Middlebury College Document Delivery

iLiad T essto3 (IINININANIALAIAN

Journal Title: Calculus of a single variable /

ISSN:

Volume:

Issue:
Month/Year:
Pages: 206-245

Article Author:

Article Title: Chapter 2.6-2.9: The Derivative
(Part 2)

Imprint:

Deliver to Middlebury College Patron:

-Save to C:/Ariel Scan as a PDF

-Run Odyssey Helper

-Switch to Process Type: Document
Delivery

-Process

-Switch back to Lending before closing.

Call #: Laura's Desk
Location:

item #:

Save a copy to Desktop Folder

as well:

“Olinick Scan”



CHAPTER 2 The Derivative

IMPLICIT DIFFERENTIATION

Our objective in this section is to find derivatives of functions that are
given in implicit form. If we have an equation such as

y= 2x2 — 3,
we sometimes say that y is an explicit function of x, since we can write
y=f(x) with f(x)=2x>-3.
The equation
4x> -2y =6
determines the same function f, since solving for y gives us
—2y=—4x246, or y= 2x2 — 3.

For the case 4x> — 2y = 6, we say that y (or f) is an implicit function of
x, or that f is determined implicitly by the equation. If we substitute f(x)
for y in 4x> — 2y = 6, we obtain

4x —2f(x) =6
4 —202x*>-3)=6
4x* —4x> + 6 = 6.

The last equation is an identity, since it is true for every x in the domain of
f. This is a characteristic of every function f determined implicitly by an
equation in x and y; that is, f is implicit if and only if substitution of f(x)
for y leads to an identity. Since (x, f(x)) is a point on the graph of f, the
last statement implies that the graph of the implicit function f coincides
with a portion (or all) of the graph of the equation.

In the next example, we show that an equation in x and y may deter-
mine more than one implicit function.

EXAMPLE®I1 How many different functions are determined implic-
itly by the equation x% + y? = 17

SOLUTION The graph of x* 4 y? = 1 is the unit circle with center
at the origin. Solving the equation for y in terms of x, we obtain

y==£ 1—x2.

Two functions f and g determined implicitly by the equation are given by

fx)=v1—x% and gx)=-V1-x>

2.6
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Thfa gFaphs of f and g are the upper and lower halves, respectively, of the
unit circle (see Figure 2.32a and b). To find other implicit functions, we
may let a be any number between —1 and 1 and then define the function k

by
—_— 2 1 —_—
k(x) = V1 x2 if ~1<x<a
—V1-x" ifa<x<l1
The graph of k is sketched in Figure 2.32(c). Note that there is a jump

discontinuity at x = a. The function k'is determined implicitly by the
equation x4+ y2 =1, since

=Y

24 (k(x)? =1

for every x in the domain of k. By letting a take on different values, we
can obtain as many implicit functions as desired. Many other functions are
determined implicitly by x* 4+ y2 =1, and the graph of each is a portion
of the graph of the equation.

If the equation
y 43y —axd =50 41
determines an implicit function f, then
(FE)* +3(f (1) — 4x” = 5x +1

for every x in the domain of f; however, there is no obvious way to solve
for y in terms of x to obtain f(x). It is possible to state conditions under
which an implicit function exists and is differentiable at numbers in its do-
main; however, the proof requires advanced methods and hence is omitted.
In the examples that follow, we will assume that a given equation in x and
y determines a differentiable function f such that if £(x) is substituted for
. the equation is an identity for every x in the domain of f. The deriva-
tive of f may then be found by the method of implicit differentiation, in
which we differentiate each term of the equation with respect to x. In us-
ing implicit differentiation, it is often necessary to consider (d/dx)(y") for




CHAPTER 2 The Derivative

some unknown function y of x, say, y = f(x). By the power rule (2.27)
with y = u, we can write (d/dx)(y") in any of the following forms:

1% — nyn—ly/

Since the dependent variable y represents the expression f(x), it is essen-
tial to multiply ny"~! by the derivative y’ when we differentiate y with
respect to x. Thus,

d(") "
e — =n
dxy Y

d
E(y") #£ny""!, unless y=x.

EXAMPLE ®2  Assuming that the equation y* + 3y — 4x> = 5x + 1
determines, implicitly, a differentiable function f such that y = f(x), find
its derivative.

SOLUTION Weregard y as a symbol that denotes f (x) and consider
the equation as an identity for every x in the domain of f. Since derivatives
of both sides are equal, we obtain the following:

— O +3y—4x’)=—0G6x+ 1)
dx dx

i< 4>+i<3 )—i<4 3)——"—(5 >+i<1)
dxy dx Y dx = T odx < dx

4y3y 43y —12x2 =540
We now solve for y’, obtaining

4y> +3)y = 12x? + 5,

, 12xr+5
or y = — 3 5
4y° 43
provided 4y* +3 £ 0. Thus, if y = f(x), then
12x2 45
flx) =

4fx)>+3

The last two equations in the solution of Example 2 bring out a dis-
advantage of using the method of implicit differentiation: The formula
for y’ (or f/(x)) may contain the expression y (or f(x)). However, these
formulas can still be very useful in analyzing f and its graph.

In the next example, we use implicit differentiation to find the slope of
the tangent line at a point P(a, b) on the graph of an equation. In problems
of this type, we shall assume that the equation determines an implicit
function f whose graph coincides with the graph of the equation for every
x in some open interval containing a. Note that since P(a, b) is a point on
the graph, the ordered pair (a, ) must be a solution of the equation.

2.6  Implicit Differentiation

EXAMPLE®=3 Find the slope of the tangent line to the graph of
Y3y -t =5y 41
at the point P(1, —2).

SOLUTION The point P(1, —2) is on the graph, since substituting
x =land y = -2 gives us

(=2)*+3(=2) 41> =5(1)+ 1, or 6=6
T/he slope of the tangent line at P(1, —2) is the value of the derivative
y when x =1 and y = —2. The given equation is the same as that in
Example 2, where we found that y’ = (12x? + 5)/ (4y3 + 3). Substituting

1 for x and —2 for y gives us the following, where y’] (1,—2) denotes the
value of y’ when x = 1 and y = —2: ’

12)°+5 17

A
o2y = o = e
o=y 53T

EXAMPLE® 4 Ify= f(x), where f is determined implicitly by the
equation x> + y% = 1, find .

SOLUTION In Example 1, we showed that there is an unlimited
number of implicit functions determined by x% + y?> = 1. As in Example
2, we differentiate both sides of the equation with respect to x, obtaining

d , d , d
dx(x )+E()’ )= d_);(l)
2x +2yy' =0
[
Yy =—x

Yy == if y=o.
Yy

The method of implicit differentiation provides the derivative of any
differentiable function determined by an equation in two variables. For
example, the equation x> + y> = 1 determines many implicit functions
(see Example 1). From Example 4, the slope of the tangent line at the point
(x, y) on any of the graphs in Figure 2.32 is given by y' = —x/y, provided
the derivative exists.

EXAMPLE=5 Findy ifdxy’ —x’y + x> —5x +6 = 0.

SOLUTION Differentiating both sides of the equation with respect
to x yields

Dy - Ly Loy L PN
dx(4xy) dx(x y)+dx(x ) dx(5x)+ dx(6)_ d_J;(O)'
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Since y denotes f (x) for some function f, the product rule must be applied
to (d/dx)(4xy’) and (d/dx)(x*y). Thus,
d d d
LUy =dx—H) +y —
I 4y )= dx—o(y )+ y7 A X)
=4x(3y"y) + @)
= 12xy%y +4y3
24y
dx

Substituting these expressions in the first equation of the solution and
differentiating the other terms leads to

(12xy2y +4y%) — (&% +2xy) + 3x> =5 =0.

Collecting the terms containing y' and transposing the remaining terms to
the right-hand side of the equation gives us

(12xy? — x¥)y' =5 —3x% + 2xy — 4y3.
_ 5—3x2 4 2xy — 4y’
- 12xy2 —x?

d d
and —(xzy) =X +y——(x2) =x2yl+)7(2x)'
dx dx

/

Consequently, y

’

provided 12xy> — x2 £ 0.

EXAMPLE®6 Findy ify =xsiny.

SOLUTION Differentiating both sides of the equation with respect
to x and using the product rule, we obtain
d d d
Z% = (H)—(siny) +siny - (x2).
Since y = f(x) for some (implicit) function f, we have, by Theorem
(2.28),
d .
—(s =cosy—.
a5 Y = oy g,
Using this equation and the fact that (d / dx)(x?) = 2x, we may rewrite the
first equation of our solution as

d d
LA (x* cos y)—y + sin y(2x),
dx dx

or y = (x*cos )y + 2xsiny.
Finally, we solve for y’ as follows:
y — (x2cosy)y =2xsiny
(1= x%cosy)y =2xsiny
y = 2x s21ny ’
1 —x“cosy

provided 1 — x%cosy # 0.

2.6 Implicit Differentiation

Figure 2.33

‘ In the next example, we find the second derivative of an implicit func-
tion.

EXAMPLE®7 Findy”if y* +3y —4x3 = 5x + 1.
SOLUTION The equation was considered in Example 2, where we
found that ’
, 12x% 45

4y* +3°

2
Hence y// — i(y/) — i Ex__*__s
"~ dx dx\ 4y’ +3 |

‘We now use the quotient rule, differentiating implicitly as follows:
d d
4y’ +3)— (1242 — (12x2 + 5)— (4y®
4y + )dx( x“+5) — (12x +5)dx(4y +3)

y

@y* +3)*
_ (4y* + 3)(24x) — (12x2 + 5)(12y%y)
(4y* + 3)

Substituting for y’ yields

2
@y® +3)(24x) — (12x2 + 5) - 1252 12"3—+§
, 4y° +3

y:

4y’ +3)
_ (4y> +3)2(24x) — 12y%(12x% + 5)2
4y’ +3)° ‘

EXAMPLE®=8 Useimplicit differentiation to find an equation for the

tangent line to the ellipse 9x2 + 4y? = 40 at the point P(2, 1), as shown
in Figure 2.33.

SOLUTION  We verify first that the point P(2, 1) is on the ellipse by
showing that its coordinates satisfy the equation 9x2 + 4y* = 40:
9(2%) 4+ 4(1%) = (9)(4) + @)(1) = 36 + 4 = 40.

The slope of the tangent line will be the value of the derivative y’ evaluated
at P(2,1). We find y’ by differentiating both sides of the equation of the
ellipse with respect to x:

d d d

_92 __42=_4

dx(x)+dx( y9) dx(O)
18x +8yy' =0

8yy' = —18x
,  —18x —9x

8y 4y
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Thus, the slope of the tangent line at P(2, 1) is

We can now find an equation of the tangent line by using the point—slope

formula:

(-9 _ -9
GO

y-D=—&-2),

or, equivalently,

9x +2y =20

- EXERCISES 2.6

Exer. 1-18: Assuming that the equation determines a
differentiable function f such that y = f(x), find y .

I 8x2+y*=10 2 4x3 —2y° =x

3 2x3+x2y+y3:1 4 5x2+2x2y—|—y2=8
55x2—xy—4y2:O

6 x*+4x2y? —3xy° +2x =0
7 Jx+/y =100 8 x234y%3 =4

9 X2+ Jry=1 10 2x — J/xy +y° = 16
Il sin?3y=x+y—1 12 x = sin(xy)

13 y =csc(xy) 14 y2+1:xzsecy
16 xy=tany

18 sin/y —3x =2

15 y2 =xcosy

17 xz-l—\/siny‘—y2 =1

Exer. 19-22: The equation of a classical curve and its
graph are given for positive constants a and b. (Consult
books on analytic geometry for further information.)
Find the slope of the tangent line at the point P for the
stated values of ¢ and b.

|9 Ovals of Cassini: (x2 + y2 + a2)2 —4a%x% = b4;

a=2, b=4+6, PQ2,V2)
a<b Ay
: | =
—a a X

20 Folium of Descartes:  x

a=4, P(6,6)

3

AY

+ 3 = 3axy = 0;

X
21 Lemniscate of Bernoulli: 2+ y%? = 2a%xy;
a=+2 PQ1,1)
Ay
ars
/
%

o8 |

Exercises 2.6

22 Conchoid of Nicomedes: (y — a)z(x2 + y2) = p? 2;
a=2-b=4, P151)

y

Exer. 23-28: Find the slope of the tangent line to the
graph of the equation at P.

23 xy+16=0; P(-2,8)
24 2 — 432 =5; P(-1,3)
25 223 — X%y +y3—1=0; P(2,-3)

26 3y* +4x —x%siny —4=0; P(1,0)
27 x%y +siny = 2m; P(1,2m)
28 xy? 4 3y =27; P(2,3)

Exer. 29-34: Assuming that the equation determinés a
function f such that y = f(x), find y”, if it exists.

29 3x>+4y* =4 30 5x2—2y* =4

31 ¥ —y3=1 32 X%y =1

33 siny+y=x 34 cosy =x

Exer. 35-38: How many implicit functions are deter-
mined by the equation?

35 xt+yt—1=0
37 22432 +1=0

36 x*+yt=0
38 cosx+siny =3

39 Show that the equation y> = x determines an infinite
number of implicit functions.

40 Use implicit differentiation to show that if P is any point
on the circle x? + y2 = a°, then the tangent line at P is
perpendicular to OP.

41 If tangent lines to the ellipse 9x? + 4y2 = 36 intersect
the y-axis at the point (0, 6), find the points of tangency.

42 1If tangent lines to the hyperbola 9x> — y? = 36 intersect
the y-axis at the point (0, 6), find the points of tangency.

43 Find an equation of a line through P(~2,3) that is
tangent to the ellipse 5x> + 4y? = 56.

44 Find an equation of a line through P(2, —1) that is
tangent to the hyperbola x?— 4y? = 16.
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Exer. 45-46: Find equations of the tangent line and the
normal line to the ellipse at the point P.

45 5x% +4y? =56; P(-2,3)

46 9x* +4y* =72; P(2,3)

Exer. 47-48: Find equations of the tangent line and the
normal line to the hyperbola at the point P.

47 2x? -5y =3; P(-2,1)
48 3y? —2x%2 = 40; P(2, —4)
49 For the ellipse (x%/a®) + (y2/b?) = 1, where we have
a>b>0
(a) Use implicit differentiation to find a formula for the
slope of the tangent line at the point P(xy, y)).

(b) Determine at which points the tangent line is
horizontal or vertical.
(c) Show that an equation -of the tangent line at
i IS P A
a? b? '
50 Prove that an equation of the tangent line to the graph
of the hyperbola (x2/a®) — (y*/b*) =1 at the point
P(xy, yp) is

51 Prove that if a normal line to each point on an ellipse
passes through the center of the ellipse, then the ellipse
is a circle.

52 Let!/ denote the tangent line at a point P on a hyperbola
(see figure). If / intersects the asymptotes at @ and R,
prove that P is the midpoint of QR.

Exercise 52
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RELATED RATES

In many applications of calculus, we encounter situations in which there
are variables—say, x and y —that satisfy some relationship over some
interval of time 7. We usually have some knowledge of the rate of change
of one of these variables with respect to time, and we wish to find the rate
of change with respect to time of the other variables. These problems are
called related rate problems and are the focus of study in this section.
Suppose that two variables x and y are functions of another variable ¢,

say,
x=f@) and y=g().

By (2.7)(ii), we may interpret the derivatives dx/dt and dy/dt as the rates
of change of x and y with respect to ¢. As a special case, if f and g are
position functions for points moving on coordinate lines, then dx/dt and
dy/dt are the velocities of these points (see (2.2)). In other situations, these
derivatives may represent rates of change of physical quantities.

In certain applications, x and y may be related by means of an equation,
such as |

-y -4+ 72 —2=0.
If we differentiate this equation implicitly with respect to ¢, we obtain
d , d ; d d _, d d
— - — ——(2 —(Ty°)— —@2) = —(0).
dt(x) dt(y) dt(x)+dt(y) dt() dt()

Using the power rule (2.27) with ¢ as the independent variable gives us

dx dy dx dy
2x— —3y* = —2— 4 14y—= =0.
w7V d  Ca T Y a

The derivatives dx/dt and dy/dt are called related rates, since they are
related by means of an equation. This equation can be used to find one of
the rates when the other is known. The following examples give several
illustrations.

EXAMPLE=1| Two variables x and y are functions of a variable ¢
and are related by the equation

x3 —2y2+5x = 16.

If dx/dt =4 when x =2 and y = —1, find the corresponding value of
dy/dt.

SOLUTION We differentiate the given equation implicitly with re-
spect to ¢ as follows:

d ;5 d 2 d _ i
E(x ) — 5(2)’ )+ E(Sx) = dt(16)

d d d
3x2—x —4y——y— +35 *

Z—0
dt dt dt

2.7 Related Rates

Figure 2.34

dx dy
3x2 4+ 5)— =4y
Gt =vy

ﬂ_3x2+5dx

dt 4y 4t

The last equaﬁon is a general formula relating dy/dt and dx/dt. For the
special case dx/dt = 4, x = 2,and y = —1, we obtain
dy 3(2%+5

A d 4=—17.
dt — 4(=1)

EXAMPLE=2 A ladder 20 ft long leans against the wall of a ver-
tical building. If the bottom of the ladder slides away from the building
horizontally at a rate of 2 ft/sec, how fast is the ladder sliding down the
building when the top of the ladder is 12 ft above the ground?

SOLUTION We begin by sketching a general position of the ladder
as in Figure 2.34, where x denotes the distance from the base of the build-
ing to the bottom of the ladder and y denotes the distance from the ground
to the top of the ladder.

We next consider the following problem involving the rates of change
of x and y with respect to ¢:

d
Given: ad =2 ft/sec
dt

d
Find: d—f when y = 12 ft

An equation that relates the variables x and y can be obtained by apply-
ing the Pythagorean theorem to the right triangle formed by the building,
the ground, and the ladder (see Figure 2.34):

x? + y* = 400

Differentiating both sides of this equation implicitly with respect to z, we
obtain

4.2, 9 2 _4d
dt(x)+dt(y)—dt(400)

dx dy
2x— +2y—=0
a7 T
dy = xdx
dt —  ydt’

provided y # 0.

The last equation is a general formula relating the two rates of change
dx/dt and dy/dt. Let us now consider the special case y = 12. The corre-
sponding value of x may be determined from

x2 4122 =400, or x*=256.
Thus, x = +/256 = 16 when y = 12. Substituting these values into the




Guidelines for Solving Related Rate
Problems 2.29

Figure 2.35
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general formula for dy/dt, we obtain

dy 16 8
_— = —— 2 - —— .
& 12( ) 3 ft/sec.

The following guidelines may be helpful for solving related rate prob-

lems of the type illustrated in Example 2.

I Read the problem carefully several times, and think about the
given facts and the unknown quantities that are to be found.

2 Sketch a picture or diagram and label it appropriately, introducing
variables for unknown quantities.

3 Write down all the known facts, expressing the given and un-
known rates as derivatives of the variables introduced in guideline
).

4 Formulate a general equation that relates the variables.

5 Differentiate the equation formulated in guideline (4) implicitly
with respect to ¢, obtaining a general relationship between the
rates.

6 Substitute the known values and rates, and then find the unknown
rate of change.

A common error is introducing specific values for the rates and variable
quantities foo early in the solution. Always remember to obtain a general
formula that involves the rates of change at any time t. Specific values
should not be substituted for variables until the final steps of the solution.

EXAMPLE=3 At 1:00 M, ship A is 25 mi due south of ship B. If
ship A is sailing west at a rate of 16 mi/hr and ship B is sailing south at
a rate of 20 mi/hr, find the rate at which the distance between the ships is
changing at 1:30 P.M.

SOLUTION Let ¢ denote the number of hours after 1:00 PM. In
Figure 2.35, P and Q are the positions of the ships at 1:00 PM., x and y
are the number of miles they have traveled in ¢ hours, and z is the distance
between the ships after # hours. Our problem may be stated as follows:

Given: d_x: 16 mi/hr and d_y = 20 mi/hr
dt dt

d
Find: ad when t = l hr
dt 2

Applying the Pythagorean theorem to the triangle in Figure 2.35 gives
us the following general equation relating the variables x, y, and z:
Z2 — x2 + (25 _ y)2

Differentiating implicitly with respect to ¢ and using the power rule and

2.7 Related Rates

Figure 2.36
Water

T 7 ]

the chain rule, we obtain

d , d ,  d 2
ZH== — (25—
dt(Z) dt(X)+dt( y)

dz dx dy
— =2x— +2(25 - - =2
2Zdt xdt+ ( y)< dt)
Z dx dy
— =X —25)—.
w0
At 1:30 P.M., the ships have traveled for half an hour and
x = 2(16) =8, y=100)=10, and 25-y=15

Consequently,
2 =64+225=1289, or z=+289=17.

Substituting into the last equation involving dz/dt, we have

dz dz 172 i
— = - — = —— & —10.12 mi/hr.
17 i 8(16) + (—15)(20), or = 7

The negative sign indicates that the distance between the ships is decreas-

ing at 1:30 PM.
Another method of solution is to write x = 16¢, y = 20¢, and

2 =[x+ (25 — y)11Y? = [256:2 + (25 — 20)2]V/2.

The derivative dz/dt may then be found, and substitution of % for ¢ pro-
duces the desired rate of change.

EXAMPLE®=4 A water tank has the shape of an inverted right circu-
lar cone of altitude 12 ft and base radius 6 ft. If water is being pumped into
the tank at a rate of 10 gal/min, approximate the rate at which the water

level is rising when the water is 3 ft deep (1 gal ~ 0.1337 ft).

SOLUTION Webegin by sketching the tank as in Figure 2.36, letting
r denote the radius of the surface of the water when the depth is #. Note
that » and & are functions of time ¢.

The problem can now be stated as follows:

Given: %: 10 gal/min

Find: % whenh =3 ft
dt

The volume V of water in the tank corresponding to depth £ is
V= %JT rih.

This formula for V relates V, r, and h. Before differentiating implicitly
with respect to ¢, let us express V in terms of one variable. Referring to

Figure 2.36 and using similar triangles, we obtain

~
| o
=




Figure 2.37
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Consequently, at depth 4,
1 (k) 1
V=crx{= = —gh’
371 (2) h wh’.

Differentiating the last equation implicitly with respect to ¢ gives us the

following general relationship between the rates of change of V and 4 at
any time ¢:

av. 1 _,dh
—_— = -7 —_—
d 4 dt
If 7 # 0, an equivalent formula is
dh 4 dv
dr Th® dt’
Finally, we let h = 3 and dV/dt = 10 gal/min =~ 1.337 ft’/min, obtaining
V. (1.337) =~ 0.1 i
" zo ) ~ 0.189 ft/min.

E X AMPLE®5 A revolving beacon in a lighthouse makes one revo-
lutlgn every 15 sec. The beacon is 200 ft from the nearest point Pona
straight shoreline. Find the rate at which a ray from the light moves along
the shore at a point 400 ft from P.

SOLUTION The problem is diagrammed in Figure 2.37, where B
dpnotes the position of the beacon and ¢ is the angle between BP and a
light ray to a point S on the shore x units from P.

Since the light revolves four times per minute, the angle ¢ changes at a

rate of 4 - 27 radians per minute; that is, d¢p/dt = 8. Using triangle PBS,
we see that

x
tangp = —
¢ 200’
or x =200tan ¢.
The rate at which the ray of light moves along the shore is
dx do
= =200 sec’ $—- = (200 sec’$)(87) = 16007 sec2¢.
If x = 400, then BS = v/200% + 400? = 2004/, and
2005
secCQ = =
¢ 200 V5.
. dx 5
Hence = = 160071(«/5) = 80007 ~ 25,133 ft /min.

EXAM P.L E® 6 Figure 2.38, on the following page, shows a solar
panel that is 10 ft in width and is equipped with a hydraulic lift. As the sun

rises, the panel is adjusted so that the sun’s rays are perpendicular to the
panel’s surface.

Exercises 2.7

Figure 2.38
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(a) Find the relationship between the rate dy/dt at which the panel should

be lowered and the rate df/dr at which the angle of inclination of the sun

Hydraulic  increases.

in .
(i creases

or

SOLUTION

(a) If we let ¢ denote angle BAC in Figure 2.38, then, from plane geom-
etry, ¢ = %n — 0. Since d¢/dt = — df/dt, ¢ decreases at the rate that 6

(b) If d0/dt = 7/12 radian/hr when 6 = 7/6, find dy/dt.

Referring to righiutriangle BAC, we see that

sing = T’

y = 10sin¢ = 10sin(37 — 6).

Differentiating implicitly with respect to ¢ and using the cofunction iden-
tity cos(%n — ) = sin 6 yields

dy

dr

1 de de
= — — -} =-1 i —
10cos <27t 9) (O 7 ) Osin@ 7

(b) We substitute d9/dt = 7/12 radian/hr and 6 = 7/6 in the formula for
dy/dt from part (a), obtaining

—10 (%) (%) = _51—7; ~ —1.3 ft/hr.

dy__
dr

- EXERCISES 2.7

Exer. 1-8: Assume that all variables are functions of ¢.
| If A = x% and dx/dr = 3 when x = 10, find dA/dt.
2 If S = z° and dz/dt = —2 when z = 3, find dS/dt.

3 If V=—5p%2 and dV/di = —4 when V = —40, find

dp/dt.
4 If P =3/wand dP/dt =5 when P =9, find dw/dt.

5 If x2 + 3y% + 2y = 10 and dx/dt = 2 when x = 3 and

y = —1, find dy/dt.

6 If 2y° — x? +4x = —10 and dy/dt = —3 when x =

—2and y = 1, find dx/dr.

7 If 3x%y +2x = —32 and dy/dt = —4 when x = 2 and,

y = =3, find dx/dt.

8 If —x?y> —4y = —44 and dx/dt =5 when x = -3

and y = 2, find dy/dr.

9 As a circular metal griddle is being heated, its diameter
changes at a rate of 0.01 cm/min. Find the rate at which

the area of one side is changing when the diameter is

30 cm.

10

A fire has started in a dry, open field and spreads in the
form of a circle. The radius of the circle increases at a
rate of 6 ft/min. Find the rate at which the fire area is
increasing when the radius is 150 ft.

Gas is being pumped into a spherical balloon at a rate of
5 ft3/min. Find the rate at which the radius is changing
when the diameter is 18 in.

Suppose a spherical snowball is melting and the radius
is decreasing at a constant rate, changing from 12 in. to
8 in. in 45 min. How fast was the volume changing when
the radius was 10 in.?

A ladder 20 ft long leans against a vertical building. If
the bottom of the ladder slides away from the building
horizontally at a rate of 3 ft/sec, how fast is the ladder
sliding down the building when the top of the ladder is
8 ft from the ground?

A girl starts at a point A and runs east at a rate of
10 ft/sec. One minute later, another girl starts at A
and runs north at a rate of 8 ft/sec. At what rate is the
distance between them changing 1 min after the second
girl starts?
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I5 A light is at the top of a 16-ft pole. A boy 5 ft tall walks Exercise 19 ! Exercise 23 30 The formula for the adiabatic expansion of air is
away from the pole at a rate of 4 ft/sec (see figure). At . pv!* =c, where p is the pressure, v is the volume

te is the i . . . N5 L i )

what rate is the tip of his shadow moving when he is — and c is a constant. At a certain instant, the pressure 1

18 ft from the pole? At what rate is the length of his

shadow increasing?

Exercise 15

105 ft

40 dyn/cm2 and is increasing at a rate of 3 dyn/cm2 per
second. If, at that same instant, the volume is 60 cm3,
find the rate at which the volume is changing.

31 If a spherical tank of radius a contains water that has
a maximum depth A, then the volume V of water in
the tank is given by V = %nhz(?,a — h). Suppose a
spherical tank of radius 16 ft is being filled at a rate
- of 100 gal/min. Approximate the rate at which the water
/// level is rising when & = 4 ft (1 gal ~ 0.1337 ).
32 A spherical water storage tank for a small community
20 A hot-air ball . . is coated uniformly with a 2-in. layer of ice. As the ice
ot-air balloon rises vertically as a rope attached to the 2 fi melts, the rate at which the volume of the ice decreases
base of the balloon is released at a rate of 5 ft/sec. The is directly proportional to its surface area. Show that the
» pulley that releases the rope is 20 ft from the platform outside diameter is decreasing at a constant rate.
16 A man on a dock is pulling in a boat using a rope where passengers board (see figure). At what rate is the e .
attached to the bow of the boat 1 ft above water level balloon rising when 500 ft of rope has been payed out? 33 };ri’m thebedggrof a Cltlff thatdozfl?rloozks a llalt«: 2(?0 ft
and i i ; elow, a boy drops a stone and then, 2 sec later, drops
2 it El?(s)zl:%v ;Itl;:llleg\llle?(?:;pézliil)l?ffg;fﬁ:; tthhee ?glc)l; —_— 24 Work Exercise 23 if the ends of the trough have the another stone from exactly the same position. Discuss
at arate of 2 ft/sec, how fast is the boat approaching the shape of the graph of y =2|x| between the points the rate at which the distance between the two stones
dock when the bow of the boat is 25 {t from a point that (=1, 2) and (1, 2). is changing during the next second. (Asgume that the
is directly below the pulley? 5 25 The area of an equilateral triangle is decreasing at a rate distance an object falls in # seconds is 167~ feet.)
Exercise 16 of 4 cm?/min. Find the rate at which the length of a side 34 A metal rod has the shape of a right circular cylinder.
f is changing when the area of the triangle is 200 cm?. As it is being heated, its length is increasing at a rate
! . . . of 0.005 cn/min and its diameter is increasing at 0.002
\ 26 Gas is escaping from a spherical balloon at a rate of ) . .
10 ft3/hr. At what rate is the radius changing when the GRS At What raig 15 tht.: volume changing when the
) 3 rod has length 40 cm and diameter 3 cm?
volume is 400 ft? ' ' ' 1 of P60 i
constant speed o
' 27 A sione is“d.ropped into a lake, causing circular waves 35 ;nd aé?ﬁ;iglsa?ygsgaﬁtgli of 45°. AF; the moment the
whose rad.n Increase at a constant rate of 0.5 I'II/SGC. At plane’s altitude is 10,560 ft, it passes directly over an
.What r.a e 18 the circumference of a wave changing when air traffic control tower on the ground. Find the rate at
its radius is 4 m? ‘ which the airplane’s distance from the tower is changing
28 A softball diamond has the shape of a square with sides 1 min later (neglect the height of the tower).
60 ft long. If a player is running from second base to . .

7 The top of a silo .ha.s the shape of a hemisphere of 21 Boyle’s law for confined gases states that if the third base at a speed of 24 ft/sec, at what rate is her 3 g;?gg;? l;?lahlgil:x? f;ta;l(?-oi)n:i:t—;eztugig:ﬁz
dlameter 29 ft. If it is coated uniformly with a layer temperature is constant, pv = ¢, where p is pressure, distance from home plate changing when she is 20 ft crosses P travelli)n nort.h on hi hwa;y ‘A at a speed of
of /llzzre and if the thickness is decreasing at a rate of i v is volume, and c¢ is a constant. At a certain instant, from third base? 50 mi/hr. At that fame instant gan airplane flying east
iﬁé ic’e 1:(5)\;/ if:;lst };isdt(ll)e volume of the ice changing when the volurTle is 75 11.13, the pressure is 3.021b/in2, and the 29 When two resistors R; and R, are connected in parallel at a speed of 200 mi/hr and an altitude of 26,400 ft is

. : pressure is d;creasmg at a rate of 2 1b/in” every minute. (see figure), the total fesistance R is given by the directly above the point on highway B that is 100 mi

18 As §and leaks out of a hole in a container, it forms a At what rate is the volume changing at this instant? equation 1/R = (1/R)) + (1/R,). If R and R, are west of P. If the airplane and the automobile maintain
co“}cal pile whose altitude is always the same as its 22 A 100-ft-long cable of diameter 4 in. is submerged in | increasing at rates of 0.01 ohm/sec and 0.02 ohm/sec, the same speed and dircction, at what rate is the distance
rafhus. 'If the height of the pile is increasing at a rate of scawater. Because of corrosion, the surface area of the respectively, at what rate is R changing at the instant between them changing at 10:15 A.M.2
6 in./min, find the rate at which the sand is leaking out cable decreases at a rate of 750 in2/yr. Ignoring the that R; = 30 ohms and R, = 90 ohms? 37 A paper cup containing water has the shape of a frustum

19

when the altitude is 10 in.

A person flying a kite holds the string 5 ft above ground
level, and the string is payed out at a rate of 2 ft/sec as
the kite moves horizontally at an altitude of 105 ft (see
figure). Assuming there is no sag in the string, find the
rate at which the kite is'moving when 125 ft of string
has been payed out.

23

corrosion at the ends of the cable, find the rate at which
the diameter is decreasing.

The ends of a water trough 8 ft long are equilateral
triangles whose sides are 2 ft long (see figure on the
following page). If water is being pumped into the
trough at a rate of 5 ft3/min, find the rate at which the
water level is rising when the depth of the water is 8 in.

Exercise 29

IS
ro

A A A

AN

of a right circular cone of altitude 6 in. and lower and
upper base radii 1 in. and 2 in., respectively. If water
is leaking out of the cup at a rate of 3 in®/hr, at what
rate is the water level decreasing when the depth of the
water is 4 in.? (Note: The volume V of a frustum of a
right circular cone of altitude 4 and base radii a and b is

given by V = 1wh(a® + b* + ab).)




T

38 The top part of a swimming pool is a rectangle of length
60 ft and width-30 ft. The depth of the pool varies
uniformly from 4 ft to 9 ft through a horizontal distance
of 40 ft and then is level for the remaining 20 ft, as
illustrated by the cross-sectional view in the figure. If the
pool is being filled with water at a rate of 500 gal/min,
approximate the rate at which the water level is rising
when the depth of the water at the deep end of the pool
is 4 ft (1 gal ~ 0.1337 ft%).

Exercise 38

4 ft

39 An airplane at an altitude of 10,000 ft is flying at a
constant speed on a line that will take it directly over
an observer on the ground. If, at a given instant, the
observer notes that the angle of elevation of the airplane
is 60° and is increasing at a rate of 1° per second, find
the speed of the airplane.

40 In Exercise 16, let 6 be the angle that the rope makes
with the horizontal. Find the rate at which 8 is changing
at the instant that 6 = 30°,

41 An isosceles triangle has equal sides 6 in. long. If the
angle 6 between the equal sides is changing at a rate
of 2° per minute, how fast is the area of the triangle
changing when 6 = 30°?

42 A ladder 20 ft long leans against a vertical building. If
the bottom of the ladder slides away from the building
horizontally at a rate of 2 ft/sec, at what rate is the angle
between the ladder and the ground changing when the
top of the ladder is 12 ft above the ground?

43 The relative positions of an airport runway and a 20-ft-
tall control tower are shown in the figure. The beginning
of the runway is at a perpendicular distance of 300 ft
from the base of the tower. If an airplane reaches a
speed of 100 mi/hr after having traveled 300 ft down
the runway, at approximately what rate is the distance
between the airplane and the top of the control tower
increasing at this time?

CHAPTER 2 The Derivative

Exercise 43
20 ft

30087 4
K ~< ‘
e 1

Pt

44 The speed of sound in air at 0°C (or 273 °K) is 1087
ft/sec, but this speed increases as the temperature rises.
If T is temperature in °K, the speed of sound v at
this temperature is given by v = 1087,/7/273. If the
temperature increases at the rate of 3°C per hour,
approximate the rate at which the speed of sound is
increasing when T = 30 °C (or 303 °K).

45 An airplane is flying at a constant speed and altitude
on a line that will take it directly over a radar station
located on the ground. At the instant that the airplane
is 60,000 ft from the station, an observer in the station
notes that the airplane’s angle of elevation is 30° and is
increasing at a rate of 0.5° per second. Find the speed of
the airplane.

46 A missile is fired vertically from a point that is 5 mi from
a tracking station and at the same elevation (see figure).
For the first 20 sec of flight, its angle of elevation 6
changes at a constant rate of 2° per second. Find the
velocity of the missile when the angle of elevation is
30°.

Exercise 46

47 The sprocket assembly for a 28-in. bicycle is shown in
the figure on the following page. Find the relationship
between the angular velocity df/dr (in radians per

second) of the pedal assembly and the ground speed of -

the bicycle (in miles per hour).

Exercises 2.7

Exercise 47
14 in.

48

49

50

A 100-candlepower spotlight is located 20 ft above a
stage (see figure). The illuminance E (in footcandles)
in the small lighted area of the stage is given by
E = (Icos®)/ s2, where 1 is the intensity of the light,
s is the distance the light must travel, and 6 is the
indicated angle. As the spotlight is rotated through ¢
degrees, find the relationship between the rate of change
in illumination dE/dt and the rate of rotation d¢/dt.

Exercise 48

A conical pendulum consists of a mass m, attached to
a string of fixed length I, that travels around a circle
of radius 7 at a fixed velocity v (see figure). As the
velocity of the mass is increased, both the radius and the
angle @ increase. Given that v? = rgtand, where g is
a gravitational constant, find a relationship between the
related rates

(a) dv/dt and d§/dt  (b) dv/dt and dr/dt

Water in a paper conical filter drips into a cup as shown
in the figure. Let x denote the height of the water in the
filter and y the height of the water in the cup. If 10 in®
of water is poured into the filter, find the relationship
between dy/dt and dx/dt.

Exercise 49
XA\
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Exercise 50
2in

E 51 Ship A is sailing north, and ship B is sailing east.
Using an xy-plane, radar records the coordinates (in
miles) of each ship at intervals of 1.25 min as shown
in the following tables. Approximate the rate (in miles
per hour) at which the distance between the ships is
changing att = 5.

| temin) | 125 250 375 5.00
ShipA: | x(m) | 177 177 177 177

y (mi) 2.71 3.03 3.35 3.67 ‘

 t(min) | 125 250 375 500
Ship B: | x(mi) 524 552 580  6.08

y (mi) ‘ 1.24 1.24 1.24 1.24 ‘

E‘ 52 Two variables x and y are functions of a variable ¢ and
are related by the formula

1.315in(2.56x) + /5 = (x — D%

If dy/dt ~ 3.68 when x =~ 1.71 and y ~ 3.03, approxi-
mate the corresponding value of dx/dt.




CHAPTER 2 The Derivative

LINEAR APPROXIMATIONS
AND DIFFERENTIALS

We now examine a fundamental geometric property of the tangent line
to the graph of a function: The tangent line stays close to the graph near
the point of tangency. We will also introduce some additional notation and
terminology that scientists and engineers commonly use in approximations
involving derivatives.

Let us consider a differentiable function y = f(x) where we know the
behavior of the function at a point P(xo, S (xg)); in particular, assume that
we know the values of f(x,) and il (xp)- Suppose we wish to approximate
the value of f at x|, where x; is close to x,. Figure 2.39 illustrates’this
situation with Q being the point (x;, f(x;)). In some instances, we may
not be able to determine f(x,) exactly because we do not have an explicit
formula for f. In other cases, the numbers x, and x, may be two slightly

different measurements of a physical quantity, and we want to estimate .
quickly the difference between the values of f (xp) and f(x;). In such

cases, our needs might be met by finding a good approximation for f (xl)
We will consider in this section a simple way to approximate f (xl) 'using
the known values f(x,) and f (xg)-

Figure 2.39
J} y

O(xq, f(x1))

- P(xo. f(xo))

I 1
Xy X, = X, + Ax

=Y

If the variable x has an initial value x,, and is then assigned a different
value x,, the change or difference X{ — X, is called an increment of x.
In calculus, it is traditional to denote an increment of x by the symbol
Ax (read delta x). The corresponding change to the value of y = f(x),
namely, f(x;) — f(x,), is called an increment of y and is traditionally -
labeled Ay. We summarize this notation in the following definition.

2.8 Linear Approximations and Differentials

Definition 2.30

If y= f(x) and the variable x has an initial value of x; that is
changed to x,, then the increment Ax of x is

Ax =x; — x,
and the corresponding increment Ay of y is
Ay = f(xy+ Ax) — f(xy).

Definition (2.30) implies that Ay is the change in y corresponding to
the change in x of Ax. Since x; is not equal to x,, Ax must be either
positive or negative. The resulting Ay may be positive, negative, or zero.
In Figure 2.39, both changes, Ax and Ay, are positive.

From Definition (2.30), we have f(xy) + Ay = f(xy + Ax) = f(x)).
Thus we can obtain an accurate approximation for the value f(x,) if we
can accurately estimate Ay. The ratio Ay/Ax is the slope mp 0 of the
secant line through P and Q (see Figure 2.40). Since Ay/Ax =m po» We
have Ay =mp,Ax. We already know that the value of Ax is x; — x,, so
if we can obtain an estimate for m po» We can then estimate Ay and f(x).

-In Section 2.1, we defined the slope of the tangent line to y = f(x) at P to

be the limit of slopes of secant lines through P and Q. In Section 2.2, we
defined f'(x,) as the notation for this limit. Thus m , o 18 approximately

equal to f(x,) if x, is approximately equal to x,. Thus, we have
fx) = flxg) + Ay = fxg) +mpy Ax & fxg) + f'(xp)Ax.

This approximation allows us to estimate f (x,) using the known val-
ues f(x,) and f (xy)- The approximation fxp~ fx)+ f (xO)Ax is
particularly useful when x, is close to a value x, where it is easier to
compute f(x,) and f (x,) than to calculate f(x) directly.

Figure 2.40
AY
flx + Ax) L
flx)+
| | ~
X x + Ax *
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Increment Definition
of Derivative 2.31

Approximation Formula
for Ay 2.32
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To make this discussion more precise, we use the increment notation to
rewrite the definition of the derivative of a function, substituting Ax for &
in Definition (2.5) as follows.

’ gy f(x()"’A-x)"f(x())__ . _é_)i
fixg) = AI;IEO =i

Ax Ax—0 Ax

If f is differentiable, then as Ax approaches 0, the ratio Ay/Ax ap-
proaches f’(x,), as illustrated in Figure 2.40.
In earlier sections, we used quotients
f(xl)_f(xo) _ f(xo+Ax)_f(x0) . ﬂ

X — X, Ax Ax

to approximate numerically the derivative f’ (xo). Here we reverse the
process and use f ’(xo) to approximate Ay/Ax.

Ay = f'(xg)Ax ifAx~0

It is helpful to consider the graphical interpretation of this appré)xima—
tion formula (see Figure 2.41). The slope f '(x,) is the slope of the line
tangent to the graph at P(x,, f(x,)). An equation for this line is

y= f(xo) + f/(xo)(x - xo)-

This tangent line [ is the graph of the function L, where

L(x) = f(xp) + f'(xe)(x — xp).
Evaluating L at x, and at X; =x9+ Ax gives L(xy)) = f (xg) and
L(xy+ Ax) = f(xg) + f'(x,) Ax, respectively. Thus,

AL = L(xy+ Ax) — L(xy) = f(xy) Ax.

We can interpret (2.32) as stating that the change in y is approximately
the change in the tangent function L. We have replaced the graph of the
function f by the line representing L to obtain this estimate, and this

function L is described as a linear approximation for f at X, Figure 2.41
illustrates this approximation.

!

&
&
+
&
8 |
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2.8 Linear Approximations and Differentials

Linear Approximation
Formula 2.33

If y = f(x), with f differentiable at x,,, then
f&x) =~ L(x) = fxg) + ' (x)(x — xg)

for x near x;.

There are many practical uses for linear approximations to functions.
We will see one such application in Section 2.9 when we develop Newton’s
method for approximating zeros of functions. The next example shows
how we can use linear approximations to estimate square roots.

EXAMPLE®= | Forthe function y = f(x) =+/3+ x:
(a) Find the linear approximation at x, = 6.

(b) Use this linear approximation to estimate V8, /8.9, and +/9.3.
(c) Compare these approximations to values obtained with a calculator.

SOLUTION
(a) We use the linear approximation formula (2.33). For the function

f)=/3+x=0 +x)1/2, we have
1

Fo) =G0 e
) 24/3+x

Evaluating f and f” at x, = 6 gives
1

1
f6) =+/3+6=3 and f(6)=m=g.

Thus the linear approximation to f at x, = 6 is
L(x) = f(xo) + f/(x())(x - xo)
=3+1x-6).

(b) For values of x close to 6, 3 + 6 is close to 9, and so we can use the
approximation f(x) ~ L(x) to estimate square roots of numbers close to

9. For example,

V8=+3+5= f(5 ~ L(5) =3+ $(—1) ~ 2.83333333333.
Similarly, we have
V89 =+3459=f(59 ~ L(59) =3+ 1(-0.1) ~ 298333333333,
V93 =+V3+63= f(6.3) ~ L(6.3) =3+ ¢(0.3) = 3.05.

(c) The following table lists the approximated square roots obtained with
a linear approximation and with a calculator:

Square root Ji - VB9 V93
 Linear approximation | 2.83333333333  2.98333333333 305
| Calculator 282842712475  2.98328677804  3.04959013640




Definition 2.34

CHAPTER 2 The Derivative

Note that the linear approximations are close to the calculator values and
do not require the computation of a square root.

EXAMPLE®=2 Use a linear approximation to estimate sin0.05 and
compare the result to that obtained with a calculator.

SOLUTION If f(x) =sinx, then f'(x) = cosx. Evaluating f and
fatxy =0 gives
FO =0 and F©0)=1.

By Theorem (2.23), the linear approximation to f at xy =0 is given
by L(x) =0+ 1(x — 0), or

sinx ~ x for x near 0,
and the linear approximation to sin 0.05 is 0.05. Using a calculator, we get
sin 0.05 ~ 0.049979169271.

You may be asking yourself: Why use linear approximations for square
roots or trigonometric functions when a scientific calculator can do the job
more efficiently and accurately? There are several answers. First, the pro-
cess of linear approximation is widely used throughout mathematics and
in applications. It is important then to consider the geometric reasoning
behind linear approximation. It is also easier to examine this process in
elementary problems in which we can check the approximations against
more precise answers. Second, computers and calculators themselves use
algorithms, such as linear approximation, to produce approximate values
of elementary functions. To gain a better understanding of the powers and
limitations of calculating devices, we need to study approximation tech-
niques, beginning with linear ones. We will consider other approximation
techniques in later chapters.

Linear approximations are closely connected with the idea of differ-
entials. It is traditional to use the differential expression dy to denote the
actual change in the tangent line correspording to a change Ax in x. The
expression dy is another notation for the quantity we have previously la-
beled as AL.

Lety = f(x), where f is a differentiable function. The differential
dy is defined by the expression

dy = f'(x) Ax.

The vertical change in the graph of the function over an interval is the
change in the value of the function over that interval. Note that dy measures
the vertical change in the rangent line and Ay measures the actual change
in the value of the function for the same change in x. The next example
illustrates this distinction.
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Alternative Linear Approximation
Formula 2.35

EXAMPLE=3 Lety=3x2—5andletAxbeanincrementofx.

(a) Find general formulas for Ay and dy.
(b) If x changes from 2 to 2.1, find the values of Ay and dy.

SOLUTION
@lfy=f(x)= 3x? — 5, then, by Definition (2.30) with x = Xgs
Ay = f(x + Ax) — f(x)
= [3(x 4+ Ax)? — 51— 3x* = 5)
= [3(x? + 2x(Ax) + (Ax)?) — 51— (3x* - 5)
=3x? + 6x(Ax) + 3(Ax)2 =5 —3x> +5
= 6x(Ax) +3(Ax)%.
To find dy, we use Definition (2.34):
dy = f'(x)Ax = 6xAx
(b) We wish to find Ay and dy if x = 2 and Ax = 0.1. Substituting in the
formula for Ay obtained in part (a) gives us
Ay = 6(2)(0.1) + 3(0.1)*> = 1.23.
Thus, y changes by 1.23 if x changes from 2 to 2.1. We could also find Ay
directly as follows:
Ay=f@2D - fQ2
—[B3R.1)*-5]1-[32)?*-5]1=1.23
Similarly, using the formula dy = 6xAx, with x =2 and Ax = 0.1,

yields
dy = (6)(2)(0.1) =1.2.

Note that the approximation dy = 1.2 is correct to the nearest tenth.

Using differential notation, we can state an alternative form of the
linear approximation formula (2.33).

If y = f(x) is a differentiable function, then
fx+ Ax) =~ f(x) +dy,
where dy = f/(x)Ax.

The next example illustrates the use of this alternative linear approxi-
mation formula.

EXAMPLE"4

(a) Use differentials to approximate the change in sin¢ if 6 changes from
7/3 = 607/180 to 617/180.
(b) Use a linear approximation to estimate sin(61s/180).



Figure 2.42
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SOLUTION
(a) If y =sind = f (@), then
dy = f'(0)A0 = cos O AF.

The change A6 in 6 is 617/180 — 607/180 = 7/180. Thus if we let 6 =
7/3 and A6 = /180 in formula (2.34) for dy, we obtain

ay = (cos T) () = (;) (55) = 225 ~ 0.0087.

(b) If we use the linear approximation formula (2.35) with x =6 and y =
sin 4, we have

sin(6 + Af) ~ sind + dy .
Letting 6 = 7/3, A@ = 1/180, and dy = 0.0087 (from part a), we obtain

- 61w ,Jr+d
_— o~ mn —
Mg ) TNz TV

3
~ \/7_ + 0.0087

~ 0.8660 4+ 0.0087 = 0.8747.

Using a calculator and rounding to four decimal places, we get
sin(617/180) ~ 0.8746. Thus the error involved in using the linear ap-
proximation is roughty 0.0001.

The next example illustrates the use of differentials in estimating er-
rors that may occur because of approximate measurements. As indicated
in the solution, it is important to first consider general formulas involv-
ing the variables that are being considered. Specific values should not be
substituted for variables until the final steps of the solution.

EXAMPLE®=S5 The radius of a spherical balloon is measured as 12
in., with a maximum error in measurement of £0.06 in. Approximate the
maximum error in the calculated volume of the sphere.

SOLUTION We begin by considering general formulas involving
the radius and the volume. Thus we let
x = the measured value of the radius
and Ax = the maximum error in x.
Assuming that Ax is positive, we have
x — Ax < the exact radius < x + Ax.

If Ax is negative, we may use | Ax| in place of Ax. A cross-sectional view
of the balloon, indicating the possible error Ax, is shown in Figure 2.42. If
the volume V of the balloon is calculated using the measured value x, then

V= %nx3.

2.8 Linear Approximations and Differentials

Definition 2.36

Let AV be the change in V that corresponds to Ax. We may interpret
AV as the error in the calculated volume caused by the error Ax. We
approximate AV by means of 4V as follows:

av 5
AV =~ dV = d—(Ax) =4rx°Ax
x

Finally, we substitute specific values for x and Ax. If x = 12 and if Ax =
+0.06, then
dV = 47 (12%)(£0.06) = +(34.56)7 ~ £109.

Thus the maximum error in the calculated volume due to the error in
measurement of the radius is approximately £+109 in.

The radius of the balloon in Example 5 was measured as 12 in., with a
maximum error of £0.06 in. The maximum error is also referred to as the
absolute change. The ratio of +0.06 to 12 is called the relative error in
the measurement of the radius. We may also refer to the relative error as
the average error or the relative change. Thus, for Example 5,

+0.06
relative error = 7 = £0.005.

The significance of this number is that the error in measurement of the ra-
dius is, on average, £0.005 inch per inch. The percentage error (change) is
defined as the average error (change) multiplied by 100%. In this example,

percentage error = (+0.005)(100%) = +0.5%.

The general definition of these concepts follows.

Let y = f(x) and suppose that y changes from y, to y; as x changes
from x, to x,. We can describe the change in y as follows:

Exact value Approximate value
Absolute change (error) Ay =y, —y, dy = f'(x)) Ax
A dy
Relative change (error) =X —
Yo Yo

A d
Percentage change (etror) -;X x 100% }Z x 100%
0 0

EXAMPLE®™6 The radius of a spherical balloon is measured as 12
in., with a maximum error in measurement of £0.06 in. Approximate
the relative error and the percentage error for the calculated value of the

volume.

SOLUTION Asin Figure 2.42, let x denote the measured radius of
the balloon and Ax the maximum error in x. Let V denote the calculated
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volume and AV the error in V caused by Ax. Applying Definition (2.36)
4

to the volume V = gnx3 yields

, AV dV  4nx’Ax  3Ax
relative error = = N — = )

|4 %nx3 ox
For the special case x = 12 and Ax = +0.06, we obtain

3(£0.06)

= +0.015.
12

relative error &
From Definition (2.36),
percentage error ~ (£0.015) x (100%) = +1.5%.

Thus, on average, there is an error of +0.015 in3 per in’ of calculated
volume. Note that this leads to a percentage error of +1.5% for the volume.

EXAMPLE®7 A sperm whale is spotted by a merchant ship, and
crew members estimate its length L to be 32 ft, with a possible error of +2
ft. Whale research has shown that the weight W (in metric tons) is related
to L by the formula W = 0.000137L3 18, Use differentials to approxi{&nate

(a) the error in estimating the weight of the whale (to the nearest tenth of a
metric ton)

(b) the relative error and the percentage error

SOLUTION Let AL denote the error in the estimation of L, and let
AW be the corresponding error in the calculated value of W. This error
may be approximated by dW.

(a) Applying Definition (2.34) yields
AW =~ dW = (0.000137)(3.18) L* 8 A L.
Substituting L = 32 and AL = 42, we obtain
AW 2 (0.000137)(3.18)(32)>18(1:2) ~ 41.7 metric tons.
(b) By Definition (2.36),

, AW dW.  (0.000137)(3.18)L*8 AL  3.18 AL
relative error = — &~ —— = =

w oW - (0.000137)L318 L
Substituting AL = 42 and L = 32, we have
3.18(£2
relative error & —3—(2—) ~ £0.20.

By Definition (2.36),
percentage error ~ (£0.20) x (100%) = +20%.

Estimates of vertical wind shear are of great importance to pilots dur-
ing take-offs and landings. If we assume that the wind speed v at a height
h above the ground is given by v = f(h), where f is a differentiable

Exercises 2.8

Figure 2.43
A v (mi/hr)

vt

V-
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h (feet)

function, then vertical (scalar) wind shear is defined as dv/dh (the in-
stantaneous rate of change of v with respect to %). Since it is impossible to
know the wind speed v at every height 4, the wind shear must be estimaj[ed
by using only a finite number of function values. Consider the situation
illustrated in Figure 2.43, where we know only the wind speeds v, and v,
at heights h and h,, respectively. An estimate of wind shear at height &,
may be obtained by using the approximation formula

dv ~ Ul _v()
dh ey = hy

v\ (hO)P

v,/ \hy
may also be employed, where the exponent P is determined by observa-
tion and depends on many factors. For strong winds, the value P = % is

sometimes used.

The empirical relation

EXAMPLE®S8 Suppose that at a height of 20 ft above the groupd
the wind speed is 28 mi/hr. On the basis of the preceding discussion (with
P = %), estimate the vertical wind shear 200 ft above the ground.

Using the notation of the preceding discussion, we let
hy =20, v,=28, and h, =200.

Solving (v, / V) = (ho/ hl)P for v, and then substituting values, we obtain

A\E- 200\ /7 .
v, =1, (h_l) =28 (E) ~ 39 mi/hr.

0
Ath, = 200,

SOLUTION

d_v %”1 U0% 39 — 28 ~ 0.06.
dh 1, hy—h, 200-20

Thus, at a height of 200 ft, the vertical wind shear is approximately
0.06 (mi/hr)/ft, which is a common value. Wind shear values greater than
0.1 are considered high.

Exer. 1-8: Use a linear approximation to estimate f(b) if
the independent variable changes from a to b.

I fx)=4x"—6x*+3x2—-5; a=1, b=1.03
a=4, b=13.96
a=1, b=0098

2 f)=-3x3+8x -7,
3 S =ah

4 f)=x*-33+4x%-5 a=2, b=201
5 f(6) =2sinf + cosb; a=30° b=27°
6 f(¢) = csce + cotg; a=45°, b =46°
7 f(a) =seca; a=060°, b=262°
8 f(p) =tanp; a=30° b=28




Exer. 9-12: (a) Find general formulas for Ay and dy.
(b) If, for the given values of @ and Ax, x changes from a
to a + Ax, find the values of Ay and dy.

9 y=2x>—4x+5 a=2, Ax=-02

to y=x3—4; a=-1, Ax=0.1

1y =1/x% a=3 "Ax=03

12 y=2_|1_x; a=0, Ax=-0.03
Exer. 13-18: Find (a) Ay, (b) dy, and (c)dy —Ay.
13 y=4—-9x 14 y=Tx+12

15 y=3x>+5x—2 16 y=4—7x—2x2
17y=1/x 18 y=1/x*

|Z| 19 (a)If f(x) =sin(tanx — 1), find .an (approximate)

equation of the tangent line to the graph of f at
(2.5, £(2.5)), using Exercise 53 in Section 2.2.

(b) Use the equation found in part (a) to approximate
fQ2.6).
(c) Use (2.35) with x = 2.5 to approximate f(2.6).

(d) Compare the two approximations in parts (b)
and (c).

[E[ 20 ()If f(x)= x> +3x>=2x+5, find an (approxi-

mate) equation of the tangent line to the graph of
[ at(0.4, £(0.4)).

(b) Use the equation found in part (a) to approximate
£(0.43).

(c) Use (2.35) with x = 0.4 to approximate f(0.43).

(d) Compare the two approximations in parts (b)
and (c).

Exer. 21-26: (a) Use differentials to approximate the
value.

(b) Compare the approximation in part (a) with the
result obtained from evaluating the number with a
calculator.

21 V65 22 /35
(Hint: Let y = Jx.)
23 743 24 1/4/50
25 cos 59° 26 tan(w/4 + 0.05)

Exer. 27-30: Let x denote a measurement with a
maximum error of Ax. Use differentials to approximate
the relative error and the percentage error for the
calculated value of y. ’

27 y = 3x%; x=2, Ax ==0.01
28 y=x"+5x x=1, Ax==01
29 y=4/x+3x; x=4, Ax=202
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30 y = 6%, x=28, Ax==0.03

31 If A =3x2 — x, find dA for x = 2 and dx = 0.1.
32 If P =6:%3 442, finddP fort = 8 and dr = 0.2.

33 If y = 4x> and the maximum percentage error in x is
+15%, approximate the maximum percentage etror in y.

34 If 7 = 40v/w? and the maximum relative error in w is
+0.08, approximate the maximum relative etror in z.

35 IfA = 15\3/s_2 and the allowable maximum relative error
in A is to be +0.04, determine the allowable maximum
relative error in s.

36 If §= 107rx® and the allowable maximum percentage
error in § is to be £10%, determine the allowable
maximum percentage error in x.

37 The radius of a circular manhole cover is estimated to
be 16 in., with a maximum error in measurement of
4+0.06 in. Use differentials to estimate the maximum
error in the calculated area of one side of the cover.
Approximate the relative error and the percentage error.

38 The length of a side of a square floor tile is estimlated as
1 ft, with a maximum error in measurement of :t% in.
Use differentials to estimate the maximum error in the
calculated area. Approximate the relative error and the
percentage error.

39 Use differentials to approximate the increase in volume
of a cube if the length of each edge changes from 10 in.
to 10.1 in. What is the absolute change in volume?

40 A spherical balloon is being inflated with gas. Use
differentials to approximate the increase in surface area
of the balloon if the diameter changes from 2 ft to
2.02 ft.

41 One side of a house has the shape of a square
surmounted by an equilateral triangle. If the length of
the base is measured as 48 ft, with a maximum error
in measurement of =+1in., calculate the area of the
side. Use differentials to estimate the maximum error
in the calculation. Approximate the relative error and
the percentage error.

42 Small errors in measurements of dimensions of large
containers can have a marked effect on calculated
volumes. A silo has the shape of a right circular cylinder
surmounted by a hemisphere (see figure on the following
page). The altitude of the cylinder is exactly 50 ft. The
circumference of the base is measured as 30 ft, with
a maximum error in measurement of £6 in. Calculate
the volume of the silo from these measurements, and
use differentials to estimate the maximum error in
the calculation. Approximate the relative error and the
percentage error.

e -

Exercises 2.8

43

44

45

46

47

48

49

Exercise 42

As sand leaks out of a container, it forms a conical pile
whose altitude is always the same as the radius. If, at a
certain instant, the radius is 10 cm, use differentials to
approximate the change in radius that will increase the

volume of the pile by 2 cm’.

An isosceles triangle has equal sides of length 12 in. If
the angle 6 between these sides is increased from 30° to
33°, use differentials to approximate the change in the
area of the triangle.

Newton’s law of gravitation states that the force F of
attraction between two particles having masses m; and
m, is given by F = Gmlmz/sz, where G is a constant
and s is the distance between the particles. If s = 20 cm,
use differentials to approximate the change in s that will
increase F by 10%.

The formula 7 = 27./I/g relates the length ! of a
pendulum to its period 7', where g is a gravitational
constant. What percentage change in the length
corresponds to a 30% increase in the period?

Constriction of arterioles is a cause of high blood
pressure. It has been verified experimentally that as
blood flows through an arteriole of fixed length, the
pressure difference between the two ends of the arteriole
is inversely proportional to the fourth power of the
radius. If the radius of an arteriole decreases by 10%,
use differentials to find the percentage change in the
pressure difference.

The electrical resistance R of a wire is directly
proportional to its length and inversely proportional to
the square of its diameter. If the length is fixed, how
accurately must the diameter be measured (in terms
of percentage error) to keep the percentage error in R
between —3% and 3%?

If an object of weight W pounds is pulled along a
horizontal plane by a force applied to a rope that is
attached to the object and if the rope makes an angle
6 with the horizontal, then the magnitude of the force is

50

51

52

given by

Foy=— 2V
using + cosd
where w is a constant called the coefficient of friction.
Suppose that a 100-1b box is being pulled along a floor
and that u = 0.2 (see figure). If 9 is changed from 45°
to 46°, use differentials to approximate the change in the
force that must be applied.

Exercise 49

It will be shown in Chapter 11 that if a projectile is fired
from a cannon with an initial velocity v, and at an angle
«a to the horizontal, then its maximum height 4 and range
R are given by

2 2
_ ypsin‘a

h— _ 2v§ sino cos o

and R =
2g 8

Suppose v, = 100 ft/sec and g =32 ft/sec?. If & is

increased from 30° to 30.5°, use differentials to estimate

the changes in 4 and R.

At a point 20 ft from the base of a flagpole, the angle
of elevation of the top of the pole is measured as 60°,
with a possible error of +0.25°. Use differentials to
approximate the error in the calculated height of the
pole.

A spacelab circles the earth at an altitude of 380 mi.
When an astronaut views the horizon, the angle 6 shown
in the figure is 65.8°, with a possible maximum error of
+0.5°. Use differentials to approximate the error in the
astronaut’s calculation of the radius of the earth.

Exercise 52
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53 The Great Pyramid of Egypt has a square base of 230 m 56 In electrical theory, Ohm’s law states that I = V/R,

(see figure). To estimate the height /# of this massive where I is the current (in amperes), V is the \ ’
structure, an observer stands at the midpoint of one of electromotive force (in volts), and R is the resistance (in 2°9 NEWTON’S METHOD
the sides and views the apex of the pyramid. The angle ohms). Show that dI and AR are related by the formula
of elevation ¢ is found to be 52°. How accurate must RdAI+IAR=0. ] 0 DI S TRV, Many problems and applications in mathematics require solving equations.
tinls Iertlnillz nller?ls?urement be to keep the error in k& between 57 The area A of a square of side s is given by A = s2. If s it We can Wr.1te equations 1¥1V01V1ng one \31ar1abzle in the form f(x) = 0 for
: increases by an amount As, illustrate dA and AA — dA some function f. The cubic equation 2x” + x“ — 16x — 15 = 0, for exam-
Exercise 53 geometrically. ple, has this form, where f(x) = 2x> + x? — 16x — 15. Recall that a zero
58 The volume V of a cube of edge s is given by V = 5. of a function f is a value r such thz}t f(r) = 0. The zeros of the function
A If s increases by an amount As, illustrate dV and are also .Called'the roots of the equation. .
/ , AV — dV geometrically. In this section, we explore methods for finding a real zero of a function
Jal \ . One such method for a polynomial or a rational function i
i : 59 The curved surface arca S of a right circular cone f.On - 'p y . rora 3unc 120n 15 10 jactoriiie
7 having altitude h and base radius r is given by numerator. Since the cubic polynomial f(x) = 2x” + x~ — 16x — 15 fac-
4 | NEmyy) . tors as f(x) = (2x + 5)(x + 1)(x — 3), the only real numbers r satisfying
b S =narvr°+ h-. For a certain cone, r =6 cm. The 0 R : . .
/\ o _ T . . : f(r)=0are r =—2.5, —1, and 3. When f is a quadratic polynomial,
/ W altitude is measured as 8 cm, with a maximum error in . .
i L measurement of +0.1 cm the quadratic formula gives the zeros (real and complex). For many func-
fact f
< s0m - L (a) Calculate S from the measurements and use differ- | Figure 2.44 tions, it is not possible to use factoring or an exact .ormula to find the
= . . . . zeros. In such cases, we may be able only to approximate values of the
entials to estimate the maximum error in the calcu- y . . d .
lation. A zeros. In this section, we focus on Newton’s method for carrying out such
, . ’, approximations
(b) Approximate the percentage error. ; Newton’s method for approximating a zero r of a differentiable
54 As a point light source moves on a semicircular track, 60 The period T of a simple pendulum of length [ may function f is based on the idea that the tangent line stays close to the
as shown in the figure, the illuminance E on the surface be calculated by means of the formula T = 271 /g, curve near the point of tangency. With this method, we begin with some
is inversely proportional to the square of the distance s where g is a gravitational constant. Use differentials to ; approximation x, for the zero and consider the tangent line / to the graph
from the source and is directly proportional to the cosine approximate the change in / that will increase 7' by 1%. / : of y= f(x) at (x;, f(x))) (see Figure 2.44). The tangent line and the
of thealarzglteh 6 begveen It?g q1rzctlon of;tght ﬂowoand ths, 61 Suppose that 3x2 — x2y + 4y = 12 determines a dif- +— - graph of f should intersect the x-axis near each other since the tangent
normal to the surface. is decreased from 21° to 20 ferentiable functi h that v — If £(2) =0 Xy Xy line remains close to the graph of f. Thus, we can approximate a zero
and s is constant, use differentials to approximate the Jab'e tunction J such that y = f(x). If f(2) ’ { i i i
ol B~ iy e use differentials to approximate the change in f(x) if x ot / for f by finding a zero for the tangent line. Because the equation of the
P & ) changes from 2 to 1.97. tangent line is linear, it is easy to determine where it has a zero.
g 8 y .
. 3 4 . . A graph of the function is often very helpful for suggesting a “good”
Y 62 Suppose that x” + xy + y" = 19 determines a differen- first approximation x,. Lacking a graphing utility, we might evaluate the
tiable function f such that y = f(x). If P(1,2) is a P ) 1t 1 The int diate value th (1.26) guarantees
3 *\, T point on the graph of f, use differentials to approximate unctlor.l severa HES. THE IISFMECIAIE Va e eorem f gl h
2 the y-coordinate b of the point Q(1.1, b) on the graph. a Zero‘ in iny 1nterva.1 w}}ere the values of a continuous function at the
| i N ) 3 . ) endpoints have opposite signs.
Lo IEI 63 tsizgﬂofsenﬂ?}tx ft x}l; th_ t4'0164 detenmines a difteren: Next, we consider the tangent line [ to the graph of f at the point
o | %\ untion / such that y = f(x). (x;, f(xy)). If x; is sufficiently close to r, then, as illustrated in Figure
T '*,\\ (@) If P(1.2, 1.3) and Q(1.23, b) are on the graph of f, 2.44, the x-intercept x, of I should be a better approximation to r. Since
R % use (2.35) to approximate b. o F/ i ine i
A % . . the slope of / is f'(x,), an equation of the tangent line is
i "l % (b) Apply the method in part (a), using Q(1.23, b) to
\ é approximate the y-coordinate of R(1.26, ¢). (This y— f(x) = f(x)(x —x).
) % process, called Euler’s method, can be repeated to ! ! !
- approximate additional points on the graph.) The x-intercept x, of / corresponds to the point (x,, 0) on , so
i B 64 Suppose that sinx + ycosy = —2.395 determines a ,
differentiable function f such that y = f(x). 0— flx) = fx)0x, = xy).
55 Boyle’s law states that if the temperature is constant, () If P(2.1,3.3) is an approximation to a point on ! : on ;
the pressure p and the volume v of 8 CONEned, gas are the graph of £, use (235) to approximate the y- If f'(x;) # O, the preceding equation is equivalent to
related by the formula pv = ¢, where ¢ is a constant or, coordinate of Q(2.12, b). Fxp)
equivalently, by p = ¢/v with v # 0. Show that dp and (b) Apply the method in part (a), using Q(2.12, b) to Xy =X — L

!
Av are related by the formula p Av +vdp = 0. approximate the y-coordinate of R(2.14, ¢). fx)
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Taking x, as a second approximation to », we may repeat the process by
using the tangent line at (x,, f(x,)). If f’(x,) # 0, a third approximation
X4 is given by
LG
3 2 f/ ( xz) ‘
We continue the process until the desired degree of accuracy is obtained.

This technique of successive approximations of real zeros is called New-
ton’s method.

Let f be a differentiable function, and suppose r is a real zero of f.
If x, is an approximation to r, then the next approximation x, , is
given by

flx)

':::Xn "—"f,(xn)’

xn+1

provided f'(x,) # 0.

Newton’s method does not guarantee that x,,__, is a better approxima-
tion to r than x, for every n. In particular, we must be careful in choosing
the first approximation x,. If x, is not sufficiently close to r, it is possible
for the second approximation x, to be worse than x,. Figure 2.45 shows
such a case. It is clear that we should not choose a number x, such that
f ’(xn) is close to 0, for then the tangent line [ is almost horizontal.

If x, & r, f” is continuous near r, and f’(r) # 0, then we can show
that the approximations x,, x5, ... approach r rapidly, with the number of
decimal places of accuracy nearly doubling with each successive approxi-
mation, If f(x) has a factor (x — r* with k > 1 and if x, # r for each n,
then the approximations approach r more slowly, because f'(r) = 0.

We will use the following rule when applying Newton’s method: If an
approximation to k decimal places is required, we continue the process un-
til two consecutive approximations give exactly the same k decimal places,
If we use a computer or calculator, we cannot go beyond the precision of
the machine. Working by hand, we can calculate each approximation x,,

X3, ... to at least k decimal places. The following examples illustrate the
process.
EXAMPLE®= | UseNewton’s method to approximate +/7 to five dec-

imal places.

SOLUTION This problem is equivalent to that of approximating the
positive real zero r of f(x) = x* — 7. Figure 2.46 shows the graph of f.
Since f(2) = —3 and f(3) = 2, it follows from the continuity of f that
2 < r < 3. From the graph, we believe that f has only one zero in the
open interval (2, 3). If x, is any approximation to r, then Newton’s method

2.9 Newton’s Method

Figure 2.47

LY

Ty =x3 - 3x + 1

(2.37) gives the next approximation x, , ; as

f(x,) _ _x3—7
floe) 7 2x,

n

xn+1 =X, -

Let us choose x; =2.5 as a first approximation. Using the formula

for x,, 41 with n = 1 gives us

Again using the formula (with n = 2), we obtain the next approximation,

(2.65)% —7
2(2.65)

Xy = 2.65— A 2.64575.

Repeating the procedure (with r = 3) yields

(2.65475)% — 7
2(2.64575)

x, = 2.64575 — R 2.64575.

Since two consecutive values of x, are the same (to the desired degree of
accuracy), we have /7 ~ 2.64575. Note that (2.64575)2 = 6.9999930625.

A 13-digit calculator gives /7 ~ 2.645751311065. Some early computers
used a procedure very similar to this one to calculate square roots, but even
faster algorithms are now used.

EXAMPLE®™?2 Find the largest positive real root of x> —3x +1 =10
to ten decimal places.

SOLUTION If we let f(x) =x3 —=3x+ 1, then the problem is
equivalent to finding the largest real zero of f. Figure 2.47 shows the
graph of f. Note that f has three real zeros. We wish to find the zero
that lies between 1 and 2. Since f'(x) = 3x% — 3, the formula for X, 0
Newton’s method is

xn3—3xn+1
3x2 -3

Xppl = X —

Referring to the graph, we take x; = 1.5 as a first approximation. On
a calculator with which we can store a calculation in a variable memory
labeled using an operation symbolized by [— |, we first store 1.5 in
. Then we create a command line of the form

x—(x"3—3x+1)/(3x"2—-3)—>x




There are many other ways to approximate zeros of functions. Some
of these are explored in the exercises of this section and in later chapters.
Since approximating zeros of a function is equivalent to the important
problem of solving equations in one variable, many calculators and most
computer algebra systems provide a simple command to carry out this task.
Explore the manual for the device you are using to understand the exact
syntax for the “solver” routine. You can be confident that an approximation

CHAPTER 2 The Derivative Exercises 2.9

Repeated execution of this line produces the successive approximations of
Newton’s method:
x, A2 1.5333333333
x, A 1.5320906433
x, ~ 1.5320888862
' x5 A~ 1.5320888862

Figure 2.48

] i | L 1] |

P

o

{'/ T

Thus the desired approximation is 1.5320888862. The remaining two real
roots can be approximated in similar fashion (see Exercise 19).

EXAMPLE®3 Approximate the real root of x — cosx = 0.

SOLUTION We wish to find a value of x such that cos x = x. This
value coincides with the x-coordinate of the point of intersection of the
graphs of y = cosx and y = x. It appears from Figure 2.48 that x, = 0.7
is a reasonable first approximation. (Note that the figure also indicated
that there is only one real root of the given equation.) If we let f(x) =
x — cos x, then f/(x) = 1 + sinx and the formula in Newton’s method is
xn+1:xn_xil+c—.osxn~ ‘
sinx,
Although we can compute several successive approximations on a calcu-
lator, if we use a computer with greater precision, we can see the approx-
imate doubling of the correct digits with each additional step of Newton’s
method. The following calculations were performed on a computer with

33-digit precision:
X, & 0.739436497848058195428715911443437
x5 ~ 0.739085160465107398602342091722227
x, ~ 0.739085133215160805616473437040986
x5 ~ 0.739085133215160641655312087673879
xg ~ 0.739085133215160641655312087673873
x; ~ 0.739085133215160641655312087673873

If the results here are rounded to the underscored number of digits, then
each result will be correct to that number of digits.

There is seldom a need for 33 decimal places in an answer to a prob-
lem in the physical world. Still it is comforting to know that Newton’s
method often works this well. A final warning about implementing this
procedure on a computer is appropriate here. Although we hope to con-
tinue the process until two successive results agree, it may not happen. To
avoid continuing the process indefinitely, we can write code asking for a
finite number of approximations. For instance, the code used for Example
3 computed Xy X35 oee s Xpge Since the last seven approximations were
exactly the same, only two of them are given in the list.

very much like Newton’s method is being used.

- EXERCISES 2.9

For Exercises 1-26, use Newton’s method to at least the
accuracy indicated.

Exer. 1-4: (a) Approximate to four decimal places.
(b) Compare the approximation to one obtained from a
calculator.

1 V11 2 /57
392 433

Exer. 5-8: Approximate, to four decimal places, the root
of the equation that lies in the interval.

5 xt 423 —5x24+1=0; [1,2]
6 x*—5x24+2x—5=0; [2,3]
7x0+x2-9x-3=0; [-2, —1]
8 sinx + X Ccosx = Cos x; [0, 1]

Exer. 9-10: Approximate the largest zero of f(x) to four
decimal places.

9 fx)=x*—11x>—44x — 24
10 f(x) =x>—36x — 84

Exer. 11-14: Approximate the real root to two decimal
places.

Il The rootof x> + 5x — 3 =0

12 The largest root of 203 —4x? —3x+1=0
I3 The positive root of 2x — 3sinx = 0

14 Therootofcosx +x =2

Exer. 15-22: Approximate all real roots of the equa-
tion to two decimal places.

15 x* =125
17 x*—x-2=0
19 x> ~3x+1=0

16 10x2—1=0
18 x> —2x2+4=0
20 x34+2x2—8x—-3=0

21 2x —5—sinx =0 22 x% —cos2x =0

Exer. 23-26: Approximate, to two decimal places, the x-
coordinates of the points of intersection of the graphs of
the equations.

23 y:xz; y=4x4+3

25 y=cos%x; y=9—x

24 y:x3; y:7—x2
2 26 y=sin2x; y=6x—6
27 Approximations to 7 may be obtained by applying

Newton’s method to f(x) = sin x and letting x; = 3.

(a) Find the first five approximations to 7.
(b) What happens to the approximations if x; = 6?

28 A dramatic example of the phenomenon of resonance
occurs when a singer adjusts the pitch of her voice
to shatter a wine glass. Functions having the form
f(x) =axcosbx occur in the mathematical analysis
of such vibrations. Shown in the figure is a graph of
f(x) = x cos 2x. Use Newton’s method to approximate,
to three decimal places, the value of x that lies between
1 and 2 such that f'(x) = 0.

Exercise 28
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29 The graph of a function f is shown. Explain why
Newton’s method fails to approximate the zero of f if
xy =05,

Exercise 29 LYy

flx) = 16x3 — 24x% + 12x — 1

30 If f(x) = x1/3, show that Newton’s method fails for any
first approximation x; # 0.

Exer. 31-32: The functions f and g have a zero at x = 1.
(a) Let x; = 1.1 in formula (2.37), and find x,, x;, and
x, for each function. (b) Why are the approximations for
the zero of g more accurate than those for the zero of f?

31 F)=@x—-1D3@2-3x+7);
g) = —DE*-3x+7)
32 f() = (- DAaET;
gy =& —-DJx+7

Exer. 33-34: If it is difficult to calculate f'(x), the formula
in (2.37) may be replaced by

fexy)

X1 = Xy m ’
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Exer. 1-2: Find f'(x) directly from the definition of the
derivative.

4
| f(x)=—— 2 f(x)=+5-"Tx
3x% 42 f@)
Exer. 3-24: Find the first derivative.
1
3 f)=2x-Tx+2 4 k(x)=——
xt— %2 +1
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where
_ fe) = fxy )

Xp = Xp 1

~ f'(x,).

Two initial values, x;, and x,, are required to use this
method (called the secant method). Use the secant
method to approximate, to three decimal places, the zero
of f that isin [0, 1].

33 fx) = tanz(cos2 x —x +0.25) — 0.5x;
x =05 x =055

1
34 f()C)= s —5«/;;
Cos™ X — X
x; =04, x,=05

1
d IZ‘ Exer. 35-36: Graph f and g on the same coordinate axes.

(a) Estimate, to one decimal place, the x-coordinate x; of
the point of intersection of the graphs. (b) Use Newton’s
method to approximate the x-coordinate in part (a) to
two decimal places.
35 f(x) = %x3 +x-1;
glx) = sin® x
36 f(x) = —x4+x-1;
g)=—x"—11x*—x—19

B 37 Many of the equations we solved can be rewritten in

the form g(x) = x. A simple way to try to approximate
the solution is to find a close initial x; as we did
for Newton’s method. Then proceed to find successive
approximations by using x, | = g(x,,). Use this method
(called a Picard iteration) to approximate, to five
decimal places, the desired solutions.

(a) sinx +1=x (b) %cosx:x
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1

t) =+/6t+5 6 h(t) = ——
5 g(®) ) T
7 F)=V7> —42+3 8 f(w)=3w’

Gx2—-1)*

9 G)=—5—7 10 Hx) = ——F
Gx2—D* ) 6

I Fr=0*-rH=2
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12 h(z) = [(z\2 -1y - 1]5
13 gx) = \?.-’rréx + 2)4

14 P(x) = (x+x 1)?

15 r(s) = <8S2 —§)4
1—9s
(w = D(w —3)
(w+ D(w+3)
17 F(x) = %+ 1D’ Gx +2)°
18 k() = [+ (2 +9)'1/?
19 k(s) = (252 — 35 + 1)(9s — 1)*

16 g(w) =

2t +3x2 -1
20 p(x) = ———5—
x
21 —ex- 2y 2
@) Tt
502 -7 2w+5
22 F(t) = 23 f(w) =
Tw—9
24 Sy =V 41+ 174 =9
Exer. 25-32: Find the limit, if it exists.
2 2, w2
25 lim —— 26 fim * S0
x—0 sInx x—0 4x
27 lim sin? x + sin 2x 28 lim 2 — C?sx
x—=0 3x x>0 1+ sinx
29 lim 2cosx +3x —2 30 lim 3x+1.—0052x
x—0 Sx x—0 Sin x
i -1
31 lim 200t 32 lim 22X 7~
x—>01—cosx x—0 2x

Exer. 33-50: Find the first derivative.

1 1
33 g(r) = /14 cos2r 34 g(z) =csc <—) + —
4

SeC
35 f(x) = sin®*4x>) 36 H(t) = (1 +sin37)°
37 h(x) = (secx +tanx)® 38 K(r) = vr> +csc6r
39 f(x) = x>cot2x 40 P(0) = 6% tan®(6?)
in26 1
4 K@) = ——— 42 gv) = —
1+ cos26 1+ cos” 2v
43 g(x) = (cos J/x — sin /x)*
X cscu + 1
4 fx)=——— 45 Gu) = ——
f@x) 2x + sec? x ) = cotu + 1
46 k(9) = sin ¢

cos¢ — sing

47 F(x) = sec5x tan5x sin 5x

48 H(z) = +/sina/z 49 g(9) = tan*(V0)

50 f(x) = csc® 3x cot? 3x

Exer. 51-56: Assuming that the equation determines a

differentiable function f such that y = f(x), find y'.

51 5x° —2x%y? +4y3 —7=0

52 3x2 —xy*+y ' =1
«/— +1_
P

55 xy? = sin(x + 2y)

54 Y2 — Xy +3x=2

56 y = cot(xy)

Exer. 57-58: Find equations of the tangent line and the
normal line to the graph of f at P.

4
57 y=2x— —; P46
y=n- g (4,6)
58 x2y — y3 =8 P(-3,1
59 Find the x-coordinates of all points on the graph of the

equation y = 3x — cos 2x at which the tangent line is
perpendicular to the line 2x 4+ 4y = 5.

60 If f(x) =sin2x —cos2x for 0 < x < 2m, find the x-
coordinates of all points on the graph of f at which the
tangent line is horizontal.

Exer. 61-62: Find y’, y”, and y"”’
61 y=5x>+4/x
62 y= 2x? — 3x — cos 5x
63 1If x*+4xy — y> =8, find y” by implicit differentia-
tion.
64 If f(x) = x> — x> — 5x + 2, find
(a) the x-coordinates of all points on the graph of f at
which the tangent line is parallel to the line through
A(-3,2) and B(1, 14)
(b) the value of f” at each zero of f’
65 If y =3x>—7, find
(@ Ay (b)dy (¢)dy-—
66 If y = 5x/(x2 + 1), find dy and use it to approximate

the change in y if x changes from 2 to 1.98. What is the
exact change in y?

67 The side of an equilateral triangle is estimated to be 4
in., with a maximum error of +0.03 in. Use differentials
to estimate the maximum error in the calculated area of
the triangle. Approximate the percentage error.

68 If s=3r2—2vr+1 and r=1> 412 +1, use the
chain rule to find the value of ds/dt att =.1.
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69 If f(x)=2x>+x—x+1 and g(x)=x"+4x> +2x,
use differentials to approximate the change in g(f(x))
if x changes from —1 to —1.01.

70 Use differentials to find a linear approximation of

J64.2.

71 Suppose f and g are functions such that f(2) = —1,
F@=4 f'Q=-2 g2 =-3 g2 =2 and
£”(2) = 1. Find the value of each of the following at
x =2

@Qf-39" ®QCf-39)" () (e
(d (fg)” (e) (f/8) () (f/8)"

72 Refer to Exercise 85 in Section 2.5. Let f be an odd
function and g an even function such that f(3) =
-3, f'3)=7, g3 =-3, and g'(3)=—5. Find
(fog)(3)and (g0 ) (3).

73 Determine where the graph of f has a vertical tangent
line or a cusp.

@) fx) =3+ DY -4
(®) f(x) =2(x - 8% —1

(2x - 1)3 ifx>2

74 =
Let f(x) {5x2+34x—61 ifx <2

Determine if f is differentiable at 2.

75 The Stefan—Boltzmann law states that the radiant
energy emitted from a unit area of a black surface is
given by R = kT*, where R is the rate of emission
per unit area, T is the temperature (in °K), and & is a
constant. If the error in the measurement of 7T is 0.5%,
find the resulting percentage error in the calculated value
of R.

76 Let V and S denote the volume and surface area,
respectively, of a spherical balloon. If the diameter
is 8 cm and the volume increases by 12 cm3, use
differentials to approximate the change in S.

77 A right circular cone has height 4 = 8 ft, and the base
radius r is increasing. Find the rate of change of its
surface area S with respect to r when r = 6 ft.

78 The intensity of illumination from a source of light
is inversely proportional to the square of the distance
from the source. If a student works at a desk that is a
certain distance from a lamp, use differentials to find
the percentage change in distance that will increase the
intensity by 10%.

79 The ends of a horizontal water trough 10 ft long are
isosceles trapezoids with lower base 3 ft, upper base
5 ft, and altitude 2 ft. If the water level is rising at a rate
of ‘—1‘ in./min when the depth of the water is 1 ft, how fast
is water entering the trough?
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80 Two cars are approaching the same intersection along
roads that run at right angles to each other. Car A is
traveling at 20 mi/hr, and car B is traveling at 40 mi/hr.
If, at a certain instant, A is % mi from the intersection

and B is —é— mi from the intersection, find the rate at which
they are approaching each other at that instant.

81 Boyle’s law states that pv = ¢, where p is pressure, v is
volume, and c¢ is a constant. Find a formula for the rate
of change of p with respect to v.

82 A railroad bridge is 20 ft above, and at right angles to, a
river. A man in a train traveling 60 mi/hr passes over the
center of the bridge at the same instant that a man in a
motorboat traveling 20 mi/hr passes under the center of
the bridge (see figure). How fast are the two men moving
away from each other 10 sec later?

Exercise 82

83 A large ferris wheel is 100 ft in diameter and rises
110 ft off the ground, as illustrated in the figure. Each
revolution of the wheel takes 30 sec.

(a) Express the distance % of a seat from the ground as a
function of time ¢ (in seconds) if # = O corresponds
to a time when the seat is at the bottom.

(b) If a seat is rising, how fast is the distance changing
when h = 55 ft?

Exercise 83
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84 A piston'is attached to a crankshaft, as shown in the
figure. The connecting rod AB has length 6 in., and the
radius of the crankshaft is 2 in.

(2) If the crankshaft rotates counterclockwise 2 times
per second, find formulas for the position of point A
at ¢t seconds after A has coordinates (2, 0).

(b) Find a formula for the position of point B at time #.”
(c) How fast is B moving when A has coordinates
0,2)?

85 Use Newton’s method to approximate, to three decimal
places, the root of the equation sinx —xcosx =0
between 7 and 37/2.

86 Use Newton’s method to approximate ~/5 to three
decimal places.
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| How far can you proceed in determining the derivative
of the function f(x) = 2*? Some suggestions follow.
(a) Assuming that f(x) = 2" is defined and continuous
for all real values of x, show that f'(0)=
lim, (2" — 1)/ h if this limit exists.

IZ‘ (b) Evaluate the difference quotient (2h —1)/h for a
number of different values of 2 close to 0. Does
the difference quotient appear to reach a limit as &
approaches 0? What is that limit?

EI (c) If you have a graphing calculator or access to
graphing software, examine the graph of @"=1)/h
for h # 0.

(d) Suppose limhv)o(Zh —1)/h does exist and has
value M. Use the definition of the derivative to show
that f’(x) would equal M(2*) for all real values of
x. Thus, if we can show that 2% is differentiable at
x = 0, then we know it is differentiable at all x.

(e) Can you determine analytically what

h
lim 2 —1
h—0 h

really is?
(f) What can you say about the differentiability of other
exponential functions such as 3, 10%, and (%)x?

(g) Write up your methods of investigation and conclu-
sions.

2 Suppose that the function f is differentiable at every
value x in an interval I, and let f be its derivative.

(2) Give several examples of functions f for which f’
is itself differentiable at every x in I.

(b) Give an example in which f’ is continuous at every
x in I, but not differentiable everywhere.

(c) Can you construct an example of a function f for
which f’ is continuous at every x in I, but has a
derivative at no point in I?

(d) Find a function f such that f'(x) = |x|.
(e) Prove that it is impossible to have a differentiable
function f with the property that

o [0 ifx<0
f(")—{l ifx >0

(f) If f is the derivative of f, can the function f have
any simple discontinuities?

3 (a) Show that for each rational number r # —1, there
is a rational number g such that the derivative of
f) = 1/g)x?is x".

(b) Show that there is no rational number ¢ such that
the function f(x) = (1/¢)x9 has f'(x) = 1/x.

(c) Try to construct a function f such that f'(x) = 1/x
for all positive values of x. Can you build such a
function f out of polynomials or rational functions
or trigonometric functions? What properties must
such a function f have?




