f '(1), which
by part (a) is
F'(1) = cos(sin 1) cos(1)
~ ¢0s(0.84147) cos(1)
~ (0.66637)(0.54030) ~ 0.36004.

Compare this result with the numerical approximation discussed in Ex-
ample 5 of Section 2.1.

i

EXAMPLE®II A graph of y = cos2x +2cosx for0 < x é 2m is
shown in Figure 2.31. Find the points at which the tangent line is hori-
zontal.

SOLUTION Differentiating, we obtain

d d
D in2x—(2x) + 2(—sinx)
dx

dx
= —2sin2x — 2sinx.
The tangent line is horizontal if its slope dy/dx is 0 — that is, if
—2sin2x —2sinx =0, or sin2x +sinx =0.
Using the double-angle formula, sin2x = 2 sinx cos x, gives us

2sinx cosx + sinx = 0,

or, equivalently,
sinx(2cosx + 1) =0.

Thus, either
sinx =0 or 2cosx+1=0;

that is, sinx =0 or COSX = —%.

The solutions of these equations for 0 < x < 2m are
0, =m, 2w, 2n/3, 4n/3.

The two solutions x = 0 and x = 2 tell us that there are horizontal tan-
~gent lines at the endpoints of the interval [0, 27r]. The remaining solutions
27/3, 7, and 47r/3 are the x-coordinates of the points P, 0, and R shown
in Figure 2.31. Using y = cos 2x + 2 cosx, we see that horizontal tangent

Exercises 2.5
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linesﬂ(\)\c\c‘ur at the points
‘ (09 3)5 (27-[/31 _1'5)’ (T[, _1)7 (47[/35_15)9 (27[7 3)'

Ifb only approximate solutions are desired, then, to the nearest tenth we
obtain ’

©0,3), (21,-15), @G.1,-1), 42, ,-1.5), (6.3, 3).

Eailure to use the chain rule properly is a common error that can be avoided
if you write the function to be differentiated as a composition of simpler
functions.

‘ The chain rule is vitally important in calculus. It provides the power to
c%lfferentiate‘ complicated expressions involving many layers of composi-
tion. In the vast majority of calculus exercises or in applications of calcu-
lus to r.eal-world problems, differentiation plays a critical role. In virtually
every instance, the functions you will encounter will be compositions of
simpler functions, and you will need to use the chain rule to complete the
differentiation correctly.

§

Exer. 1-6: Use the chain rule to find dy/dx, and express 14 g(w) = (w* — 8w? + 15)*

the answer in terms of x.
I y=u% u=x3-4
2 y=Ju; u=x>+5x

3 y=1/u; u=+3x -2
4 y=3u2+2u; u=4x
5 y =tan3u; u=x?
6 y=usinu; u=x
Exer. 7-62: Find the derivative.
7 f(x) = (x* —3x +8)°
8 f(x) = (4x® +2x% — x — 3)?
9 g(x)=@Bx -7

10 k(x) = (5x2 —2x + 1)-3

T .
fx) o
4
12 gy = X 3" +1
2x +3)*

13 f(x) =@8x> - 2x2 4 x - 7)]

I5 F(v) = (17v — 5)1000

16 s(t) = (4° — 313 + 21) 2

17 N(x) = (6x — 7)3(8x% + 9)2

18 f(w) = Quw? — 3w+ DHGw + 2)*

1 6
19 ()=(2__>
8z Z 12

3
20 S() = <3t+4>

6r —7
21 k(r) = V8% +27

22 h(z) = 222 — 97+ 8)" /3

5 1
23 F(v) = —— 24 k(s) = ———
Vvd —32 V3s—4
2
w? —dw +3 =
25 g(w) = - 26 K(x) = Vax? +2x 13
w3?
2x+3
27 Hix) = 28 f(x) = (Tx +v/x* +3)8

Vax? +9

29 k(x) = sin(x? +2) 30 ()= cos(4 — 3r)




31
33
35
37
38
39
41
43
45
46
47

49

51
52
53
54
55
56

57

58

60
62

32 gx) = sin*(x*)
34 k(z) = csc(z? +4)
36 f(x) = tan(2x> + 3)

H() = cos’ 30

g(z) = sec(2z + 1)?
H(s) = cot(s® —25)
fx) = cos(3x2) + cos? 3x

gw) = tan’ 6w
F(p) = cs¢” 20
K(z) = 7% cot 57
h(@) = tan? 6 sec® 0
N(x) = (sin5x — cos Sx)5

40 M(x) = sec(l/x2)
42 G(s) = s csc(s?)
44 H(u) = u? sec® du

plv) = sin 4v csc 4v

Tw) = cotGuw+1) 48 g(r) =sin2r + 3)4

cos 4w sec 2x
0 = —
50 f(x) 1+ tan2x

h(w) =

1 — sin4w

fx) = tan® 2x — sec’ 2x

h(¢) = (tan2¢ — sec 2¢)°

f(x) = sin/x + Jsinx

f(x) = tan/5 — 6x

k(0) = cos® /3 — 80

r(t) = V/sin2t — cos 2t

gx) = Va4 1tanva® + 1

h{g) = ﬂ' 59 M(x) = sec/Ax + 1
e

F(s) = Vo 2s

£() = sin® 2t4/cos 21

61 h(x) = /4 +csc?3x

Exer. 63-68: (a) Find equations of the tangent line and
the normal line to the graph of the equation at P. (b) Find
the x-coordinates on the graph at which the tangent line
is horizontal.

63
64

65

66

y=@x* - 8x+3)% P(2,8D)

y=@x-D"% P(L1)
1 5
y= <x+ ;) ; P(1,32)
y=vu?+1; P(-1,4/3)
67 y = 3x +sin3x; P(0,0)
68 y = x +cos2x; PO, 1)

Exer. 69-74: Find the first and second derivatives.

69
71
73

gy =+3z+1 70 k(s) = (s2 + 4)2/3
k(r) = (4r +7)° 72 f(x) = J10x +7
f(x) = sin’ x 74 G(t) = sec’ 4t

75

76

77

78

79

80

82

[c]83

CHAPTER 2 The Derivative

If an object of mass m has velocity v, then its kinetic
energy K is given by K = %mvz. If v is a function of
time ¢, use the chain rule to find a formula for dK /dt.

As a spherical weather balloon is being inflated, its
radius 7 is a function of time #. If V is the volume of the
balloon, use the chain rule to find a formula for dV/dt.

When a space shuttle is launched into space, an

astronaut’s body weight decreases until a state of

weightlessness is achieved. The weight W of a 150-1b

astronaut at an altitude of x kilometers above sea level
is given by

2

W = 150 (ﬂ—) .

6400 + x

If the space shuttle is moving away from the earth’s
surface at the rate of 6 km/sec, at what rate is W
decreasing when x = 1000 km?

The length—weight relationship for Pacific halibut is

well described by the formula W = 10.375L3, where

L is the length (in meters) and W is the weight (ﬁn

kilograms). The rate of growth in length dL/dt is given

by 0.18(2 — L), where ¢ is time (in years).

(a) Find a formula for the rate of growth in weight
dW/dt in terms of L.

(b) Use the formula in part (a) to estimate the rate of
growth in weight of a halibut weighing 20 kg.

k(x) = f(g(x) andiff (D) = —4,8(2) = 2, f@=
3, and g'(2) = 5, find k(2) and &' (2).

Let p, g, and r be functions such that p(z) = q(r(@).
If r(3) = 3, ¢(3) = —2, 7'(3) = 4, and ¢'(3) = 6, find
p(3) and p'(3).

If £(t) = g(h(t)) and if f(4) =3, g@) =3,h(4) =4,
£/(4) = 2,and g'(4) = =5, find 1 (4).

If u(x) = v(w(x)) and if v(0) = —1, w(0) = 0, u(0) =
_1,v(0) = —3,and «’(0) = 2, find w’ (0).

Leth= fogbea differentiable function. The follow-
ing tables list some values of f and g. Use Exercise 53
of Section 2.2 to approximate /' (1.12).

x| 22210 22320 22430
. — _ —_ —_ _— —

| fx) | 49328 49818 50310
_ ) S —— B
x| 11100 11200  1.1300 '
22320 22430 |

W | 22210

&

Exercises 2.5

84 Leth= fogbea differentiable function. The follow-__

ing tables list some values of f and g. Use Exercise 53
of Section 2.2 to approximate h'(—2).

| = | 848092  —8.46000  —8.43908 |
‘f(xﬂ 203930  —2.03762  —2.03594

(x| 200400  —200000 199600
Lg(Jc) —8.48092 —8.46000 —8.43908 |

85 Let f be differentiable. Use the chain rule to prove that

(a) if f is even, then f' is odd
(b) if f is odd, then /' is even

Use polynomial functions to give examples of parts (a)
and (b).

Use the chain rule, the derivative formula for
(d/dx) (sinu), together with the identities

cosx = sin (ZTZ— — x)
and sinx = cos (% - x)

to obtain the formula (d/dx)(cos x).

Pinnipeds are a suborder of aquatic carnivorous mam-
mals, such as seals and walruses, whose limbs are
modified into flippers. The length—weight relationship
during fetal growth is well described by the formula
W = (6 x 1075)L>7*, where L is the length (in cen-
timeters) and W is the weight (in kilograms).

(a) Use the chain rule to find a formula for the rate of
growth in weight with respect to time 7.

(b) If the weight of a seal is 0.5 kg and is changing at
a rate of 0.4 kg per month, how fast is the length
changing?

The formula for the adiabtic expansion of air is pv1‘4 =
¢, where p is the pressure,/ v is the volume, and ¢ is
a constant. Find a formula for the rate of change of
pressure with respect to volume.

The deflection d of a diving board at a position s feet
from the stationary end is given by

d=cs?(3L—s) for 0<s<L,

where L is the length of the board and ¢ is a positive
constant that depends on the weight of the diver and-on
the physical properties of the board. If the board is 10 ft
long, find the rate of change of d with respect to s.

Exercise 89

90 When an individual is walking, the magnitude F of the

91

vertical force of one foot on the ground (see figure) can
be described by

F = A(cos bt — acos3bt),

where ¢ is the time (in seconds), A > 0,b > 0, and
0 < a < 1. Use the chain rule to find the rate of change
of F with respect to time ¢.

Exercise 90

A common form of cardiovascular branching is
bifurcation, in which an artery splits into two smaller
blood vessels. The bifurcation angle ¢ is the angle
formed by the two smaller arteries. In the figure, the
line through A and D bisects 6 and is perpendicular to
the line through B and C.

(2) Show that the length L of the artery from A to B is
given by

L +bta )
= —tfan —.
aT 3™y

(b) Use the chain rule to find the rate of change of L
with respect to 0.

Exercise 91




