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N THE FIRST MOMENTS after the launch of a space shuttle, many
changes occur rapidly. The rocket gains altitude as it accelerates

to higher speeds. Its mass decreases as fuel burns up. Inside the
shuttle, an astronaut feels increasing force due to the acceleration. As
the distance from the earth gets larger, the astronaut’s weight decreases.
Indeed the values of many variables change dramatically during this time
period.

Calculus is the mathematics of change. Wherever there is motion
or growth or where variations in one quantity produce alterations in
another, calculus helps us understand the changes that occur, We can
use calculus, for example, to predict the height and speed of the rocket
at each instant of time after launch. We also use calculus to study
important geometric properties of curves, such as their tangent lines
and the amount of area they enclose.

In this preliminary chapter, we briefly review topics from precalculus
mathematics that are essential for the study of calculus, beginning with
inequalities, equations, absolute values, and graphs of lines and circles.
We then turn our attention to functions and their graphs. We also dis-
cuss some very important functions that occur frequently in applications
of calculus: trigonometric functions, exponential functions, and logarith-
mic functions. We conclude the precalculus review with an examination
of the elementary geometry of conic sections: parabolas, ellipses, and
hyperbolas.

To say that the concept of function is important in calculus is an
understatement. [t is literally the foundation of calculus and the backbone
of the entire subject. You will find the word function and the symbol f
or f(x) used frequently on many pages of this text.

In precalculus courses, we study properties of functions by using
algebra and graphical methods that include plotting points and deter-
mining symmetry. These techniques are adequate for obtaining a rough
sketch of a graph. Calculus is required, however, to find precisely where
graphs of functions rise or fall, exact coordinates of high or low points,
slopes of tangent lines, and many other useful facts. We can often suc-
cessfully attack applied problems in science, engineering, economics, and
the social sciences that cannot be solved by means of algebra, geometry,
or trigonometry if we represent physical quantities in terms of functions
and then apply the tools of calculus.

With the preceding remarks in mind, carefully read Section B on
functions and their graphs. You should have a good understanding of this
material before beginning your study of calculus in the next chapter.

Planning a complex mission like the
launch of a space shuttle requires
extensive use of calculus and
precalculus mathematics.

Precalculus Review




A

ok Y AR AT

ILLUSTRATION

Properties of Inequadlities

I

Precalculus Review

ALGEBRA

This section reviews topics from algebra that are prerequisites for calcu-
lus. We shall state important facts and work examples without supplying
detailed reasons to justify our work. Texts on precalculus mathematics
provide more extensive coverage of this material.

All concepts in calculus are based on properties of the set R of real
numbers. There is a one-to-one correspondence between R and points on
a coordinate line (or real line) 1, as Figure 1 illustrates. The point O is
called the origin and corresponds to the number 0 (zero), which is neither
positive nor negative. The real number associated with a point on the line
is called a coordinate of the point.

Figure |
9 g —— 4
-3 —E‘l—i'ltl') I'\E"E"iié b a I
15 21 v2 oamoa s
Negative real ! ___Positive real
numbers ! numbers

If a and b are real numbers, then a > b (a is greater than b) if a — b
is positive. An equivalent statement is b < a (b is less than a). Referring
to the coordinate line in Figure 1, we see that a > b if and only if the point
A corresponding to a lies to the right of the point B corresponding to b.
Other types of inequality symbols include a < b, which means a < b or
a=h,anda < b < c,whichmeansa < band b < c.

5>3 -7 <=2
(—3)2 >0 a®> >0 for every real number a

The following properties can be proved for real numbers a, b, and c.

(M Ifa>bandb > ¢, thena > c.
@iy Ifa > b,thena+c¢ > b +c.
@iy Ifa > b, thena —c > b —c.
(iv) Ifa > band c is positive, then ac > bc.
(v) Ifa > b and c is negative, then ac < bc.

A Algebra

Analogous properties are true if the inequality signs are reversed. Thus,
ifa<bandb < c, thena <cjifa < b,thena + ¢ < b+ ¢; and so on.
The absolute value |a| of a real number a is defined as follows:

ial_ a ifa=>0
T =a ifa<0

If a is the coordinate of the point A on the coordinate line in Figure 1,
then |a| is the number of units (that is, the distance) between A and the
origin O. If a and b are real numbers, then |a — b| represents the distance
between a and b.

ILLUSTRATION

3] =3
. 10| =0

-3 = —(-3) =3
B-n|=-@-m)=n-3

The following properties can be proved.

Properties of Absolute

Values (b > 0) 2 @ la| <b ifandonlyif —b<a< b

@i) |a| > b ifandonlyifeither a>b or a<—b
i) |a| =b ifandonlyif a=b or a=—b

An equation (in x) is a statement such as
2 =3x—4 or 5x°+2sinx —+/x=0.

A solution (or root) is a number b that produces a true statement when b
is substituted for x. To solve an equation means to find all the solutions.

EXAMPLE=] Solve each equation:

(@) x> +3x* —10x =0
(b)2x2+5x—6=0
(© 7.3x* = 31.7x +152 =0

SOLUTION
(a) Factoring the left-hand side yields

x(x24+3x—10)=0, or x(x—2(x+5=0.
Setting each factor equal to zero gives us the solutions 0, 2, and —5.
(b) Using the quadratic formula,
—b+£ Vb —4ac

x = ,
2a
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witha = 2,b = 5, and ¢ = —6, we obtain

L TSEVO - @2)(—6) —5+/T3

(2)(2) 4
—5+4/73 -5 =473
Thus, the solutions are —-——; and 7 .

.(c) Again using the quadratic formula, we obtain

31.7 + V/(=31.7)% — (4)(7.3)(15.2)
X =

2)(7.3)

3174 /1004.89 — 443.84

B 14.6

_ 317+ v561.05

B 14.6 '

31.7 + +/561.05 and 31.7 — v/561.05
14.6 14.6 )

In this case, the solutions are

|% COMPUTATIONAL METHOD We may want to use a calcu-

: lator or a computer to obtain numerical answers in decimal form for results
similar to the two algebraic solutions in Example 1(c). In such cases, the
ability to estimate roots is a useful skill for checking whether the formula
has been keyed in correctly. We can quickly estimate the two roots in (c)
by rounding the coefficients to convenient integers or fractions in order to
approximate the solutions as follows:

30+ V/(=30)” — 4(7.5)(15)
e 2(7.5)

30+ /900 — 30(15)

B 15

_ 30+ 450
15

3020 50 10
o~ = — and — =~ 3.3and 0.7

5 15015 o

To obtain more exact numerical answers with a calculator or a computer,
we use the quadratic formula and key in the values in a format similar to
the following:

(31.7+V (=31.7A2-4%7.3%15.2))/(2*7.3)

We then evaluate the expression, obtaining 3.79359548233 as an approxi- |

mate answer, which is close to the estimated value of 3.3. A similar calcu-
lation (replacing the first + sign with a — sign when keying in the formula
values) yields 0.548870271098 for the second root in (c), which is also
close to the estimated value.

A Algebra

Intervals 3

When entering complex numerical formulas on an algebraic calculator, it
is essential to use parentheses properly. See the reference manual for your
calculator for details.

An inequality (in x) is a statement that contains at least one of the
symbols <, >, <, or >, such as

Sx—4>x* or —3<d4dx+2<5.

The notions of solution of an inequality and solving an inequality are
similar to the analogous concepts for equations.

In calculus, we often use intervals. In the definitions that follow, we
employ the set notation {x : 1, where the space after the colon is used
to specify restrictions on the variable x. The notation {x : @ < x < b}, for
example, denotes the set of all real numbers greater than a and less than
or equal to b — the equivalent interval notation for this set is (a, &]. In the
following chart, we call (a, b) an open interval, [a, D] a closed interval,
[a, b) and (a, b] half-open intervals, and intervals defined in terms of oo
(infinity) or —oo (minus or negative infinity) infinite intervals or rays.

Notation =~ Definition | Graph !
£ ; >
a b
la, b] (x:a<x<b | —H ] »
a b
la, b) {x:a<x<bhb} L 3 -
a b
(a,b] {x:a <x<b} { ] -
a b
(a, 00) {x :x > a} { ~
a
la, 00) {x :x>a} — ¢ -
a
(—00, D) {x:x < b} ) -
b
(—00, b] {x:x <b} ! .
b
(—00, 00) R =

EXAMPLE=2 Solve each inequality, and then sketch the graph of
its solution:

@ -5<

(b) x2—10 > 3x
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SOLUTION

(b) x2—10 > 3x given
x2=3x—-10>0 subtract 3x
x—5x+2)>0 factor

We next examine the signs of the factors x — 5 and x + 2, as shown in
Figure 3. Since (x —5)(x 4+ 2) > 0 if both factors have the same sign,
the solutions are the real numbers in the union (—oo, —2) U (5, o0), as
illustrated in Figure 3.

Figure 4 The solutions are the real numbers in the open interval (2.5, 3.5), as shown
4 —3x SIS T in Figure 4.
| (@ 5= <1  given 0 1 2 253 35 .
. ®)[2x =7 >3 given
—10<4—-3x <2 multiply by 2 2x -7 <=3 or 2x—7>3  property (ii) of absolute values
—14 < —3x < -2 subtract4 2x <4 or 2x > 10 add7
% =z x> % divide by —3, reverse the inequality signs Figure 5 x<2 oor x>5  divideby2
) % <x< 13_4 equivalent inequality ———+—+—+—)—+—+—+—+—+—>  The solutions are given by (—o0, 2) U (5, 00). The graph is sketched in
Figure 2 -101234 56 * Figure 5.
J 2{ ¥ 1}4 : Hence the solutions are the numbers in the half-open interval ( % 13—4]. The
03 3 graph is sketched in Figure 2.

We can also solve the inequalities in Example 3 graphically (that is, in
terms of distance) by observing that |x — 3| < 0.5 means that x is less
than 0.5 unit from 3. Hence, x must lie between 3 — 0.5 and 3 + 0.5, or,
equivalently, 2.5 < x < 3.5. Similarly, for |2x — 7| > 3, we note that 2x
is more than 3 units away from 7. Thus, if 2x <7 —3 or 2x > 7+ 3, we
obtain the same inequalities: 2x < 4 or 2x > 10, or, equivalently, x < 2 or
x > 5.

Inequalities often occur in applications to physical problems, as the
next example demonstrates.

Figure 3

. Sign of factor EXAMPLE®4  As the altitude of a space shuttle increases, an astro-

7 fE D —— — bttt o+t naut’s weight decreases until a state of weightlessness is achieved. The
gl f— 8 - —— - _ o+ o4t weight of a 125-1b astronaut at an altitude of x kilometers above sea level
A A is given by
3 o X
s | 20 ’ W =125 6400 Y’

g T SRR T \6400+x

-2 0 5 *

Inequalities involving absolute value occur frequently in calculus.

At what altitudes is the astronaut’s weight less than 5 1b?

SOLUTION
18,

We need to find the values of x for which W < 5 —that

4 2
25 (0 Y s
6400 + x

§ il EXAMPLE®=3 Solve each inequality, and then sketch the graph of
k. its solution: Dividing each side of the inequality by 125 gives us
o
i | (@ |x—-3] <05 ( 6400 )2 1
o | Taking the square root of each side yields
i | SOLUTION 6400 <1
(a) |x —3] <0.5 given 6400 +x 5

—0.5<x—3<0.5 property (i) of absolute values
25 <x <35 add3

P T

(Since x is positive, the fraction 6400/(6400 + x) will also be positive.
Thus, we can ignore the negative square root.) '




Now we can multiply both sides of the last inequality by the positive

expression 5(6400 + x) to obtain \ y
P ,
(5)(6400) < (1)(6400 + x) Py(xz. )
or |
x > (5)(6400) — 6400 = (4)(6400) = 25,600. I |-
) ]
The astronaut’s weight will be less than 5 Ib at altitudes greater than // e
25,600 km. Pl y) &t 2
: [ )
|

A rectangular coordinate system is an assignment of ordered pairs
(a, b) to points in a plane, as illustrated in Figure 6. The plane is called a
coordinate plane, or an xy-plane. Note that in this context (a, b) is not an
open interval. It should always be clear from our discussion whether (a, b)
represents a point or an interval.

Midpoint Formula 5 )
The midpoint M of segment P P,is

B — X, +x
5 Figure 6 M(P1P2)=M( : 2 & y];yz)'
| Ay
- 3
¥
+4(0,5) A
—4,3 .
( ] ) b—— -T(a, b) ' Py(x2, v2)
1: : e(5,2) ) /Af//
[ (r_4.1 0): L I I{ I T N Pl(Xp,V]) i :
1 T T T f T IO_"' i | al | T | I x : : :
I I
ol I I I
° #+0, =3) e - > - >
(=5, =3) -+ (5, ~3) ; S

EXAMPLE®=5 Given A(-2,3) and B4, —2), find:

f‘ (a) the distance between A and B

Two important formulas that show how geometric properties of line S
(b) the midpoint M of segment A B

5 | segments can be obtained from the coordinate-plane representation of i y
s points are the distance formula and the midpoint formula. Both of these 1 '
'f-‘ | formulas can be proved. ‘I 4 S OLUTION  Using the formulas in (4) and (5), we obtain the follow-
\ B T ing:
{ A( 2, 3) '\—~

L < ! _ 2 2_ R 19% — JeT
AS Distance Formula 4 . : \.i/[([ 5) @ d(A, B) = V(@4 +2)" + (=2-3)" =36 +25 =61
3 The distance between P; and P, is 1 N L 244 34+(=2) 1
L | } T \ ) (b)M(AB)=M( 5 )=M(1,§)

: 4

e — )2 e 1 B4, -2
! d(Py, P = \/(x2 )"+ O =) The points are plotted in Figure 7.

.

Yy
-
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Symmetries of Graphs 6
y-axis
R4
(—x,y) W)
VAR
Test (i)

Substitution of —x for x
leads to the same equation.
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An equation in x and y is an equality such as

2x +3y =35, y=x2—5x+2, or y2+sinx=8.

A solution is an ordered pair (a, b) that produces a true statement when
x = a and y = b. The graph of the equation consists of all points (a, b)
in a plane that correspond to the solutions. We shall assume that you have
experience in sketching graphs of basic equations in x and y.

The concept of symmetry is useful in calculus. It enables us to sketch
only half a graph and then reflect that half through an axis or the origin.
Some graphs in the xy-plane are symmetric with respect to the y-axis, the
x-axis, or the origin. There are simple tests, given in (6), that we can apply
to an equation in x and y in order to determine symmetry.

(i) x-axis (iiiy Origin
AY Ay
\_{\ %y)
- = L
x, —y) ) - !
/—\_, (v—x, % ‘

Test (ii):
Substitution of —y for y
leads to the same equation.

Test (iii):

Substitution of both
—xforx and —yfory
leads to the same equation.

In the next example, we shall plot several points on each graph to illus-
trate solutions of the equations. However, a principal objective in graphing
is to obtain an accurate sketch without plotting many (or any) points.

EXAMPLE =6 Sketch the graph of each of the following equations:
@y=3" ®y'=x @4y=x
SOLUTION

(a) By symmetry test (i), the graph of y = %xz is symmetric with respect
to the y-axis. Some points (x, y) on the graph are listed in the following
table.

=
o
[
&)
IO
o0

A Alge

bra

g Y

-/
]/

//
*C(h, k)

Ve S 4

jO |

=R+ (y—kP=1r

Equation of a Circle 7

Plotting, drawing a smooth curve through the points, and then using sym-
metry gives us the sketch in Figure 8. The graph is a parabola, with vertex
(0, 0) and axis along the y-axis. We discuss parabolas in more detail in
Section E of this chapter.

(b) By symmetry test (ii), the graph of y> = x is symmetric with respect
to the x-axis. Points above the x-axis are given by y = /x. Several such
points-are-(0, 0), (1, 1), (4, 2), and (9, 3). Plotting and using symmetry
gives us Figure 9. The graph is a parabola with vertex (0, 0) and axis along
the x-axis.

(c) By symmetry test (iii), the graph of 4y = x3 is symmetric with respect
to the origin. Several points on the graph are (0, 0), (1, %), and (2, 2).
Plotting and using symmetry gives us the sketch in Figure 10.

L 9. 3)

=Y

A very symmetric geometric figure in the plane is a circle with its
center at the origin, since it is symmetric with respect to both coordinate
axes and with respect to the origin. A circle with center C(h, k) and radius
r is illustrated in Figure 11. If P(x, y) is any point on the circle, then by
the distance formula (4), d(P, C) = r, or [d(P, C)]2 = r?, which in turn
yields the following equation.

x—hl+(y—k?=r

If the radius r is 1, then the circle is called a unit circle. A unit circle
U with center at the origin has the equation 4y =1

EXAMPLE®7 Find an equation of the circle that has center

C(—2, 3) and contains the point D(4, 5).




| |
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|
SOLUTION The circle is illustrated in Figure 12. Since D is on the Special Lines 9
circle, the radius r is d(C, D). By the distance formula,
;= \/ (44+2)% + (5 —3)2 = V36 + 4 = V40. (@) Vert.icalz m undefined (i) Parallel: m; = m, (iiiy Perpendicular: mm, = —1
Horizontal: m = 0
Figure 12 LY AY Ay AY
y =b |(a b)
- .
il “ ca\OQe
C(=2,3)e $\0Qe m
L _ _
| 1
Using the equation of a circle (7) with h = -2, k = = /40 gi . . .
us g quation of a circle (7) wi ’ 3, and r 40: glves EXAMPLE®8 Sketch the line through each pair of points, and find
(x +2)% + (y — 3)2 = 40. its slope:
(@) A(—1,4)and B(3,2)  (b) A(2,5) and B(-2, —1)
In calculus we often consider lines in a coordinate plane. The following () A(4,3)and B(=2,3)  (d) A(4, —1) and B(4, 4)
formulas are used for finding their equations.
SOLUTION  The lines are sketched in Figure 13.
Lines 8 Figure 13
(a) m= —% (cgm=0 (d) m undefined
(i) Slope m: (i) Point—Slope Form: (i) Slope—Intercept Form: A AY Y
. m= 22701 y—y =mx—x) y=mx-+b 1 il
' Xeaadi \ B(-2.3) +  A@4.3) B4, 4)
1.4 | A(—1,4)3 B(3,2) -
b AY LY Ay 1 1 ]E
sl e A A A R B
q T S T X i tag. -1 *
2;‘ Py(xs, ) Slope m Slope m - T i
| .
% : (xl/’yl)/ / P x/‘y / /’{ From the slope formula (8)(i),
3 2-4 _2_ 1 5-(-1) 6 3
- . . m= = — = —— = = — = —
: e > > @m=3"p=7 "2 O"=37 %7173
it
' () m= 3-3 _ 0 -0 which indicates that the line is
e lt 1 4—(=2) 6 " horizontal.
i @ m= 4—(=DH 5 which is undefined. Note that the line is
; Some special types of lines and properties of their slopes are given 4—4 0 vertical.
i in (9). '

i -.'. T . ..i,‘




- EXERCISES A
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A linear equation in x and y is an equation of the form ax + by = ¢
(or ax + by + d = 0) with a and b not both zero. The graph of a linear
equation is a line.

EXAMPLE®=9 Find a linear equation for the line through A(1, 7)

and B(—3, 2).

SOLUTION The slope m of the line is
_17-2 5
S Py S

We may use the coordinates of either A or B for (x,, y,) in the point - slope
form (8)(ii). Using A(1, 7) gives us

y—T7=3(x-1),
which is equivalent to

4y —28 =5x—5, or 5x —4y=-23.

EXAMPLE=I10

(a) Find the slope of the line / with equation 2x — 5y = 9.

(b) Find linear equations for the lines through P (3, —4) that are parallel to
I and perpendicular to /.

SOLUTION

(a) If we rewrite the equation as 5y = 2x — 9 and divide both sides by 5,

we obtain

y=2x-2.
Comparing this equation with the slope —intercept form y = mx + b, we
see that the slope is m = %
(b) By (ii) and (iii) of (9), the line through P(3, —4) parallel to [ has
slope % and the line perpendicular to / has slope —%. The corresponding

equations are
y+4=2%x—-3), or 2x—5y=26,

and y+4=—%(x—3), or S5x+2y="1.

Exer. 1-8: Rewrite the expression without using the

absolute value symbol.
I (@) (=5)|3 6]
2 (a) 4)|6—7]
3 () [4-n]

(b) |-6]/(-2)-
(b) 5/ 1-2]
(b) | — 4|

by 17-V3 (©|i-1%
6 |5—x|ifx>5
8 |7+ x|ifx>—7

4 (a) |[v/3 - 1.7
5 34x|ifx <=3
7 2-x]ifx<2

© =7+ 4]
() |-1] + 1-9]
(©) |v2—15]

Exercises A

Exer. 9—12: Solve the equation by factoring.

9 15x% —12 = —8x 10 15x% — 14 = 29x

Il 2x(4x 4+ 15) =27 12 x(B3x +10) =77
Exer. 13-16: Solve the equation by using the quadratic
formula.
13 x> 4+4x42=0
15 2x2 —3x —4=0

14 x> —6x—3=0"

16 3x2 +5x+1=0

Exer. 17-38: Solve the inequality and express the
solution in terms of intervals whenever possible.

17 2x+5<3x—-17 18 x —8>5x+3

_ dx +1
x-3 _4 20 2t 1_

19 3< 0

21 x2—x-6<0
22 x2+4x+3>0
23 2 —2x—5>3
24 x> —4x—17<4
25 x(2x+3)>5 26 x(3x—1) <4
x+1 -5 28 x—2
2x -3 3x +5
1 3 2
>
x—2 " x+1
31 |x+3| < 0.0t

33 |x 42| = 0.001

27 <4

2
<

2x+3 " x-=5
32 |x—4|§0.03
34 |x —3] > 0.002
36 |3x—7|25
38 |-11-7x|>6

29

35 [2x +5| <4

37 |6 —5x| <3

Exer. 39-40: Describe the set of all points P(x, y) in a

coordinate plane that satisfy the given condition.

39 @x=-2 (b)y=3 (c)x>0 (d) xy >0
(e)y <0 (f) |x] <2and |y| <1

40 (@) y=-2 (b)x=-4 ()x/y<0 (d)xy=0
(e)y>1 (f) |x]| >2and |y| =3

Exer. 41-42: Find (a) d(A,B) and (b) the midpoint of

AB.

41 A(4, -3), B(6,2) 42 A(-2, —5), B4, 6)

43 Show that the triangle with vertices A(8, 5), B(1, =2),
and C(—3, 2) is a right triangle, and find its area.

44 Show that the points A(—4, 2), B(1, 4), C(3, —1), and
D(—2, —3) are vertices of a square.

Exer. 45-56: Sketch the graph of the equation.

45 y=2x2 -1 46 y=—x*+2

47 x=‘—l‘y2 48 x=—2y2
49 y=x>-8 50y=—x3+1
5|y=\/——4 52 y=./x—-4

53 (x+3)2+(—-22=9
54 x2 4+ (y—2)2=25

55 y = —/16 — x2

Exer. 57 -60: Find an equation of the circle that satisfies
the given conditions.

57 Center C(2, —3); radius 5
58 Center C(—4, 6); passing through P(1, 2)

59 Tangent to both axes; center in the second quadrant;
radius 4

60 Endpoints of a diameter A(4, —3) and B(-2, 7)

56 y =4 — x?

Exer. 61-66: Find an equation of the line that satisfies
the given conditions.

61 Through A(5, —3); slope —4
62. Through A(—1, 4); slope
63 x-intercept 4; y-intercept —3
64 Through A(5, 2) and B(—1, 4)
65 Through A(2, —4); parallel to the line 5x — 2y =4
66 Through A(7, —3); perpendicular to the line
2x — Sy =28
Exer. 67-70: Use the quadratic formula to solve the
equation. Give approximations to two decimal places.
67 0.7x% +32x +1.5=0
68 V3x?+3x—5=0
69 375x% —921x +47=0
70 x* - 8x24+5=0

71 The cost C (in dollars) of renting a luxury car for one
week is given by C = 0.25m + 150, where m is .ae
number of miles driven. What range of miles will result
in a rental charge that is between $200 and $300?

72 A coin is considered fair if it has an equal probability
of landing with heads up or tails up when tossed. An
experimenter tosses a coin 100 times and counts the
number of heads H. From statistical theory, the coin
will be considered fair if

‘H—SO

| < 1.645.

For what range of values of H will the experimenter
declare the coin fair?




73 Shown in the figure is a simple magnifier consisting of
a convex lens. The object to be magnified is positioned
so that its distance p from the lens is less than the focal
length f. The linear magnification M is the ratio of the
image size to the object size. It is shown in physics that
M = f/(f — p).If f=6cm, how far should the object
be placed from the lens so that its image appears at least
three times as large?

Exercise 73

IZI 74 The escape velocity is the initial velocity v, with which
a rocket must leave the surface of a planet so that it
can eventually rise as far as desired. The escape velocity
satisfies the inequality

km

R
where m and R are the mass and the radius of the planet,
respectively, and k is a constant. If mass is given in

kilograms and radius in meters, then k = 6.67 x 10_11,

with units chosen so that v, is measured in meters per

second. For which initial velocities can a rocket escape
the earth, Mars, and the moon? Use the data in the
following table.

’

1 2
_ >
2”0—

m (kg) ‘ R (m)
Earth | 6.0 x 10 | 6.2x 10°
Mars | 64 x10%° | 3.3 x10°

Moon 7.3 x10%2 ‘ 1.7 x 10°

75 The rate at which a tablet of vitamin C begins to dissolve
depends on the surface area of the tablet. One brand of
tablet is 2 ¢m long and is in the shape of a cylinder
with hemispheres of diameter 0.5 cm attached to both
ends (see figure). A second brand of tablet is to be
manufactured in the shape of a right circular cylinder
of altitude 0.5 cm.

Exercise 75
I.—-é — 2cm
I
I

76

77

78

79

80

Precalculus Review

(a) Find the diameter of the second tablet so that its
surface area is equal to that of the first tablet.

(b) Find the volume of each tablet.

A manufacturer of tin cans wishes to construct a right
circular cylindrical can of height 20 cm and of capacity
3000 cm® (see figure). Find the inner radius r of the can.

Exercise 76

The braking distance d (in feet) of a car traveling v
mi/hr is approximated by d = v + (v2/ 20). Deterr/nine
velocities that result in braking distances of less ithan
75 ft. '

In order for a drug to have a beneficial effect, its
concentration in the bloodstream must exceed a certain
value, the minimum therapeutic level. Suppose that the
concentration ¢ of a drug ¢ hours after it has been
taken orally is given by ¢ = 20t/ @+ 4 mg/L. If the
minimum therapeutic level is 4 mg/L, determine when
this level is exceeded.

The electrical resistance R (in ohms) for a pure metal
wire is related to its temperature 7 (in °C) by the
formula R = Ry(1 +aT) for positive constants a and
R,

(a) For what temperature is R = R?

(b) Assuming that the resistance is 0 if T = —273 °C
(absolute zero), find a.

(c) Silver wire has a resistance of 1.25 ohms at 0 °C. At
what temperature is the resistance 2 ohms?

Pharmacological products must specify recommended
dosages for adults and children. Two formulas for
modification of adult dosage levels for young children
are
Cowling’srule: y = (¢ + 1)a
Friend’s rule: y = %ta,

where a denotes the adult dose (in milligrams) and ¢
denotes the age of the child (in years).

(a) If a = 100, graph the two linear equations on the
same axes for 0 < ¢ < 12.

(b) For what age do the two formulas specify the same
dosage?

Mathematicians and Their Times

3
¥

Mathematicians and Their Times

HYPATIA, THE FIRST WOMAN MATHEMATICIAN whose achievernents we
know, was a brilliant scholar and gifted teacher who suffered a horrible
death at the hands of a mob blinded by religious hatred.

Hypatia was born around A.D. 370. Her father, Theon, was a math-
ematician at the Alexandrian Museum, a university that Egypt’s rulers
had founded 700 years earlier. “In an era
in which the domains of intellect and pol-
itics were almost exclusively male,” notes
one biographer,” “Theon was an unusu-
ally liberated person who taught an unusu-
ally gifted daughter and encouraged her to
achieve things that, as far as we know, no
woman before her did or perhaps even
dreamed of doing.”

Theon supervised his daughter’s edu-
cation, immersing her in an environment of learning and exploration }
and passing on his own great love of mathematics. Hypatia’s remarkable
intellectual skills, combined with great eloquence, modesty, and beauty,
attracted many enthusiastic students from Europe, Africa, and Asia. She
lectured on philosophy as well as mathematics and was recognized as the
leader of the Neoplatonic philosophers. Students gathered in her home
or followed her in the streets to hear more of her brilliant philosophical
discussions or expositions on mathematics. Hypatia authored commen-
taries on the Conics of Appolonius, the Arithmetica of Diophantus, and
the astronomical work of Ptolemy. These expositions were designed to
help students understand difficult classic texts.

The scientific rationalism of the Neoplatonists challenged the more
doctrinaire beliefs of the early Christian Church, whose leaders con-
demned the Greeks as “pagans”. When Cyril became Alexandria’s Chris-
tian patriarch in 412, he began a systematic plan of oppression aimed
at all he saw as heretics. He led an attack against the Jews, destroying
their synagogue, looting their homes, and finally expelling them from
the city. When Orestes, the head of the civil government, complained,

*lan Mueller, “Hypatia” in Louise S. Grinstein and Paul }. Campbell, eds., Women of
Mathematics: A Bibliographic Sourcebook. New York: Greenwood Press, 1987.
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a band of Cyril's supporters attacked him with stones. Rescued from
the mob, Orestes tortured and executed the monk who had wounded
him. Cyril, in turn, demanded the sacrifice of a virgin who followed the
Greek religion and advised Orestes. Rumors spread that Hypatia was a
major force inciting Orestes against Cyril. Cyril’s supporters responded
swiftly. In March 415, a fanatical mob barbarously murdered Hypatia.
Hypatia’s tragic death also brought an eclipse to significant scientific
and mathematical thought in the West, one that unfortunately lasted
nearly 1000 years.

FUNCTIONS AND THEIR GRAPHS

!

/

The notion of function is basic for much of our work in calculus. We often
study the effect that a change in one variable has on the values of a second
variable when the second variable is a function of the first.

A function f from a set D to a set E is a correspondence that assigns
to each element x of the set D exactly one element y of the set E.

The element y of E is the value of f at x and is denoted by f(x),
read “f of x.” The set D is the domain of the function f, and the set E
is the codomain of f. The range of f is the subset of the codomain E
consisting of all possible function values f (x) for x in D.

We sometimes depict functions as shown in Figure 14, where the sets
D and E are represented by points within regions in a plane. The curved
arrows indicate that the elements f(x), f(w), f(z),and f(a) of E corre-
spond to the elements x, w, z, and a, respectively, of D. It is important to
remember that fo each x in D, there is assigned exactly one function value
f(x) in E. Different elements of D, such as w and z in Figure 14, may
yield the same function value in E. Until we reach Chapter 11, the phrase
f is a function will mean that the domain and the range of f are sets
of real numbers. We say that f is a one-to-one function if f (x) # f(y)
whenever x # y.

We usually define a function f by stating a formula or rule for finding
f(x),such as f(x) =+x—2. The domain is then assumed to be the set
of all real numbers such that f(x) is real. Thus, for f(x) = vx — 2, the
domain is the infinite interval [2, 0o ). If x is in the domain, we say that f
is defined at x, or that f(x) exists. If S is a subset of the domain, then f
is defined on S. The terminology f is undefined at x means that x is not
in the domain of f.

B Functions and Their Graphs

Let f(r) = Y24%,

EXAMPLE=I
1—x

(a) Find the domain of f. (b) Find f(5), f(=2), f(-a), and — f(a).

SOLUTION

(a) Note that f(x) is a real number if and only if the radicand 4 + x is
nonnegative and the denominator 1 — x is not equal to 0. Thus, f (x) exists
if and only if

A44x>0 and 1—x#0
or, equivalently, x>—-4 and x#1L

Hence, the domain is [—4, 1) U (1, 00).
(b) To find values of f, we substitute for x:

JAFS O3 AT CD) _V2
fO=T5=3""73 [ D=""(2 "3

ATCH_JTa g JAiFa A
fl=a) = 1—(—a) T 14a V=" "4 a-1

In calculus, we often work with the difference quotient of a function.
If f is a function, then its difference quotient is an expression of the form

flx+h)— fx)

, where h # 0.
h 7

EXAMPLE=2 Simplify the difference quotient

fG+h)— fx)
h

using the function f(x) = x2+6x —4.

SOLUTION Wehave
fGx+h)— fx)
h
[+ h)? 60+ ) — 4] — ¥ + 6x — 4]
h
(x2+2xh+h2+6x+6h—4)—(x2+6x—4)
- h
2xh + h* + 6h
- h
h(2x + h + 6)
=
=2x+h+6.

Thus, the difference quotient simplifies to 2x + h+6.
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Many formulas that occur in mathematics and the sciences determine
functions. For instance, the formula A = 772 for the area A of a circle of
radius r assigns to each positive real number r exactly one value of A.
The letter r, which represents an arbitrary number from the domain, is an
independent variable. The letter A, which represents a number from the
range, is a dependent variable, since its value depends on the number
assigned to r. If two variables r and A are related in this manner, we say
that A is a function of r. As another example, if an automobile travels at
a uniform rate of 50 mi/hr, then the distance d (in miles) traveled in time
t (in hours) is given by d = 50¢, and hence the distance d is a function of
time t.

EXAMPLE®=3 A steel storage tank for propane gas is to be con-
structed in the shape of a right circular cylinder of altitude 10 ft with a
hemisphere attached to each end. The radius r is yet to be determined.
Express the volume V of the tank as a function of r.

SOLUTION The tank is sketched in Figure 15. We may find the
volume of the cylindrical part of the tank by multiplying the altitude 10 by
the area 772 of the base of the cylinder: -

volume of cylinder = 1O(nr2) = 1072

The two hemispherical ends, taken together, form a sphere of radius .

Figure 15

Using the formula for the volume of a sphere, we obtain
volume of the two ends = %m3 .
Thus, the volume V of the tank is
V =i + 10m? = Smr?2r + 15).

This formula expresses V as a function of 7.

If f is a function, we may use a graph to illustrate the change in the
function value f(x) as x varies through the domain of f. The graph of a
function f with domain D is the graph of the equation y = f(x) for x in
D. The graph is the set of all points (x, f(x)), where x is in D. If a point
P(a, b) is on the graph, then the y-coordinate b is the function value f(a).
Figure 16 shows the graph of f and indicates the domain and the range. In
this figure, the domain and the range are shown as closed intervals. In other
examples, they may be infinite intervals or other sets of real numbers.

B Functions and Their Graphs

ILLUSTRATION

Since there is exactly one value f(a) for each a in the domain, only one
point on the graph has x-coordinate a. Thus, every vertical line intersects
the graph of a function in at most one point. Consequently, the graph of a
function cannot be a figure such as a circle, which can be intersected by a
vertical line in more than one point.

The x-intercepts of the graph of a function f are the solutions of the
equation f(x) = 0. These numbers are the zeros of the function. The y-
intercept of the graph is f(0), if it exists.

If f is an even function—that is, if f(—x) = f(x) for every x in
the domain of f —then the graph of f is symmetric with respect to the
y-axis, by symmetry test (i) of (6). If f is an odd function —that is, if
f(—=x) = — f(x) for every x in the domain of f —then the graph of f is
symmetric with respect to the origin, by symmetry test (iii). Most functions
in calculus are neither even nor odd.

The next illustration contains sketches of graphs of some common
functions and indicates the symmetry, the domain, and the range for each.

Function f Graph Symmetry Domain D, Range R
fx) =% AY none D = [0, 00)
R = [0, o0)
e
flx) = x? y y-axis D = (—00, 00)
(even function) R =10, o0)
£
fx) = x* Ay origin D = (—o0, 00)
/ (odd function) R = (—00, 00)
£
fx) =x73 Ay y-axis D = (—00, 00)
(even function) R =10, c0)
£
(continued)




Figure 17
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Function f Symmetry Domain D, Range R

flx) = x/3 AY origin D = (—00, )
(odd function) R = (—00, o0)

fx) = |x| A y-axis D = (—00, 00)

LY
\ j (even function) R =0, 00)
=
X

ﬂm:l 4 origin D = (—o0, 0) U (0, 00)
x \\~ (odd function) R = (=00, 0) U (0, 00)

Functions that are described by more than one expression, as in the
next example, are called piecewise-defined functions.

EXAMPLE®4  Sketchthe graph of the function f defined as follows:

2x +3 ifx <0
fx) = {x? ifo0<x<?2
1 ifx >2

SOLUTION If x <O, then f(x) =2x + 3, and the graph of f is
part of the line y = 2x + 3, as indicated in Figure 17. The open circle
indicates that (0, 3) is not on the graph.

If 0 <x <2, then f(x)=x2, and the graph of f is part of the
parabola y = x2. Note that (2, 4) is not on the graph.

If x > 2, the function values are always 1, and the graph is a horizontal
half-line with endpoint (2, 1).

In Example 4, we see a function whose graph is made up of several
disconnected pieces. Another function with this property is the greatest
integer function f defined by f(x) = [[x]l, where [[x] is the greatest in-
teger less than or equal to x. If we identify R with points on the coordinate
line, then [x]] is the first integer o the left of (or equal to) x.

Figure 19

Functions and Their Graphs

ILLUSTRATION

The following illustration gives some specific values for the greatest
integer function, and Figure 18 graphically illustrates the location of x and
[[x] for each of these values.

[0.5] =0 [1.8] =1 [v5] =2
31 =3 [-3] = -3 [—2.7] = =3
[—+/31 = -2 [-0.5] = —1

Figure 18

—4 —3]—2‘ AI‘O‘I ’2L3 X

-27 -V3  —05 05 18 bs

EXAMPLE®5 Sketch the graph of the greatest integer function.

SOLUTION The x- and y-coordinates of some points on the graph
may be listed as follows:

_Va_lues of x J;(x)_:: I[x]}__

2 <x<-1 -2

-1<x<0 -1
0<x<l1 0
1<x<2 1

2<x<3 2 |

Whenever x is between successive integers, the corresponding part of
the graph is a segment of a horizontal line. Part of the graph is sketched in
Figure 19. The graph continues indefinitely to the right and to the lefi.

If we know the graph of y = f({x), then it is easy to sketch the graphs
of functions obtained from f by transformations involving shifts, stretch-
ing, compressing, or reflecting. Adding or subtracting a positive constant
¢ to each function value f(x) produces a vertical shift. Adding c shifts
the graph of f upward a distance of ¢ units, and subtracting c shifts the
graph downward, as illustrated in Figure 20. The graphs of y = f(x + ¢)
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Figure 20 Vertical shifts, ¢ > 0
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Figure 22 Vertical stretch, ¢ > 1
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Figure 23 Vertical compression, 0 < ¢ < 1
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Figure 21 Horizontal shifts, ¢ > 0
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Figure 24 Reflection
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and y = f(x — c¢) are horizontal shifts of the graph of y = f(x), ¢ units
to the left and c units to the right, respectively, as shown in Figure 21.

If we multiply each function value f(x) by a positive constant ¢ to
obtain y = cf (x), then we have a vertical stretch if ¢ > 1 (Figure 22) and
a vertical compression if 0 < ¢ < 1 (Figure 23). The graphs of y = f(x)
and y = — f(x) are reflections of each other across the x-axis, as shown
in Figure 24. It should be noted that the x-intercepts of the graph of
y = c¢f (x) are the same as those of y = f(x).

In the graphs of functions we have seen thus far, the two coordinate
axes have had equal scales: One unit along the x-axis represents the same
length as one unit along the y-axis. We assume equal scales on all coordi-
nate graphs that have no scale markings or numbered “tics.”

It is often desirable, however, to use graphs with unequal scales. For
some functions f, a relatively small x-value may give a relatively large
value for f(x). For example, if f(x) = x4 100, as x increases from 0 to
5, f(x) has values between 100 and 725. If we were to use equal scales
to graph this function, we would have a large amount of wasted space in
which no part of the graph appears.

B Functions and Their Graphs

—10<x <10,x, =2

—62 <y < 17,529, y,, = 1000

10 <x <20, x4 =2
—62 <y =<17,529,y,, = 1000

-2 =1x S6,XSC1=1
—62 =<y =89, y.ua = 10

153 = x = 20.8, xea = 10
—43 <y <193, yu = 10

|

To minimize such wasted space on the screen, most computer and
calculator graphs use unequal scaling. While many graphing utilities set
the scales automatically, some also permit the user to set the scales x
and y_, and thus designate specific units between the tic marks on each
axis.

For many functions, the domain or the range of the function may be
all real numbers. The computer or calculator, however, can display only
a finite rectangle called the viewing window. The user must specify the
x-interval for the viewing window by giving the left-endpoint x _, and
the right-endpoint x_, . The user may also specify the y-interval, or the
graphing utility may automatically calculate y . and y_. so that the graph
fits within the viewing window.

EXAMPLE=6 Let f(x) =x* ~Tx3 +6x2+8x+9. Use a graph-
ing utility to

(a) view f with x-interval [—10, 10] and y-interval [y . , Y., Where
Ymin @0d ¥, represent the smallest and largest values of f, respectively,
on the given x-interval

(b) estimate, without changing the y-interval from part (a), the number b
such that the graph of f on the x-interval [—10, b] stays within the viewing
window

() investigate the behavior of the function near the origin
(d) view the graph with equal scales near the origin

SOLUTION

(a) To view the graph with [—10, 10] as the x-interval, we set the x-range
at —10 < x < 10. If your graphing utility has an automatic scaling feature,
utilize it to determine that the smallest y-value is approximately —62 (at
x = 4.5) and that the largest y-value is 17,529 (at x = —10). If this feature
is not available, find these values by examining several viewing windows
and then tracing to the low point (the high point at x = —10 should be
easy to detect). Now set the y-range to —62 < y < 17,529 and graph f to
obtain a figure similar to Figure 25.

(b) To obtain the same view as shown in Figure 26, we change the x-range
to —10 < x < 20 while leaving the y-range alone. We then use the tracing
feature to follow along on the curve until the graph of f leaves the vie' ing
window in the first quadrant at x = b &~ 13.5.

(c) To place the origin in the viewing window, as in Figure 27, we change
the x- and y-ranges and both scales and then trace the curve for x between
—2 and 6. We determine that the function is negative for the (approximate)
x-interval [2.37, 5.63].

(d) Figure 28 shows the origin in the viewing window when the scales are
set equal to 10. Note that much of this viewing window contains no part
of the curve while part of the graph of the function, including its lowest
point, falls outside this viewing window.
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A function f is a polynomial function if f(x) is a polynomial — that
is, if

f)y=ax"+a, x" '+ +ax+a,

where the coefficients ag, Ay - -, 4, are real numbers and the exponents
are nonnegative integers. If a, # 0, then f has degree n. The following
are special cases, where a # O:

degree 0: f(x)=a constant function
degree 1: f(x)=ax+b linear function
degree 2: f(x) = ax*> 4 bx + ¢ quadratic function

A rational function is a quotient of two polynomial functions. Later
in the text, we shall use methods of calculus to investigate graphs of poly-
nomial and rational functions.

An algebraic function is a function that can be expressed in terms of
sums, differences, products, quotients, or rational powers of polynomials.
For example, if

x(x2 +5)
Vx4 3

then f is an algebraic function. Functions that are not algebraic are termed
transcendental. The trigonometric, exponential, and logarithmic functions
considered later are examples of transcendental functions.

In calculus, we often build complicated functions from simpler func-
tions by combining them in various ways, using arithmetic operations and
composition. If f and g are functions, we define the sum f + g, the dif-
ference f — g, the product fg, and the quotient f/g as follows:

(f+8)x) = f(x)+g)
(f —&)(x) = f(x) — g(x)
(fe)(x) = f(x)g(x)

[) AC)
(g 0 g(x)

The domain of f + g, f — g, and fg is the intersection of the domains
of f and g — that is, the numbers that are common to both domains. The
domain of f/g consists of all numbers x in the intersection such that

g(x) #0.

fx) =5x* —2x +

EXAMPLE®=T7 Let f(x) =+v4—x* and g(x) =3x + 1. Find the
sum, difference, product, and quotient of f and g, and specify the domain
of each.

Functions and Their Graphs —

SOLUTION The domain of f is the closed interval [—2, 2], and
the domain of g is R. Consequently, the intersection of their domains is
[—2, 2], and we obtain the following:

(f+g)(x)=v4—x2+(3x+1) —2<x<?2
(f—rg),(x)=v4—x2—(3x+1) —2<x<?2

(fe)(x) = V4 —x*Bx + 1) 2<x<?2
f _ 4 — x? B N
(E)(X)__?)ﬁl_ 2<x<2andx # —3

We can also combine two functions to form a new function by the
process of composition —that is, by applying one function to the result
obtained from the other. Starting with functions f and g, we obtain com-
posite functions f og and go f (read “f circle g” and “g circle f,”
respectively). The function f o g is defined as follows.

Definition 11 The composite function f o g of f and g is defined by

(f o g)(x) = f(gx)).

The domain of f o g is the set of all x in the domain of g such that
g(x) is in the domain of f.

P g ~.

55 N
/\ N Figure 29 illustrates relationships between f, g, and f o g. Note thgt
A for x in the domain of g, we first find g(x) (which must be in the domain

\
D gwk\ of f)and then, second, find f(g(x)). '
1 For the composite function g o f, we reverse this order, first finding

f(86)  f(x) and then finding g(f(x)). The domain of g o f is the set of all x in
the domain of f such that f(x) is in the domain of g.

EXAMPLE®=S8 If f(x) = x> —1and g(x) =3x +35, find

(@) (f o g)(x) and the domain of f o g
(b) (g o f)(x) and the domain of g o f

SOLUTION
@) (f o g)(x) = f(gx))
= f3x+5)
=Bx+5%-1

=9x2 +30x +24
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The domain of both f and g is R. Since for each x in R (the domain
of g) the function value g(x) is in R (the domain of f), the domain of
fogisalsoR.

B Functions and Their Graphs

x? —161isin [0, 00) is equivalent to each of the inequalities

x2-16>0, x*>16, and |x|> 4.

Thus, the domain of g o f is (—oo, —4] U [4, 00). Note that this domain is

() (g o fHx) =g(f(x)) definition of g o f different from the domains of both f and g.
= g(x2 -1 definition of f
= 3()62 — 1)+ 5 definition of g
=3x? 42 simplifying If f and g are functions such that

Since for each x in R (the domain of f) the function value f(x) is in
R (the domain of g), the domain of g o f is R.

Note that in Example 8, f(g(x)) and g(f(x)) are not always the same;
thatis, fog £ go f.

If two functions f and g both have domain R, then the domain of f o g
and g o f is also R, as was illustrated in Example 8. The next example
shows that the domain of a composite function may differ from those of
the two given functions.

EXAMPLE®9 If f(x) =x%—16and g(x) = /x, find

(@) (f o g)(x) and the domain of f o g
(b) (g © f)(x) and the domain of g o f

SOLUTION  We first note that the domain of f is R and the domain
of g is the set of all nonnegative real numbers — that is, the interval [0, oo).
We may proceed as follows.

y=f(u) and u=g(x),
then substituting for u in y = f(u) yields
y = f(g(x).

For certain problems in calculus, we reverse this procedure; that is, given
y = h(x) for some function , we find a composite function formy = f(u)
and u = g(x) such that h(x) = f(g(x)).

EXAMPLE= 10 Expressy= (2x + 5)% in composite function form.

SOLUTION A simple method for solving this problem is to assume
that we want to evaluate the expression (2x + 5)® by using a calculator. We
might first calculate 2x + 5 and then raise the result to the eighth power.
This procedure suggests that we let

u=2x+5 and y=u,

which is a composite function form for y = (2x + 5)8.

(@) (fog)x) = f(gx) definition of f o g
= f(/) definition of ¢ The method of the preceding example can be extended to other func-
= («/)7)2 — 16  definition of f tions. In general, suppose we are given y = h(x). To choose the inside
=x-16 simplifying expression # = g(x) in a composite function form, ask the following ques-
tion: If you were using a calculator, which part of the expressior_l h(x)
If we consider only the final expression x — 16, we might be led to would you evaluate first? The answer often leads to a.suitable choice for
believe that the domain of f o g is R, since x — 16 is defined for every real u = g(x). After choosing u, refer to A(x) to determine y = f(u). The
: number x. However, this is not the case. By definition, the domain of f o g following illustration provides some typical examples.
5! is the set of all x in [0, oo) (the domain of g) such that g(x) is in R (the
'?',‘ domain of f). Since g(x) = +/x is in R for every x in [0, 00), it follows
r-J that the domain of f o g is [0, o0). ILLUSTRATION
- (b) (g 0 f)(x) = g(f (x)) definition of g o f Function value Choice for u = g(x) Choice for y = f(u)
*.‘Eé = g(i— 1?) definition of f y= (x3 5e 1)4 w=x3 _5x+1 y = u
.-,tj = Vx?—16  definition of g y = \/m U=x2—4 y=Ju
' 2
X By definition, the domain of g o f is the set of all x in R (the domain of y = 2 u=73x+7 y=-
th f)suchthat f(x) = x? —16isin [0, co) (the domain of g). The statement 3x+7 u |
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The composite function form is never unique. For example, consider
the first expression in the preceding illustration: )

y=(x3—5x—i—1)4
If n is any nonzero integer, we could choose
u=x>-5x+1" and y= u'n,

Thus, there are an unlimited number of composite function forms. Gener-
ally, our goal is to choose a form such that the expression for y is simple,
as we did in the illustration.

As a general rule, the composition f o g of two functions will be more
complex than either f or g. In some instances, however, the composition
may turn out to be particularly simple, as the following example illustrates.

EXAMPLE=II If f(x) =x>+1and g(x) = </x — 1, find
(@) (f o g)(x) and the domain of f o g
(b) (g o f)(x) and the domain of g o f

SOLUTION

(@) (fog)x) = f(gx)) definition of f o g
= f(WWx—1) definition of g
= («%ﬁ)?’ 41 definition of f
=x—141=x simplifying
Since for each x in R (the domain of g) the function value g(x) is in R
(the domain of f), the domain of f o g is R.

(b) A similar computation shows that (g o f){x) = x for all real numbers
x and the domain of g o f is also R.

An identity function is a function 4 with the property that #(x) = x
for all x in the domain of 4. The graph of an identity function lies along
the line y = x. For the functions f and g of Example 11, both f o g and
g o f are identity functions.

If the composition of two functions f and g is an identity function, then
the functions are inverses of each other; that is, applying g to f(x) returns
x and applying f to g(x) returns x. For inverse functions, it follows that
if the point (a, b) lies on the graph of one of the functions, then the point
(b, a) lies on the graph of the other. Thus, for inverse functions, the graph
of either function is the reflection of the graph of the other across the line

y=x.

Exercises B

- EXERCISES B

TR ORI -

I If f(x) = /X —4— 3x, find £(4), £(8), and f(13).
2 If f(x) = _—xf_3, find £(—2), £(0), and £(3.01).

Exer. 3—6: If a and h are real numbers, find and simplify

(a) f(@, (b)f(—a)’ (<) —f(@), (d) fla+ h), (e)f(a) +f(h),

and (f) f(a_—i—hZ;f(a?! provided h # 0.
3 f(x)=5x-2 4 f(x)=3—4x
5 f)=x>—x+3 6 f(x)=2x>+3x—7
Exer. 7-10: Find the domain of f.
x+1 4x
= 8 - —
TIW=ET0 T = o ax s
9 _ V2 -3 10 f(x)____“4x—3
f(X)_x2—5x+4 x*—4

Exer. 11-12: Determine whether f is even, odd, or
neither even nor odd.

Il (a) f(x) =5x° +2x () f(x) = |x| -3
(¢) f(x) = (8x® —3x%)°

12 (a) F(x) = V3x4 + 242 =5
(b) f(x) =6x> —4x> +2x
() f)=x(x=5)

Exer. 13 - 18: Sketch the graph of f.

x+2 ifx=<-1

13 fx)=43x° if |x| <1
—x+3 ifx>1

x—3 ifx<-2
14 f(x)= —x? if—2<x<l1
—x+4 ifx>1
-1 .
15 f(x)=’x+1 ifx# -1
2 ifx =~-1
-4
16 f(x)=[2-x Hx 2
1 ifx=2
17 (a) f(x)=lx—3] (b) f(x)=lx1-3
(o) f(x) =2[x] (d) f(x) =[2x]
18 (a) f(x) =[x +2l] (b) fx) =Mxl+2
(¢) f@x) = 3lx1 (d) f(x) = [3x1

Exer. 19-28: Sketch, on the same coordinate plane, the
graphs of f for the given values of c¢. (Make use of
symmetry, vertical shifts, horizontal shifts, stretching, or
reflecting.)

19 f(x)=|x|+c c=0,1,-3
20 f(x)=|x—c|; c=0,2,-3
21 f(x) =2/x+c; c=0,3,-2

22 f)=v9—-x*+¢; ¢=0,1,-3
23 f(x) =2J/%x —¢; c=0,1,-2
2 fx)=-2x—0% c=0,1,-2
25 f(x):cm; c=13,-2
26 f(x)=(x+c)3; c=0,1,-2
27 fx)=@x—0)¥>+2;, ¢=0,4,-3
28 fx)=@x—-DVP—c; ¢c=0,2,-1

Exer. 29-30: The graph of a function f with domain
0 < x < 4 is shown in the figure. Sketch the graph of the
given equation.

29 (@) y = f(x+3)
b)y=fx-3)
(€ y=fx)+3
(dy=fx)-3
H: (e) y = -3f(x)
5 () y=—-3/x)
T (@ y=—fx+2)—3
4» } —— i } ‘—;(h)y:f(x-Z)-{-?)
30 (@)y=f(x—-2)
LY

(b)y=fx+2)

T ©y=rfx)—2
/\ (d)y = fx)+2
I | i Il P (e) y = —zf(x)

() y=—3f(x)
(®y=—fx+4-2
- (h)yy=fx—4+2




Exer. 31-40: Use a graphing utility to examine several
different views of the graph of the function f. Copy
one that displays the important features of the function.
Clearly indicate the scaling or the range of the viewing
window selected.

1
31 f(x)=T—
xT+1

32 f(x) =x|x? =17
33 fx)=vx> -2
34 f(x)= \/3363 — 8

35 f(x) = Vitx-1
X

36 () = 7v2+x§ﬁ
.

37 f(x)=|x3—x—|—1|

38 f(x):%x4+%x3+1

39 f(x)=x4+5x3—6x2—7x—8
40 f(x)=x5—7x3+8x+5

Exer. 41-44: (a) Find (f + g)(x), (f — 2)(x), (fg)(x), and
(f/8)(x). (b) Find the domain of f + g, f — g, and fg;
and find the domain of f/g.

4 fxX)=vx+5 gx)=+x+5
42 f(x)=+/3-2x; glx)=+/x+14

- 2x X
43 f(-x)—x_4’ g(x)_m
4 FO = g =

X 2; ’ x+4
Exer. 45-52: (a) Find (%(x) and the domain of f o g.
(b) Find (g o f)(x) and the domain of g o f.
45 f) =x"-3x; g)=+x+2
46 f(x) = Jx —15; gx) = x4+ 2x
a7 f) =vx-2 gx)=vx+5
48 f)=V3-x; g)=vx+2
49 f)=v25-x% gx)=vx-3
50 f@) =v3—% g =vVx'—16

1 f) = 3x12

;o g =

x
x-=2

52 f(x) = glx) =

W RN
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Exer. 53 -60: Find a composite function form for y.

53 y = (x2 +3x)/3 54 y=+vx"~16
1
55 y = 56 y=4++vx2+1

(x —3)*

57 y=@*—2x245° 58 y= .,_,2{,1
(x? +3x - 5)3
Vx+4-2 3
59 y= Y21 ° 60 y= V5
Vx+4+42 1+ %

Eu It

3
@) =vx* =17 and g(x):iLH,
NG

approximate (f o )(2.4) and (g o f)(2.4).

[c]62 If f(x) =+vx3+1—1, approximate f(0.0001). In

order to avoid calculating a zero value for f(0.0001),
rewrite the formula for f as

3
Va4 1+1
63 An open box is to be made from a rectangular piece of
cardboard 20 in. x 30 in. by cutting out identical squares
of area x? from each corner and turning up the sides (see

figure). Express the volume V of the box as a function
of x.

fx) =

Exercise 63

64 An open-top aquarium of height 1.5 ft is to have a
volume of 6 ft>. Let x denote the length of the base,
and let y denote the width (see figure on the following
page).

(a) Express y as a function of x.

(b) Express the total number of square feet S of glass
needed as a function of x.

Exercises B

Exercise 64

65 A hot-air balloon is released at 1:00 PM. and rises
vertically at a rate of 2 m/sec. An observation point
is situated 100 m from a point on the ground directly
below the balloon (see figure). If 7 denotes the time (in
seconds) after 1:00 P.M., express the distance d between
the balloon and the observation point as a function of 7.

Exercise 65

66 Refer to Example 3. A steel storage tank for propane
gas is to be constructed in the shape of a right circular
cylinder of altitude 10 ft with a hemisphere attached to
each end. The radius r is Yet to be determined. Express
the surface area S of the tank as a function of r.

67 From an exterior point P that is 2 units from a circle of
radius r, a tangent line is drawn to the circle (see figure).
Let y denote the distance from the point P to the point
of tangency T.

(a) Express y as a function of k. (Hint: If C is the center
of the circle, then PT is perpendicular to CT.)

(b) If r is the radius of the earth and  is the altitude of
a space shuttle, then we can derive a formula for the
maximum distance (to the earth) that an astronaut

can see from the shuttle. In particular, if 2 = 200 mi
and r ~ 4000 mi, approximate y.

Exercise 67

68 Triangle ABC is inscribed in a semicircle of diameter
15 (see figure).

(a) If x denotes the length of side AC, express the
length y of side BC as a function of x, and state
its domain. (Hint: Angle ACB is aright angle.)

(b) Express the area of triangle A BC as a function of x.

Exercise 68

69 The relative positions of an airport runway and a 20-ft-
tall control tower are shown in the figure. The beginning
of the runway is at a perpendicular distance of 300 ft
from the base of the tower. If x denotes the distance that
an airplane has moved down the runway, express the
distance d between the airplane and the control booth as
a function of x.

Exercise 69

20 ft

30%5\ o
4 V)

el ﬁ\&;ﬁé

70 An open rectangular storage shelter consisting of two
vertical sides, 4 ft wide, and a flat roof is to be attached
to an existing structure as illustrated in the figure on the
following page. The flat roof is made of tin that costs
$5 per square foot, and the other two sides are made of
plywood that costs $2 per square foot.




(a) If $400 is to be spent on construction, express the
length y as a function of the height x.

71 The shape of the first spacecraft in the Apollo program
was a frustum of a right circular cone, a solid formed
by truncating a cone by a plane parallel to its base. For 4 in.
the frustum shown in the figure, the radii a and b have

already been determined.

Precalculus Review

(a) Use similar triangles to express y as a function of 4.

(b) Express the volume of the frustum as a function of
(b) Express ‘the volume V inside the shelter as a h.
function of x.

(c) If a =6 ft and b = 3 ft, for what value of % is the
volume of the frustum 600 ft>?

72 Suppose 5 in® of water is poured into a conical filter and
subsequently drips into a cup, as shown in the figure. Let
x denote the height of the water in the filter, and let y
denote the height of the water in the cup.

(a) Express the radius  shown in the figure as a function
of x. (Hint: Use similar triangles.)

(b) Express the height y of the water in the cup as a
function of x. (Hint: What is the sum of the two
volumes shown in the figure?)

<— g —>

TRIGONOMETRY

Trigonometry helps us understand angles, triangles, and circles through
the use of six special trigonometric functions. In this section, we review
some of the basic ideas and formulas of trigonometry that are especially
important for calculus.

C Trigonometry

Figure 30

Ly

0

Figure 31

Terminal side

(

b
\_/

Terminal side

Initial side

(G
Initial side

Figure 33
AY
—r
t=1
0=1
jA(1,0) *
U
Figure 34
6 = t radians
AY
t
P
. K 0
—
AL, 0) *

N

ANGLES

An-angle is determined by two rays, or line segments, having the same
initial point O (the vertex of the angle). If A and B are points on the rays
I, and I, in Figure 30, we refer to angle AOB, or ZAOB.

We may also interpret ZAOB as a rotation about O of the ray /; (the
initial side of the angle) to a position specified by /, (the terminal side).
There is no restriction on the amount or direction of rotation. We can let /,
make several full revolutions in either direction about O before stopping
at l,, as shown by the curved arrows in Figure 31. Thus, many different
angles have the same initial and terminal sides.

In a rectangular coordinate system, the standard position of an angle
has the vertex at the origin and the initial side along the positive x-axis
(see Figure 32). A counterclockwise rotation of the initial side produces
a positive angle, whereas a clockwise rotation gives a negative angle.
Lower-case Greek letters such as «, B, and 6 are often used to denote
angles.

Figure 32
Positive angle Positive angle Negative angle
A7 Y A7
Ly
(24
b o (K_/'_, . L
I X B X J X

The magnitude of an angle is expressed in either degrees or radians.
An angle of degree measure 1° corresponds to 1/360 of a complete coun-
terclockwise revolution. An angle of radian measure 1 corresponds to
1/(2m) of a complete counterclockwise revolution. In calculus, the radian
is a more important unit of angular measure. To visualize radian measure,
consider a circle of radius 1 with center at the vertex of the angle. The
radian measure of an angle is the length of the arc on the circle that lies be-
tween the initial and the terminal sides. If the length of arc AP (sometimes
denoted AP) is 1 unit, as in Figure 33, then 6 is an angle of 1 radian. Figure
34 shows a more general case in which the radian measure of angle & is
the length ¢ of arc AP. For convenience, we show the angle ¢ in Figures
33 and 34 in standard position.

Since the circumference of the unit circle is 27, it follows that

27 radians = 360°.

From this relationship between degrees and radians, we find that
) 180Y° R i
1radian = | — ) ~57.29578° and 1° = 0.01745 radian.
T

The following rules are a more general consequence of these relationships.




Conversion Rules for Radians
and Degrees 2

T w T 7
dia 0 - - = =
Radians c 2 3 >
Degrees 0° 30° 45° 60° 90°

Figure 35
e

AY
b

Length of a Circular Arc and
Area of a Circular Sector 13
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(i) To change radian measure to degrees, multiply by 180/7.
(i) To change degree measure to radians, multiply by z/180.

This table displays the relationship between the radian and the degree
measures of several common angles.

2_7[ 3_7r 5w . T 5w 4 37 Sn Tr 1=z
3 4 6 6 4 3 2 3 4 6
120° 135° 150° 180° 210° 225° 240° 270° 300° 315° 330° 360°

2

When radian measure of an angle is used, no units are indicated. Thus, if
an angle ¢ has radian measure 5, we write & = 5 instead of # = 5 radians.
There should be no confusion as to whether radian or degree measure is
intended, since if 8 has degree measure 5°, we write 8 = 5°, not 6 = 5.

EXAMPLE=|

(a) Express 7/9 radians in degrees.
(b) Express 105° in radians.

SOLUTION

(a) By (12)(i), to convert radians to degrees, we multiply 77/9 by 180/7
to obtain 140°.

(b) By (12)(ii), to convert degrees to radians, we multiply 105° by /180
to obtain 77/12 radians.

A central angle of a circle is an angle & whose vertex is at the center
of the circle, as illustrated in Figure 35. We say that arc AB subtends 6 or
that 0 is subtended by arc AB. A central angle also determines a circular
sector AOB. The length of the arc AB and the area of the sector AOB are
functions of the radian measure of the angle and the radius of the circle.

If an arc of length s on a circle of radius » subtends a central an-
gle of radian measure 6, and if A is the area of the circular sector
determined by 6, then

() s =rb
and
(i) A= 3r%.

C Trigonometry

Trigonometric Functions

of Any Angle 14

L s e

EXAMPLE=2 An arc of length 6 cm on a circle of radius 3 cm
subtends a central angle 6.

(a) Find the radian measure of 6.
(b) Find the area of the circular sector determined by 6.

SOLUTION
(a) From (13)(i), s = r#0, so

0= — =§.—_2radians.
r 3

(b) From (13)(ii), the area A of the circular sector is

1170 = 13H(2) =9 em’.

TRIGONOMETRIC FUNCTIONS

The six trigonometric functions are the sine, cosine, tangent, cosecant,
secant, and cotangent. We denote them by sin, cos, tan, csc, sec, and cot,
respectively. .

We may define the trigonometric functions in terms of either an angle 6
or a real number x. We begin with the angle approach. Let 6 be any angle
in standard position, and let C be a circle of radius r with center at the
origin. Let P be a point on the circle that lies on the terminal side of the
angle and has coordinates (x, y). The trigonometric functions are defined
as ratios involving the values x, y, and r.

A sinf =2  cscl=—
r

X r

cosf = — secld = —

4 X

X

tzm(?:—}i cotf = —

X Y

In the special case where 6 is an acute angle (between 0 anc'i 7/ 2),_the
vertical segment PQ from P to a point Q on the x-axis determines a right
triangle POQ. The value of the x-coordinate of P is equal_ to the length
of the segment OQ, and the value of the y-coordinate of P is equal to the
length of the segment PQ. o

The trigonometric functions of 6 can also be express‘_sd as ratios mvglv—
ing the hypotenuse c, the adjacent side a, and the opposite side b of aright
triangle.
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socos@ = x/rand sect = r/x are positive while the other four functions }
are negative. Figure 37 indicates the positive trigonometric functions for

each quadrant.

Trigonometric Functions
of an Acute Angle 15

|
|
! A UHD b csch = hypotenuse ¢
‘ hypoteny’ hypotenuse ¢ o= @Si? = l EXAMPLE®=3 Find the values of the trigonometric functions for
¢ : ; 9 = 3n/4.
opposite __ adjacent a
| Y d b GRS Rosorehiae e I PACTISCENC , _
} ,__/é : & adjacent a l solL U T I ON Forf= 37r/ft, the pomt,P(x‘, y) is in q‘uadrant 11 on
. ' tanf = OPPOsile = é adjacent @ th.e un1t2c1rc1§: U and on the line y = —x,2as 111ustr2ated in Flguge 38.
’ adjacent adjacent  a cotfd = —m — = — Since x>+ y“=1and y = —X, W€ have x2 4+ (—x)* =1, so 2x" = L.
a Opposite b Thus,
AY
3 V2 3n V2
Cos — =X = ——" and sin— =y = —="-
x M=y
N N . . .
ow that we have a definition of the trigonometric functions using th The other trigonometric function values are
g the 3 3n
tan — = —1, cot — = —1,

a L
ngle approach, it is easy to define these functions for an arbitrary real
4 4

number x.

Trigonometric Functions
3 3n
sec e = —\/5, and csc 7 = \/5

of a Real Number 16 The valu i
e of a trigonometric functi
s -
value at an angle of x radians. A g

Let us now consider the domain of the trigonometric functions. Since

these functions are ratios, there is the possibility of an undefined fraction
0. Since r, the radius of a circle, is

! occurring because a denominator is

an angle of 2 radians or the sine of the real number 2 always positive, sinf = y/r and cosf = X /r are defined for all angles.
The sign of the value of a trigonometric fm er ‘ Hence, the domain of the sine and the cosine functions consists of all real

on the quadrant containing the terminal side g?(gm;“lo?feiz anlgle.;ieepends qumbers. The cosecant and the cotangent functions are undefined when

) mple, if 6 is in y = 0, which occurs when the terminal side of the angle lies along the

quadrant IV (as in Figure 36), then .
) the point 5 ..
point P(x, y) hasx > Oand y <0, X-axis; that is, when 6 is an integer multiple of 7. Similarly, the secant and
the tangent functions are undefined when x =0, which occurs when the

‘ terminal side lies along the y-axis; that is, when 6 = 7/2 plus an integer

From thi o .

L rom rﬁis definition, we see that there is no difference between trigono-

metric func l1)0ns of angles‘ measured in radians and trigonometric funftions
ers. We can interpret sin 2, for example, as either the sine of

Figure 36
Figure 37 Positive functions
4y Ay multiple of 7. :
| From the definition of the trigonometric functions of any angle, x| <7
™ and |y| < r or, equivalently, |x/r| < 1and |y/r| < 1. Thus,
. 9/~\ P, y) | . I |sinf| <1, |cos| <1, |csc@| =1, and |seco| =1
& k-.l | . <0 sin 8 >0 X,y) All
’ > . . .
‘ X b>o |esc6>0 ;C - 8 S for every 0 in the domains of these functions.
P(x,y)
| . 3
£ = e TRIGONOMETRIC IDENTITIES
% o .
o x<o | 9= i(’; )(;) cos >0 We next examine some important relationships or identities that exist
yeolfrf=2 peg |60 among the trigonometric functions. Trigonometric identities provide us
with ways in which to rewrite expressions in forms that may be simpler t0
work with.
Several fundamental identities follow directly from the definition of

the trigonometric functions of any angle.

ATt e
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Reciprocal and Ratio
Identities 17

Pythagorean Identities 18
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cscl = . tanf = i)

" siné ~ cosb

secl = cotf = cosf)

~ cosé " siné
cotf = ——
tan 6

A second set of identities, called the Pythagorean identities, can be
formulated from the observation that if P(x, y) is a point on the unit circle
centered at the origin, then sind = y and cos @ = x. Thus, the equation of

the circle, 2+ y2 =1, or
y>+x2=1, isequivalent to sin6 + cos? 6 = 1.
The notation sin® § represents the square of the sine of 6; that is, sin? g =

(sin @) (sin @). To indicate the sine of the square of 6, we write sin(92),
|

Dividing both sides of the identity sin? 6 + cos?6 = 1 by sin?6 or
cos? 0 yields two more useful identities.

sin2@ + cos? 0 = 1
1+ tan® 6 = sec’ 6
1+cot?d = csct o

EXAMPLE®=4 Express /16 — x2 in terms of a trigonometric func-
tion of # without radicals by making the trigonometric substitution

T
=4sinf for —— <6< —.
X sin or 5 S0=7
SOLUTION Weletx =4sin6. Then

\/16—x2=\/16—(4sin9)2

= /16 — 16sin’ 6

= /16(1 — sin 6)

———
= \/16cos20
=4cosé.

The last equality is true because if —7/2 <6 < /2, then cos@ > 0 and

so vV cos? 6 = cos .

Rt T T - Y
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S

Some trigonometric identities state relationships that hold among the
lengths of sides of a triangle and the sine and cosine of the angles of the
triangle. Of particular usefulness in applications are the law of sines and
the law of cosines.

Law of Sines and
Law of Cosines 19 If ABC is a triangle labeled as shown, then the following relationships
are true.

The law of sines:
sing  sinf  siny

C =] =
a b Ies
h g The law of cosines:
y; a® =b* +¢? — 2bccosa
B
A ¢ b = a® + ¢* — 2accos B

c? = a* + b* —2abcosy

Note that if ABC is a right triangle with y = /2, then the third equa-
tion in the law of cosines becomes the familiar Pythagorean theorem,
c? = a® + b, since cos /2 = 0. Thus, we may regard the law of cosines
as a generalization of the Pythagorean theorem.

Many other important relationships exist among the trigonometric

functions.
Additional Trigonometric
Identities 20 Formulas for negatives:
sin(—0) = —sinf cos(—8) = cos @ tan(—6) = —tan
csc(—8) = —csch sec(—6) = secd cot(—6) = —cotd

for any real number 4.

Addition and subtraction formulas for the sine and cosine:

sin{a + B) = sinc cos B + sin B cos
sin{ee — B) = sinw cos B — sin B cos
cos(or + B) = cosacos B — sina sin 8
cos(a — B) = cosa cos § + sing sin

for any real numbers « and S.

Double-angle formulas for the sine and cosine;
sin26 = 2sinf cos 8
0820 = cos? 6§ — sin?0 = 1 — 2sin’* 9 = 2cos’ 9 — 1

{continued)
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Half-angle formulas for the sine and cosine:

— cos2
i 1 —cos28
2
1 20
cos? 9 = —:H;—S

for any real number 6.

The negative formulas show that the sine, tangent, cosecant, and cotan-
gent functions are odd and the cosine and secant functions are even. Other
trigonometric identities useful in calculus are listed on the inside back
cover of this text.

EXAMPLE®=S5 Verify the following addition formula for the tangent

function.
tanw + tan B
t. =
an(@ + ) 1 —tanw tan 8
SOLUTION
sin(a +
tan(e 4+ B) = COI;((%!Z_)) tangent identity

__sinacos B +sinfcosa  addition formulas for
cosa cos B —sina sing  sine and cosine

If cos @ cos B # 0, then we may divide the numerator and the denominator
by cos « cos B, thereby obtaining 1 as the first term in the denominator.

sinacosf  sinfcosc

cosacosf  cosacosp )
tan(o + B) = - - divide by cos o cos B
cosacos B sinusinf

cosacos B cosacosp

tano + tan o
—— simplify
1 —tana tan B

EVALUATING TRIGONOMETRIC FUNCTIONS

There are a variety of ways to find the values of a trigonometric function,
including the use of scientific calculators. For certain important special
cases, we can obtain them from familiar right triangles. Figure 39 shows a
right triangle with acute angles of 7/6 and /3 and an isosceles right tri-
angle with acute angles of 77/4. From these triangles, the following values
can be determined.

C Trigonometry

Special Values of the

Trigonometric Functions

Figure 39

21

s | 8 |
|
(Radians) ‘ (Degrees) | sing ! cos6 | tané | cotd | secd | cscl

4 1 Vi3 23

— 30° = 22l = -

6 2 2 3 | 35 e
T V2 | V2

- 45° o) = 1

n 2 ) 1 V2 V2
™ V3 1 V3 2V3
= 60° = - 3 X G
3 2 2 V3 3 2 3

Since these particular values occur frequently in work involving
trigonometry, it is a good idea either to memorize the table or to be able to
find the values quickly by using the triangles in Figure 39.

Another method for finding values of trigonometric functions for an
angle 0 uses the reference angle of 6, which is the acute angle 6 that the
terminal side of # makes with the x-axis when @ is in standard position.
Figure 40 illustrates the reference angle 6 for an angle in each of the four
quadrants. To find the value of a trigonometric function at angle 6, we first
determine the value for the reference angle 6, of 6 and then prefix with the
appropriate sign.

Figure 40 Reference angles

(a) Quadrant I (b) Quadrant II
AY A7
Y] 0. NETNO
I 7, 1/} SN & \\ —
X X
(c) Quadrant ITI (d) Quadrant IV
LY '

AR Y
(y * k\ ()R

EXAMPLE®=6 Find sin® and cos @ for the following:

S5m T
(@) 0 = = b)o = -

Y




_ Precalculus Review C Trigonometry —

Figure 41 SOLUTION  We sketch the angles and their reference angles in Fig- l Figure 43
@) LY ure 41. Using the table of special values (20) gives the following: y =sinx y

0 . 5w .

sin — = — ==
N 6 @ 6 M2
— > ’
f X Sm b4 V3

' COS — = —CO0S — = ———
gR:% 6 6 2 hd 14 1

CoS X y =tanx

V
N
/

=Y

>
/]
=

y =CsCx y =secx y =cotx

GRAPHS OF THE TRIGONOMETRIC FUNCTIONS

Figure 42 To graph the sine function, we first study the variation of sin@ as 6 in-
LY creases. For convenience, consider arcs along the unit circle U in Eigure
42. Since r = 1, the formulas sin® = y/r and cosd = x/r take on the

Y
9

J
©, 1) simpler forms sin 6 = y and cos 6 = x. Thus, the coordinates (x, y) of the
i ) point P corresponding to # can be written as (cos @, sin6). At =0, P
Picos 6, sin 0) is the point (1, 0). As 8 increases from 0 to 27, the point P(cos9, sin8)

0 travels around the unit circle once in a counterclockwise direction. Ob-
(1,0) =x servation of the y-coordinate leads to the following facts, where arrows

are used to indicate the variations of 6 and sin 6. (For example, 0 — /2
U means that @ increases ffom 0 to /2, and 0 — 1 means that sin @ increases

0, -1 from0to 1.)

(=10

¥

J—— __._____ﬂ.. I —— e,

EXAMPLE®=7 Sketch the graph of the function f(x) = 2sinx.
\

SOLUTION We begin by sketching the graph of sinx, as in Figure
sind: 0 -1 —->0 —->-1 =0 43. We can then stretch this graph by multiplying each of the y-coordinates

it . . by a factor of 2 i = 2si in Fi i
A If we let P continue to travel around U, the same pattern repeats in y a factor of 2 to obtain the graph of y = 2sin x, shown in Figure 44.

4 f-intervals [27, 4] and [47, 67]. In general, the values of sin 6 repeat
N in all successive intervals of length 2. A function f with domain D is
& periodic if there is a positive real number k& such that x + k is in D and J
Z‘ f(x+k) = f(x) for every x in D. If a smallest such positive number k 1
M exists, it is called the period of f. We have seen that the sine function y = sinx y=2sinx

‘_'..'. ‘ is periodic with period 27. Using these facts and plotting several points 2T
corresponding to the special values of 8 gives the graph of the sine func- \ T

Figure 44

tion, shown in Figure 43, where we have used = x for the independent ; | ; , -
variable (measured in radians or real numbers). - 14 WVZW 377\ *
e The graph of the cosine function can be found in a similar fashion by

studying the behavior of the horizontal component of P as @ increases.

The graphs of all the trigonometric functions are given in Figure 43. Note
that the period of the tangent and the cotangent functions is 7.




Figure 45
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TRIGONOMETRIC EQUATIONS

A trigonometric equation is an equation that contains trigonometric ex-
pressions. Each fundamental identity is an example of a trigonometric
equation where every number (or angle) in the domain of the variable is
a solution of the equation. If a trigonometric equation is not an identity,
we often find solutions by using techniques similar to those used for alge-
braic equations. The main difference is that we first solve the trigonometric
equation for sin x, cos 8, and so on, and then find values of x or ¢ that
satisfy the equation. If degree measure is not specified, then solutions of a
trigonometric equation should be expressed in radian measure (or as real
numbers).

EXAMPLE®=8 Find the solutions of the equation sind = % if

(a) 0 is in the interval [0, 27)
(b) 6 is any real number

SOLUTION

(@) If sin 6 = % then the reference angle for 6 is 6y = 7/6. If we regard
@ as an angle in standard position, then, since sin 6 > 0, the termina} side
is in either quadrant I or quadrant 11, as illustrated in Figure 45. Thus there
are two solutions for 0 < 6 < 2x:
6=" and 9=n-2=-" ¢
6 6 6

(b) Since the sine function has period 277, we may obtain all solutions by
adding multiples of 27 to 7/6 and 577/6. This procedure gives us

/4 Sm .
0 = 3 +2nrn and 0 = 3 4+ 2nn  for every integer n.

An alternative (graphical) solution involves determining where the graph
of y = sin @ intersects the horizontal line y = % as shown in Figure 46.

Figure 46
AY
= sin 6 .
1+ y y = 2
/1/' E N t V! I N J 4 | ¥ .
_lm T m 5w B 17m 0
6 6 =116 6 6 6

Most calculators have | SIN |, [ cos

, and | TAN |keys to approximate val-

ues for these trigonometric functions. The values of the cosecant, secant,
and cotangent functions can also be found using a calculator (by using the

key) and the formulas in (17).

e

C Trigonometry

Calculators have both a radian and a degree mode. Choosing the wrong
mode on a calculator is a very common error made when evaluating trig-
onometric functions. For example, in radian mode, the calculator gives the
approximate value

sin 1.3 &~ 0.963558185417,
but in degree mode, it yields a different value:

sin 1.3 ~ 0.022687333573

The next example illustrates the use of a calculator in solving a trigono-
metric equation.

EXAMPLE®9 Approximate, to the accuracy of your calculator
(in radian mode), the solutions of the following equation in the interval
[0, 27):

5sinftan® — 10tan8 + 3sin8 —6 =0

SOLUTION

Ssinftand — 10tan6 + 3sinf —6 =0 given
Stanf(sin@ — 2) + 3(sinf — 2) =0  factor groups
(Stan @ + 3)(sinf —2) =0 factor out sin® — 2
5tanf +3 =0, sinf —2=0 setcach factor equal to 0

tand = — —g— , sind =2  solve for tan 6 and sin 6

The equation sinf = 2 has no solution, since sin6 < 1 for every 6. To

solve tanf = —%, we need to find the number 6 whose tangent is —%.

Many scientific calculators have a key labeled thaf can be used to
find such a number. In this case, the calculator gives

6 = tan~! ~ —0.540419500271.

(We will discuss inverse trigonometric functions more in Chapter 6.)
Hence, the reference angle is 6 ~ 0.540419500271, which we store tem-
porarily in a calculator memory. Then, without re-entering any numbers,
we obtain the following solutions in quadrants II and IV:

0 =m — 6y ~2.60117315332,
0 =2m — 6 ~ 5.74276580691

We may not always report all the digits shown on the final calculator
screen, but we try not to round intermediate results and not to re-enter
numbers.

The next example illustrates how a graphing utility can aid in solving
trigonometric equations.
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Figure 47
0<x<63,-3<y<3
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EXAMPLE =10 Find the solutions of the following equation that are
in the interval [0, 27):

sinx 4+ sin2x 4+ sin3x =0

SOLUTION Since 27 ~ 6.3 and [sin@| < 1 for 6 = x, 2x, and 3x,
we choose the viewing window [0, 6.3] by [—3, 3] and obtain a sketch
similar to Figure 47. Using the zoom and tracing features, we obtain the
following approximations for the x-intercepts — that is, the approximate
solutions of the given equation in [0, 27):

0, 157, 209, 3.14, 419, 471

The approximate solution 3.14 might lead us to guess that 7 is a solution.
Checking x = 7 in the given equation confirms that 7 is an exact solution.
We will now apply algebraic methods to find the exact solutions, know-
ing that there should be six solutions in this interval. We use the addition
and double-angle formulas (19) to change the form of the given equation:

sinx + sin2x + sin3x = 2sinx cosx(2cosx + 1) =0
Setting the factors equal to O gives us

sinx =0 or x=0,m

cos 0 B
X = o x=—,—
272
2n 4m
=—= Oor x= , —
CcoSs x 33

Frequently, exact solutions are “lost” when careless algebraic work is per-
formed. By comparing the exact solutions

T 2 4t 3m
0, N » T, )
2 3 3 2

with the numerical estimates obtained from the graph, we confirm that the
number of solutions and their approximate values agree.

In the preceding example, we were able to use a graphing utility to help
us find the exact solutions of the equation. For many equations that occur
in applications, however, it is possible only to approximate the solutions.

EXAMPLE®= || InBoston, the number of hours of daylight D(¢) at
a particular time of the year may be approximated by

2w
D(t) =3sin| —( —
() 31n[365(t 79):|+12,

with ¢ in days and ¢ = 0 corresponding to January 1. How many days of
the year have more than 10.5 hr of daylight?

Exercises C

Figure 48

A y (number of hours)

15 F vy = D(t)

;
:
6F |
|
|
|
|

365

| Ll i =

a79 170 262b 353 t (days)

- EXERCISES C

|

SOLUTION The graph of D is shown in Figure 48. If we can find

- two numbers a and b with D(a) = 10.5, D(b) = 10.5,and 0 <a < b <

365, then there will be more than 10.5 hr of daylight in the rth day of the
yearifa <t < b.
Let us solve the equation D(¢) = 10.5 as follows:

| 2
3sin [——(t - 79)] + 12 =10.5 let D(t) = 10.5

365

2=
3sin %(I —-79 | =-1.5 subtract 12

[ 27 .
sin %(t 79| =-05= —5 divide by 3

If sinf. = ——%, then the reference angle is 77/6 and the angle 6 is in either
quadrant IIT or quadrant IV. Thus, we can find the numbers a and b by
solving the equations >

2 T 2 117

— (=79 = — —(t — =

365 T = g and =T ==~
From the first of these equations, we obtain

g Tm 365 _ 2555 .
6 22t 12 7

and hence, t~2134+79, or t=292.

Similarly, the second equation gives us ¢t & 414. Since the period of the
function D is 365 days (see Figure 48), we obtain

t~ 414 — 365, or t~49.

Thus, there will be at least 10.5 hr of daylight from ¢ = 49 to t = 292 —
that is, for 242 days of the year.

Exer. 1-2: Find the exact radian measure of the angle.

I I (@) 150° (b)) 120°  (c) 450°
‘ 2 (a)225°  (b)210°  (c) 630°

Exer. 3-4: Find the exact degree measure of the angle.

2 5 3
l@y  BF @7

117 4 117 S5
(d) —60° 4@ —& (b) = © (d) -

(d) —135° Exer. 5-6: Find the length of arc that subtends a central
angle # on a circle of diameter d and the area of the
circular sector that  determines.

. 50=50; d=16
@ =7 60=22 d=120




Exer. 7-8: Find the values of x and y in the figure.
7

X
/ 4
{30° =
b4
8
Y 3

Exer. 9-12: Find the values of the trigonometric func-
tions if 6 is an acute angle.

9 sin9=% 10 cos@:%

11 tan0=15—2 12 cot@ =1

Exer. 13-14: If 6 is in standard position and Q is on the
terminal side of 6, find the values of the trigonometric
functions of 6.

13 Q@4,-3) 14 Q(-8,—15)

Exer. 15-20: Refer to Example 4. Make the indicated
trigonometric substitution and use fundamental identi-
ties to obtain a simplified trigonometric expression that
contains no radicals.

15 V16— x% x—4sinffor —Z <0 < =
2 2
x? T T
16 ; x=3sinf for —— <0 < =
9 _ 52 2 2
17 ;; x=5tant9for—£<6'<—7E
\/25+x2 2 2
x?+4 i
18 ; x=2tanf for —— <0 < —
x2 2 2
2
-9 T
19 Y2 ; x=3sect for0 <6 < —
x 2
20 3 x2—25; x=5sec€for0<9<%

Exer. 21 - 26: Find the exact value.

21 (a) sin(2n/3) (b) sin(—57/4)
22 (a) cos 150° (b) cos(—60°)
23 (a) tan(57/6) (b) tan(—m/3)

Precalculus Review

24 (a) cot120°
25 (a) sec(2m/3)
26 (a) csc240°

(b) cot(—150°)
(b) sec(—m/6)
(b) csc(—330°)

E Exer. 27 - 32: Find approximate values using a calculator.

27 (a) sin67° (b) csc25°
28 (a) sin(—2.743) (b) csc51.314
29 (a) cos(—12°) (b) sec39°
30 (a) cos(—4.2) (b) sec15.9
31 (a) tan15 (b) cot5

32 (a) tan 1.8 (b) cot(—3)

Exer. 33-38: Sketch the graph of f, making use of
stretching, reflecting, or shifting.

33 (a) f(x) = Lsinx (b) f(x) = —4sinx
34 (a) f(x) =sin(x —7/2) (b) f(x) =sinx — /2
35 (a) f(x) =2cos(x +m) (b) f(x)=2cosx+m
36 (a) f(x) = 4cosx (b) f(x) = —3coskx
37 (a) f(x) = 4tanx () f(x) = tan(x — 7/4)
38 (a) f(x) = Ltanx (b) f(x) = tan(x + 37/4)
Exer. 39-42: Find a composite function form for y.
39 y=tan’x +4 40 y = cot’(2x)
41 y = sec(x + m/4) 42 y =csc/x — 7
43 If f(x) = cos x, show that
foxh =) h}: mAC) =cosx (——COSh — 1) —sinx <#) .
h
44 If f(x) = sinx, show that
fx+h)— fx) ) cosh —1 sinh
—h =sinx (7h ) +cosx <T) v
Exer. 45 - 54: Verify the identity.
45 (1 —sin? (1 +tan’s) = 1
46 sec B — cos B = tan Bsin

: 2
csce 6
47 — = cot? 6
1+ tan“ 6
48 cott +tant = cscrsect
1 C
49 M—cotﬁ:cosﬁ
sec f
1
50 ——— =cscz+cotz
cscz —cotz

51 sin3u =sinu(3 — 4 sin? u)

52 2sin®2¢ +cosdt = 1

D Exponentials and Logarithms

53 cos*(9/2) = % + %cose + %cosZ@

54 sin2x = % - %cos4x + %cosSx‘}

Exer. 55 -56: Find all solutions of thé équation.

55 2c0s20 —/3=0 56 2sin30 ++/2=0

Exer. 57 - 64: Find the solutions of the equation in [0, 277).
57 2sin®u=1—sinu 58 cosf —sinf =1
59 2tans —sec’s =0

60 sinx + cosxcotx = cscx

61 sin2t +sint =0 62 cosu +cos2u =0

63 tan2x =tanx 64 sin%u—kcosu:l

El Exer. 65-70: Approximate, to the accuracy of your

calculator or computer in radians, the solutions of the
equation that are in the interval [0, 27).

65 sind = —0.5640 66 cosf =0.7490
67 tanf = 2.798 68 cotf = —0.9601
69 secd = —1.116 70 cscO = 1.485

E| 71 Use a graphing utility to graph f(x) = (sinx)/(x — 7).

Zoom in several times near x = 7 and investigate the
behavior of f.

[El 72 Approximate the solution of the equation x = %cosx
/

by using the following procedure.

(1) Graph y =x and y = %cosx on the same coordi-
nate axes.

(2) Use the graphs in (1) to find a first approximation x,
to the solution.

(3) Find successive approximations x,, x5, .. . by using
the formulas x, = %cos X[ X3 = %cos Xy, ... until
accuracy to six decimal places is obtained.

E 73 Graph y = (sinx — cosx)/cosx for —1 <x <1 and
estimate the x-intercepts.

Exer. 74-75: The angle of elevation of an object is the
angle between a horizontal line at an observer’s position
and the line of sight from the observer to the object. Use
the angle of elevation to estimate the heights specified.

74 From a point on level ground 135 ft from the base of a
tower, the angle of elevation 6 of the top of the tower is
1 radian. Approximate the height of the tower.

Exercise 74

75 A motorist, traveling along a level highway at a speed
of 60 km/hr directly toward a mountain, observes that
between 1:00 PM. and 1:10 pM. the angle of elevation
changes from 6 = 0.17 to 8 = 1.2. Approximate the
height of the mountain.

D EXPONENTIALS AND LOGARITHMS

Exponential and logarithmic functions play a major role in calculus. They

are examples of transcendental functions. We defer a complete rigorous
definition of exponential and logarithmic functions until we have devel-
oped the necessary tools of calculus. We review some of their properties in

this section.

EXPONENTIAL FUNCTIONS

Exponential functions involve raising a constant base to a variable expo-
nent. Two simple examples are f(x) = 10" and g(x) = (%)x_
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| Ex ntial Functions 22 )
| pone ! The exponential function with base a is defined by

[ fx) =a",

where a > 0, g s 1, and x is any real number.
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From algebra, we know how to evaluate a* if x is a positive or a
negative integer or if x is a rational number. If x is a positive integer, then
a® is the product of x factors of a.

a* = (a)@)---(a)
e

if x is a positive integer

x times
If x is a negative integer, then x = —n for some positive integer n and
_ 1
ax =qg "= R
a

If x is a rational number of the form x = m/n, where m and n are integers
withn > 0, then a” is well-defined as

ot = am/n = g™ = (\n/E)m

ILLUSTRATION

| Exponential notation a* Exponential notation a~"
4 _ _ -5 _ 1 _ 1
n =222 =16 3 =5 =35
1 1
143 ISY28Y2! 1 3
B =bhdd) = —=—— =4 =64
G =hdh=ts - 5=1n
| Exponential notation a™/"
' 235 = /2% = B~ 1.5157
A 1\ /2 1 1 1
% (6) = 7= c= - =3 =243
_L W9y (virsy (173)

an b B ol
g -

I

We can make use of the or key on a calculator for computation
of a positive number raised to a rational power.

It can be shown algebraically that if x, and x, are any two rational
numbers with x; < x,, then ™ < a™ ifa > 1and a" > a2 if0 <a <
1. Thus, if a > 1, then f(x) = a” is an increasing function, sometimes
called an exponential growth function, whose graph rises. If 0 < a < 1,
then f(x) = a” is a decreasing function, sometimes called an exponential
decay function, whose graph falls. In the graphs of y =a”* shown in
Figure 49, the dots indicate that only the points with rational x-coordinates
are on the graphs. There is a hole in the graph whenever the x-coordinate
of a point is irrational.

D
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Fr‘gie 49

’ AY
T *3.aY
y =g 1 :.'
a>1
‘ x rational T
T (2.aY
2, a)
_ -1 -+
(=La ) . Fo. 1)
T T T T ] Ll }
i
! ALY
(—3,a)" 1
. B y= a
0<a<l
-+ x rational
(=2,ade T
(—lah®,
| | i (0: 1)1r.~....('1"|’a-)~..
1 I L L] L} Tx

One-to-One Property of
Exponential Functions 23

To extend the domain of the exponential function ¢ to all real num-
bers, we must define a”* for irrational values of the exponent x. For exam-
ple, in order to rigorously define 2, we need some knowledge of limits

(the subject of Chapter 1), but for now, we use the nonterminating deci-

mal representing 3.1415926. . . for 7 and consider the following rational
powers of 2:
T3 931 o314 03.1415

3.141 3.14159
27, 2 e

’ 3

We will show, in Chapter 6, that each successive power gets closer to
a unique real number, which is designated as 2”. The numerical value
of 27 is the nonterminating decimal 8.824977827... . We use the same
technique for any other irrational value of x; that is, we find a sequence of
rational numbers x,, x,, X, ... that approaches x and let a* be the unique
real number approached by the numbers a*1, a*2, a™s, ... . Note that each
of the values a™, a2, a%, ... is well-defined and has a numerical value
that is easily approximated on a scientific calculator.

To sketch the graph of y = a* with x a real number, we replace any
hole in the graph in Figure 49 with a point. The following chart summarizes
this discussion and shows typical graphs.

| Graph of f Graph of f
Definition fora>1 for 0 <a<1
fx)=a" y ‘ ¥
for every x in R,
wherea > Qanda # 1 |
| X %

The graphs merely indicate the general appearance; the exact shape of
each depends on the value of a. Since a* is either strictly increasing or
strictly decreasing, it never takes on the same value twice. Thus, exponen-
tial functions are one-to-one functions.

The exponential function f given by
fx)=a"
is one-to-one; that is, for any real numbers x; and x,:
() If x; # x,, then a™ # a™.
(i) Ifa" = a™, then x, = x,.

forQ<a<lora>1

We do not define exponential functions for a = 1, a = 0, or negative val-
ues of a. For such choices of a, the values of a* do not give a one-to-one
function whose domain is the set of all real numbers. If ¢ = 1, thena® = 1
for all values of x and we have a constant function. If @ = 0, then a”* is
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undefined if x < 0 and has the constant value 0 for x > 0. If ¢ < 0, then
a” is undefined for many values of x. For example, (—2)1/ 2= /=2isnot
a real number.

Exponential functions also satisfy the familiar laws of exponents.

If u and v are any two real numbers, then

@ a“a’ =a""
i

@ —=a

Gii) (a*)’ =a"’

u—v

Note too that the domain of an exponential function is the set of all real
numbers and the range is the set of positive numbers (¢* > 0 for all x).

We frequently use the base 10 for exponential functions because of
our familiarity with the decimal representation of numbers. In Chapter 6,
we will study another important base, the irrational number e, which has
a nonterminating decimal expansion that begins 2.7182818284. . .. Com-
puter scientists often use exponentials with base 2 because computers store
numbers internally in base 2 format. Most calculators provide special keys
to compute 10* and ¢*.

An exponential equation is an equation involving exponential func-
tions. We can often solve exponential equations by using the one-to-one
property of exponential functions.

EXAMPLE®= | Solve the exponential equation 5°* = 5%+

SOLUTION From (23)(i),

5% = 5%+7 implies 5x =4x +7.

Subtracting 4x from each side of the equation gives the solution x = 7.
Checking the answer by substituting 7 for x in the original equation, we
obtain the identity 5% = 533

EXAMPLE®2 Solve the exponential function 2°* 8 = 4*+2,

SOLUTION  We first express 42 with the base 2:
4x+2 — (22))6-{-2 — 22(x+2) — 22x+4
By (23)(iD),
2558 — 22+ implies 5x — 8 =2x +4,

which simplifies to 3x = 12, so x = 4. Checking the answer by substitut-
ing 4 for x in the original equation yields the identity 2!2 = 49,

,F D Exponentials and Logarithms

’

A f(®) (bacteria count)

T

15,000

]

10,000

5,000 -

1 | | 1

1 2 3 4 t(days)
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\ _ 7

EXAMPLE®=3 Suppose it is observed experimentally that the num-
ber of bacteria in a given culture doubles every day. If 1000 bacteria are
present at the start, then we obtain the following table, where ¢ is the time
in days and f(z) is the bacteria count at time ¢.

t (time in days) 0 1 2 3 4

‘ f(2) (bacteria count) = 1000 2000 4000 8000 16,000

(a) Determine a function of the form f(z) = ba' that can be used to predict
the number of bacteria present at any time ¢ > 0.

(b) Sketch the graph of f from part (a) and approximate the number of
bacteria present after 1% days.

SOLUTION

(a) Since f(¢) = 1000 when ¢t = 0, we have 1000 = ba® or, equivalently,
b = 1000. Because the number of bacteria are doubling every day, a = 2.
Hence,

f(@) = (1000)2".

(b) The graph of f is sketched in Figure 50. The number of bacteria present
after 1% days is

F3) = (1000)2%? ~ 2828.

LOGARITHMIC FUNCTIONS

If a is a positive number (other than 1), then the exponential function with
base a is a one-to-one function whose range is the set of positive real
numbers. Thus, given a positive number x, there will be a unique number
y such that x = a”. The number y is called the logarithm of x with base
a. We denote this number as log, (x) or as log, x (read “the logarithm of x
with base a”).

If a is a positive real number other than 1, then the logarithm of x
with base a is defined by

y=1log,x ifandonlyif x=a’

for every x > 0 and every real number y.

Note that the domain of a logarithmic function is the set of positive
real numbers (log, x is defined only if x > 0), and the range is the set of
all real numbers. The two equations in (25) are equivalent; they assert the
same relationship between the variables x and y. We call the first equation
the logarithmic form and the second the exponential form. Consider the
following equivalent forms.
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ILLUSTRATION

Logarithmic form Exponential form
logsu =2 52=u
log, 8 =3 b =38
r=log,q P'=q
w = log, (2t +3) 4% =2¢r+3
log;x =5+2z 3% = x

We can use equivalent forms to verify a number of general properties
of logarithmic functions.

- Property of log, x -_Exponential form

Properties of Logarithms and
Equivalent Exponential Forms 26

() log,1=0 0

,_
I
a & =

ii) lo: =1
Figure 51 (ii) log,a

X X

AY

a
a
(iii) log,a* =x a
aloga x

(iv) log,x =log, x =X

/y:a)‘ |

’ To obtain graphs of logarithmic functions, we first show that log, x
; and a* are inverses of each other. If f(x) = log, x and g(x) = a*, then
p the composite function f o g is computed by

i (fog)(x) = f(g(x)) definitionof fog
= f(a") definition of g
=log,a*  definition of f

= x. by (25)(iii)

s
X

A similar computation using the exponential form of (26)(iv) shows
that (g o f)(x) = x for all positive real numbers x. The functions log, x
and a* are inverses since both f o g and g o f are identity functions. Be-
cause log, x and a* are inverses of each other, the graph of either function
is the reflection of the graph of the other across the line y = x. Figure 51
shows typical graphs of these functions fora > 1.

EXAMPLE®4 Sketch the graphs of y = (2/3)* and y = log, 5 x.

7 SOLUTION We begin with the graph of y = (2/3)*. Since we have
7 0 < 2/3 < 1, the graph will decrease as x increases, with positive values
4 y = logy; ¥ N for all real numbers x. Reflecting this graph across the line y = x yields
the graph of y = log, ; x. Figure 52 shows both graphs.

t.

D Exponentials and Logarithms

One-to-One Property of

Logarithmic Functions 27

Laws of Logarithms 28

LogmthMC functions either. strictly increase or strictly decrease in

their domains and hence are one-to-one functions.

The logarithmic function f given by
fx)y=1log,x forO<a<lora>1
is one-to-one; that is, for any two positive real numbers x, and x,:

@) If x; # x,, thenlog, x; # log, x,.
(i) Iflog, x; = log, x,, then x; = x,.

Other properties of logarithms may be stated as laws, which correspond
to the laws of exponents.

If u and v are any two positive real numbers, then
(i) log,(uv) =log, u +log v

u
(i) log, (;) = log, u —log, v
@ii) log,(u®) = clog, u for every real number ¢

We will prove (28)(i) here; the others have similar proofs.

PROOF Letx =log,uandy=log, v.

Then a* =uanda’ =v. by definition of the logarithm

+y

Now wv =a*a’ =a* by the properties of exponents

The exponential equation

uv = a*

has the equivalent logarithmic form
log, uv =x +y.
But since x = log, u and y = log, v, the last equation can be written as

log, uv = log, u +log,v. ==

Logarithms with base 10 are called common logarithms, and the sym-
bol log x is an abbreviation for log,,x. A second widely used logarithm
is the natural logarithm, denoted In x, which has the irrational number e
for its base.

Most calculators have a key for the calculation of common log-
arithms and an key for natural logarithms. To numerically calculate
logarithms with bases other than 10 and e, we need to use the following
change-of-base formula.
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Precalculus Review

If x > 0 and if @ and b are positive real numbers other than 1, then

log x
log, x = LA
& log, b
PROOF Letu=Ilog,x.
Then b* =x.

If we take the logarithm with base a of both sides of this equation, we
obtain

log, x = log, (") = ulog, b,
which we can write as
log, x = (log, x)(log, b).
Dividing each side by log, b gives the formula. ==

EXAMPLE ®5  Approximate log, 32 using common logarithms.

SOLUTION Using the change-of-base formula with a = 10, we
have

log;y32  log32
log,,7  log7"’
We can now use the key to obtain

log32 1.5051 17810
log7 08451

Note that we could have also used (In 32)/(In 7) to obtain the approxima-

log,32 =

tion. We can check our approximation by using the key to evaluate
717810

‘ A logarithmic equation is an equation involving logarithmic func-
tions. We can often solve logarithmic equations by using the one-to-one
property of logarithmic functions. ’

EXAMPLE =6  Solve the logarithmic equation
log;(4x —35) = log,(2x + 1.

SOLUTION Since logarithmic functions are one-to-one, if there is a
solution, then 4x — 5 must equal 2x + 1 or, equivalently, x = 3. We must
check that x = 3 does not make 4x — 5 or 2x + 1 zero or negative, because
then the logarithms in the given equation would be undefined. In this case,
4x — 5and 2x + 1 bothequal 7,s0x =3isa valid solution.

D Exponentials and Logarithms

Figure 53
01<x<6,-1<y=l

Figure 54
2<x<4,-2<y=2

-~

EXAMPLE=7 Ifthe number N of bacteria in a culture after ¢ days
is given by N. = (1000)2’,

(a) expresévt as a logarithmic function of N with base 2
(b) determine the time when the number of bacteria is 8000

SOLUTION
(a) From N = (1000)2', we have

N
2 = 1000 or, equivalently, ¢ = log, 1000°

(b) Using the result of part (a) with N = 8000,

8000
t = log, 1000 — log, 8 = log, 2% =3.

EXAMPLE®8 Use a graphing utility to estimate the x-intercepts of
f(x) = cos(Inx) for0.1 <x <6.

SOLUTION Since the range of the cosine function is the interval
[—1, 1], we set the viewing window so that —1 <y < 1. Usinga graphing
utility, we obtain the graph of the function, shown in Figure 53. We esti-
mate the x-intercepts to be 0.21 and 4.81. An interesting problem arises if
you investigate the x-intercepts on the interval 0 < x = 0.1.

The next example is a good illustration of the power of a graphing
utility, since it is impossible to find the exact solution using only algebraic
methods.

EXAMPLE®=9 Estimate the point of intersection of the graphs of
f(x)=logzx and g(x) = logg(x + 2).

SOLUTION Most graphing utilities work directly only with com-
mon and natural logarithmic functions. Thus, we first use the change-of-
base formula to rewrite f and g as

Inx In(x +2)
f =13 and g(x) = —

We then use a graphing utility with a viewing window of —2 < x <4 and
—2 < y < 2to obtain graphs like those in Figure 54. We see that there isa
point of intersection in the first quadrant with 2 < x < 3. Using the tracing
and zoom features, we find that the point of intersection is approximately
(2.52,0.84).
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- EXERCISES D

Exer. 1-6: Sketch the graph of f.

I
3
5

fx)=2* 2 f(x)=-3%
fx) =2(5" 4 fx)=T"+3
flx)y=47* 6 f(x)= (3"

Exer. 7-14: Solve the equation.

7
9
1
13
15

16

5uH8 _ 53x—2 g g7 — g2x+l

5@ _ 52643 10 2507 — 53x+2

(%)5~x -1 12 27100x _ (0 5y%—4

274-% _ gx—3 14 gr—1 — 423

A colony of an endangered species originally numbering

1000 was predicted to have a population N after ¢ years
given by the equation N(z) = 1000(0.9)'. Estimate the
population after

(a) 1 year

(b) 5 years

(<) 10 years

The number of bacteria in a certain culture increased
from 600 to 1800 between 8 A.M. and 10 A.M. Assuming
the growth is exponential, the number f(z) of bacteria 7
hours after 8 A.M. is given by f(¢) = 600(3)"/2.

(a) Estimate the number of bacteria at 9 A.M., 11 A.M.,
and noon.

(b) Sketch the graph of f.

Prescription drugs that enter the body are eventually

eliminated through excretion. For an initial dose of 20

mg, suppose that the amount A (#) remaining in the body

t hours later is given by A(r) = 20(0.7)".

(a) Estimate the amount of the drug in the body 8 hr
after the initial dose.

(b) What percentage of the drug still in the body is
eliminated each hour?

An important problem in oceanography is to determine
the amount of light that can penetrate to various
ocean depths. The Beer—Lambert law asserts that
the exponential function given by I(x) = I¢* is a
model for this phenomenon (see figure). For a certain
location, I(x) = 10(0.4)* is the amount of light (in
calories /cm®/sec) reaching a depth of x meters.

(a) Find the amount of light at a depth of 2 m.
(b) Sketch the graph of  for 0 < x < 5.
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Exercise 18

Exer. 19 -24: Change to logarithmic form.

19 52 =125 20 5-3=%
21 3x=7+t 22 mn=p
23 (0.7) =3 24 372 = p/F

Exer. 25 - 30: Change to exponential form.

25 log,32=5 26 log;27=3

27 log,, 1000 = 3 28 log, &z = —6

29 log;m=5x+3 30 log, 1994 =7

Exer. 31-34: Solve for ¢ using logarithms with base a.
3l 2d"5 =5 32 5a% = 63

33 A=Ba® + D 34 C=Ba''P - ¢
Exer. 35 - 40: Find the number, if possible.

35 logy 1 36 loge 6
37 logy(—3) 38 log, 3
39 1788 40 log, 1024

Exer. 41 - 44: Solve the logarithmic equation.

41 log, x =log,(8 —x)
42 logy(x +4) = log; (1 —x)
43 logx? =log(-3x —2) 44 logx® = —4

E Conic Sections

Exer. 45 - 50: Sketch the graph of f.

45
47
49
51

52

[c] 53

46 f(x) = —loggx
fx) =2loggx 48 f(x) =3+loggx
fx) =logg(x —2) 50 f(x) =logg |x|

The loudness of a sound, as experienced by the human
ear, is based on its intensity level. The intensity level
« (in decibels) that corresponds to a sound intensity /
is a = IOlog(I/IO), where 1, is a special value of 1
agreed to be the weakest sound that can be detected by

F() =loggx

54 Find the error in the following “solution” to the problem:
Solve

log;(5x — 17) = log, (4x — 14).

“Solution: Since logarithmic functions are one-to-one,
we must have 5Sx — 17 = 4x — 14, which implies that
5x —4x =17 —14,s0x = 3.”

E] Exer. 55— 62: Use a graphing utility to obtain a graph of f
on the indicated x-interval. Adjust the y-interval so that
the viewing window contains the entire graph.

the human ear under certain conditions. Find « if 55 f(x) =2 4275 —2<x<2
(a) I is 10 times as great as I 2 2
(b) I is 1000 times as great as I, 56 f(x) = JT 2 —3=x=3
A sound intensity level of 140 decibels produces pain 57 f(x) =log(2* +5); —2<x<10
in the average human ear (refer to Exercise 51). 503
Approximately how many times greater than I, must 58 f(x) = 0———; —8<x<15
I be in order for « to reach this level? 3 +1
The population N (¢) of the United States (in millions) 59 f(x) = log(sinx); 0l=x=<3
t years after 1990 may be approximated by the formula 60 f(x) = sin(logx); 0.1 <x <800 |
0.007 i
N(t) = 253(2.72)>". 61 f(x) =log(x(1.2 +sinx)); 0.1<x<20 \
(a) Estimate the population in 1990 and 2000. 62 f(x) = 2.56( 3)-022% 5 4.0y 0<x<12 |
(b) Approximately when will the population be twice ’ o -
what it was in 19907
E  CONIC SECTIONS
\ Y L We now review some of the elementary geometric properties of the conic

sections. In later chapters, we will use the methods of calculus to solve

problems that include finding equations of tangent lines to conics and
calculating areas and volumes of regions determined by conics.
Intersecting a double-napped right circular cone with a plane produces
curves known as the conic sections. By varying the position of the plane,
we can obtain a circle, an ellipse, a parabola, or a hyperbola, as Figure
55 illustrates on the following page. Degenerate conics occur if the plane
intersects the cone in a single point or along either one or two lines that lie

on the cone.

PARABOLAS

We first define a parabola and present equations for parabolas that have a
vertical or a horizontal axis.
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Figure 56

Definition 30

Directrix
Figure 57
AY
x* = 4py
F,p) -7 Px, y)
g f
v e
y=-p P'(x, —p)
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Figure 55
(a) Circle
/

(b) Ellipse (c) Parabola (d) Hyperbola

[_“T-
G

~
~

A parabola is the set of all points in a plane equidistant from a fixed
point F (the focus) and a fixed line / (the directrix) that lie in the
plane.

If the focus F lies on the directrix /, then we have a degenerate
parabola, the line through F perpendicular to /. Thus, we assume that
F does not lie on /. If P is a point in the plane, then the distance from P to
the line / is the distance d(P, P’), where P’ is the point determined by the
line through P that is perpendicular to / (see Figure 56). The point P is on
the parabola if and only if d(P, P’) = d(P, F). The axis of the parabola
is the line through F that is perpendicular to the directrix. The vertex of
the parabola is the point V on'the axis halfway from F to I.

If the axis of the parabola is the y-axis and the vertex is at the origin
with focus F at (0, p), then the equation of the parabola is

x? =4py.

If p >0, the parabola opens upward, as in Figure 57. If p <0, the

parabola opens downward. The graph is symmetric with respect to the

y-axis; substitution of —x for x does not change the equation x> = 4 py.
Interchanging the roles of x and y yields the similar equations

X = 4py and y2 =4px,

which are the equations of a parabola with vertex at the origin and focus
F(0, p) and F(p, 0), respectively. If p > 0, the parabola opens upward or
to the right, and if p < 0, it opens downward or to the left.

We see from (31) that for any nonzero real number a, the graph of y =
ax®orx = ay is a parabola with vertex V (0, 0). Moreover, a = 1/(4p),

E Conic Sections

Parabolas with Vertex V(0,0) 31

Figure 58

Equation
) |

x° =4py,
1 5

= —X

ory ip

y* =4px,
)

orx = Ey

Graph fc;r p>0 Graph for p < 0_ |
A7 LY
v
F ™ X
|
Fl/l’
-
Vv X
I —
Jky ﬂy
| \p\
=t }—;-
VN F /V x |

or, equivalently, p = 1/(4a), where | p| is the distance between the focus
F and the vertex V. To find the directrix [, recall that / is also a distance

|p| from V.

Find the focus and the directrix of the parabola hav-
6x and sketch its graph.

EXAMPLE®=I
ing equation y =

SOLUTION Theequation has the form y = ax? witha = —%. Asin
(31),a =1/(4p), or
11 3

P4~ ach ™2

The parabola opens downward and has focus F(0, —%), as illus'trated igl
Figure 58. The directrix is the horizontal line y = %, which is a distance 5
above V, as shown in the figure.
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Figure 59
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|
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P(7.-3)
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EXAMPLE=2

(a) Find an equation of a parabola that has vertex at the origin, opens right,
and passes through the point P(7, —3).

(b) Find the focus.

SOLUTION

(a) The parabola is sketched in Figure 59. By (31), the equation of the
parabola has the form x = ay? for some number a. If P(7, —3) is on the
graph, then

7=a(-3)% or a=1.

Hence an equation of the parabola is x = % y2.
(b) The focus is a distance p to the right of the vertex, where

Thus, the focus has coordinates (2%’ 0).

If the vertex V of a parabola lies at any point (%, k) in the xy-plane,
then we can also find equations for the parabola if the directrix is horizontal
or vertical. If the focus is F(h, k + p) and the directrix is the horizontal
line y = k — p, an equation of the parabola is

(x —h)* =4p(y — k).

Expanding the left-hand side of (x — k)? = 4p(y — k) and simplifying
leads to an equation of the form

y=ax2+bx+c,

where a, b, and c are real numbers. Conversely, if a # 0, then the graph
of y=ax?>+bx+cisa parabola with a vertical axis. As with y = ax?,
we can show that a = 1/(4p). The parabola opens upward if p > 0 and
downward if p < 0.

Similarly, if the directrix is a vertical line x = & — p and the vertex is
at V(h, k) with focus F(h + p, k), then an equation is

(v —k)? =4p(x — h),

with the parabola opening to the right if p > 0 and 1o the left if p < 0. We
may write this equation in the form x = ay® + by + ¢, wherea = 1 /(@4p).

For convenience, in the following summary of this discussion, we have
taken V'(h, k) in the first quadrant of the figures.

E Conic Sections

Parabolas with Vertex V(h, k) 32

Equation

(x—h)?* = 4p(y —h),
ory = ax2+bx+c,

where p = 12

-k = 4p(x—h),
orx = ay’+by+c,

where p = yy

[

1

_G_raph forp <0

Graphforp >0

A y A y
\ V(h, k)
\-\ F NN
\ |pl
\
\ -
\,\ .
X
Flt/p
V(h, k) =
T X
| Y A7
.//
/.,
I,7p |P|\
e s V(h, k)
|\ F F
\\-.
| ‘\- }-_x / }

If the equation of a parabola is in the form y = ax? 4+ bx +c, ‘then we
can find the vertex V (h, k) algebraically by completing the square in x and
changing the equation to the form (x — m)? = 4p(y — k).

EXAMPLE®3 Discuss and sketch the graph of y = 2x2 — 6x + 4.

SOLUTION By (32), the graph is a parabola with vertical axis. We
rewrite the equation as y/2 = x2 — 3x + 2 and complete the square in x:

-3 +2=x2 20 +3-F+2=0G-"—;

so we have
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Figure 60

Figure 61
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Vi, ) fe F(Z,—4)

2x=y?+ 8y + 22

-
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Since the parabola opens upward, the focus F is a distance p =
above V, which gives us

3 1 1
FG.—3+5) =FG )

8

The directrix is the horizontal line / that is a distance p = % below V.
Therefore, an equation for / is

5

Cy = —% — %, or, equivalently, y = —3z.

Th.e graph is sketched in Figure 60. Note that the y-intercept is 4 and
the x-intercepts (the solutions of 2x% — 6x + 4 = 0) are 1 and 2.

. For equations of the form x = ay? + by + ¢, we complete the square
in y and write the equation in the form (y — k)2 =4p(x —h).

EXAMPLE®4 Discuss and sketch the graph of 2x = y? + 8y + 22.

SOLUTION By (32), the graph is a parabola with horizontal axis.
Note that ‘ /

x=302+8y+22) =10 +8y+16+6) = 3(y + 4> +3, |
which we may rewrite as
1o +47>=x-3
so that
O+ =2x-6=4D)x —3).
Hence, the vertex is V(3, —4) and p = % Since the parabola opens to the
right, the focus F is a distance p = % to the right of V, which gives us

The directrix is the vertical line / that is a distance p = % to the left of
V. Therefore, an equation for / is

x=3—%, or x =

[S]1o

The parabola is sketched in Figure 61.

EXAMPLE®=5 Find an equation of the parabola with vertex
V(—4,2) and directrix y = 5.

SOLUTI 0 N The vertex and the directrix are shown in Figure 62.
The dashes indicate a possible shape for the parabola. From (32), we have
the following equation of the parabola:

(x —h)? =4p(y — k),

E Conic Sections

Figure 63

_-

with i = —4,k =2, and p = —3, since V is 3 units below the directrix.
Substituting gives us

(x +4)? = —12(y — 2).
This equation can be expressed in the form y = ax? + bx + c, as follows:

12y = —x*> —8x + 8

1.2 2 2
y:-—ﬁx —§x+§

ELLIPSES
We may define an ellipse as follows. (Note that foci is the plural of focus.)

D s 3 v
efinition 3 An ellipse is the set of all points in a plane, the sum of whose dis-

tances from two fixed points (the foci) in the plane is constant.

Figure 63 shows an ellipse with foci F and F'. If P and Q are any two
points on the ellipse, then d(P, F) +d(P, F)y=d(Q, F)+d(@Q, F).
When F and F’ are close to each other, the ellipse is almost circular.
If F = F', then we obtain a circle with center F. The midpoint of the

segment F F’ is the center of the ellipse.

If the foci lie along the x-axis and the center is at the origin, then the
ellipse has a simple equation. Suppose F has coordinates (c, 0) so that F’
has coordinates (—c, 0). Let 2a denote the constant sum of the distances of

P from F and F',and letbh = v/ a? — ¢*. Note that b < a. It can be shown
that the coordinates (x, y) of every point on the ellipse satisfy

Figure 64 illustrates this case. We may find the x-intercepts of the ellipse
by letting y = 0 in the equation. Doing so gives x? = a2, so there are two
Figure 64

A7

X2 VZ
mo.n| TR

V'(—a.0) _/j_\v(a, "

M0, —b)




Figure 65

(=3.0)

Theorem 34

4
I

22+ 9y2 =
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x-intercepts, a and —a. The corresponding points V(a, 0) and V'(—a, 0)
on the graph are the vertices of the ellipse. The line segment V'V is the
major axis. Similarly, letting x = 0 in the equation, we obtain y%/b% = 1,
or y? = b?. Hence, the y-intercepts are b and —b. The segment between
M'(0, —b) and M(0, b) is the minor axis of the ellipse. The major axis is
always longer than the minor axis, since a > b. The foci are always on the
major axis.

Applying tests for symmetry, we see that the ellipse is symmetric with
respect to the x-axis, the y-axis, and the origin.

The preceding discussion may be summarized as follows.

The graph of the equation

[
&~

X

s+ =1
aZ

R/

for a® > b% is an ellipse with vertices (£a, 0). The endpoints of the
minor axis are (0, £b). The foci are (¢, 0), where ¢ = a* — b2,

EXAMPLE®=6  Sketch the graph of 2x% +9y? = 18, and find the
foci.

SOLUTION To obtain the form in Theorem (34), we divide both

sides of the equation by 18 and simplify to get
2 2
oY
9 2

which is in the proper form, with > = 9 and b = 2. Thus,a = 3 and b =
V/2; hence the endpoints of the major axis are (%3, 0), and the endpoints
of the minor axis are (0, £+/2). Since

F=a’—b=9-2=7, or c=+/7,
the foci are (4=+/7, 0). The graph is sketched in Figure 65.

EXAMPLE =7 Find an equation of the ellipse with vertices (£+4, 0)
and foci (£2, 0).

SOLUTION  Using the notation of Theorem (34), we conclude that
a=4andc=2. Sincec2=a2—b2, wehave b2 = g2 — 2 = 16— 4 =
12. Hence, an equation of the ellipse is

2 2

x .y

it =1
R
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We sometimes choose the major axis of the ellipse along the y-axis. If
the foci are (0, £c), then by the same type of argument used previously,
we obtain the following.

Theorem (35 The graph of the equation
2 2
.x__ + :)_').. =1
B> d°
for a® > b? is an ellipse with vertices (0, £a). The endpomts ot; the
Figure 66 minor axis are (&b, 0). The foci are (0, &), where ¢* = a* — b%.

A typical graph is sketched in Figure 66.
The precedmg discussion shows that an equation of an ellipse with
center at the origin and foci on a coordinate axis can always be written in

the form

M. 0) 2 yz )
x T +2 =1, or gx*+ py*=pq,

p q

M'(—b.0)

with p and g posmve and p # q.If p > g, the major axis is on the x-axis,
andif ¢ > p, the major axis is on the y-axis. It is unnecessary to memorize
these facts, because in any given problem the major axis can be determined

by examining the x- and y-intercepts.

F'(0, —¢)
V0, —a)
EXAMPLE®S Sketch the graph of 9x2 4+ 4y? =25, and find the

foci.

SOLUTION The graph is an ellipse with center at the origin and foci
on one of the coordinate axes. To find x-intercepts, we let y = 0, obtaining

Figure 67 9x2 = 25, of x= ﬂ:%.
AY ..
Similarly, to find the y-intercepts, we let x = 0, obtaining
5
4. (0’3) 4y? =25, or y= :I:%.
| . . . 5
/ I (5.0) These results enable us to sketch the ellipse (see Figure 67). Since 3 < 3,
= > the major axis is on the y-axis.
- o To find the foci, we first calculate
9x% + 4y> =25 1 125
To.-2) F=d - =3)1-3) =
" 732
Thus, ¢ = 5+/5/6 and the foci are (0, £5+/5/6).
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Figure 68
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(x — h)? (v — k)2
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For an ellipse with center (%, k) at any point in the xy-plane and with

major and minor axes that are hori 3
. 1zontal :
equation takes the form or vertical (see Figure 68), the

(x —h)?  (y—k)?
=

1.

Squaring the indicat implifyi i
o g icated terms and simplifying gives us an equation of the

5
Ax’>+Cy*+ Dx+ Ey + F =0,

vcv(l)lere the chfﬁcients are real numbers and both A and C are positive
Wer::\:ifs:g, '1f w; start w1th'such an equation, then by completing squares'
ain a form that displays the center of the ellipse and the lengths,

of the-major and minor axe i ique is i
o s. This technique is illustrated in the next ex-

EXAMPLE®=9 Discuss and sketch the graph of the equation
16x% +9y? + 64x — 18y — 71 = 0.

SOLUTION  Webegin by writing the equation in the form
16(x2+4x )+9(u% -2y )=T1.
Completing the squares gives us
2
16(x2+4x +4) +9(°> =2y + 1) =71 + 64 + 9,
which may be written as
16(x +2)% + 9(y — 1)* = 144,
Dividing by 144, we obtain

(x +2)? _
x+2° O 1)?
9 16

=1,
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Definition 36

Figure 69

(-2, —3)

which is of the form

N2 2
-h?, 0=R

a’ b*

with i = —2 and k = 1. The graph of the equation is an ellipse with center
(=2, 1) (see Figure 69). Since 16 > 9, the major axis is on the vertical line

x =—2.
To find the foci, note that ¢ =16—9="7.Thus, the distance from the

center of the ellipse to either focus is ¢ = /7. Since the center is (-2, 1),
the foci are (=2, 1 £ V7).

Ellipses can be very flat or almost circular. To obtain information about
the roundness of an ellipse, we sometimes use the term eccentricity.

The eccentricity e of an ellipse i

\/az — b

C
e = — =
a a

Consider the ellipse (x2/a®) + (y2/b*) =1, and suppose that the
length 2a of the major axis is fixed and the length 2b of the minor axis
is va_nﬁ__b}p. Since vaz _ b? < a, we see that O<e<l.Iferl, then
\/ a — p? ~a and b= 0. Thus, the ellipse is very flat. If e = 0, then
\/;2 _ b2~ 0anda ~ b. Thus, the ellipse is almost circular.

Many comets have elliptical orbits with the sun at a focus. In this
case the eccentricity e is close to 1, and the ellipse is very flat. In the
next example, we use the astronomical unit (AU)— that is, the average
distance from the earth to the sun—to specify large distances (1 AU ~
93,000,000 miles).

EXAMPLE®=10 Halley’s comet has an elliptical orbit with eccen-

tricity e = 0.967. The closest that Halley’s comet comes to the sun is

——
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Figure 71
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0.587 AU. Approximate the maximum distance of the comet from the sun,
to the nearest 0.1 AU.

SOLUTION Figure 70 illustrates the orbit of the comet, where c is
the distance from the center of the ellipse to a focus (the sun) and 2a is the

length of the major axis.
Since a — ¢ is the minimum distance between the sun and the comet,

we have (in AU)
a—c=0587, or a=c+0.587.
Since e = ¢/a = 0.967,
¢ = 0.967a = 0.967(c + 0.587)

c ~ 0.967c + 0.568.
Thus,
0.568
. ~ 0. d e~ ——=172.
0.033¢ 568 and c 0.033
Consequently,
a =c+0.587

a~172+0.587 ~ 17.8,
and the maximum distance between the sun and the comet is

a+cex~178417.2, or a+c¢~350AU.

HYPERBOLAS

The definition of a hyperbola is similar to that of an ellipse. The only
change is that instead of using the sum of distances from two fixed points,
we use the difference.

A hyperbola is the set of all points in the plane, the difference of
whose distances from two fixed points (the foci) in the plane is a
positive constant.

The center of a hyperbola is the midpoint of the segment FF’. If the
foci lie along the x-axis and the center is at the origin, then the hyperbola
has a simple equation. Let P be a point on the hyperbola. Suppose F has
coordinates (c, 0) so that F’ has coordinates (—c, 0) (see Figure 71). Let
2a denote the constant difference of the distances of P from F and F’, and
let b* = ¢? — a?. Tt can be shown that P is on the hyperbola if and only if
its coordinates (x, y) satisfy the equation

x2 y2

S AR

a® b

By tests for symmetry, the hyperbola is symmetric with respect to both
axes and the origin. The x-intercepts are @ and —a. The corresponding

——— i
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Theorem 38

s o e

points V(a, 0) and V'(—a, 0) are the vertices, and the line segment V'V
is the transverse axis of the hyperbola.
The preceding déscussion may be summarized as follows.

The graph of the equation

%2 yz -
at b
is a hyperbola with vertices (Za, 0). The foci are (%c, 0), where

& =a®+ b

1

If we solve the equation (x2/ az) - (y2/ bz) = 1 for y,we obtain

b
y = :l:—\/fx2 —d.
a

If a graph approaches a line as the absolute value of x gets increas-
ingly large, then the line is called an asymptote for the graph. It can be
shown that the lines y = (b/a)x and y = —(b/a)x are asymptotes for the
hyperbola. These asymptotes serve as excellent guides for sketching the
graph. A convenient way to sketch the asymptotes is to first plot the ver-
tices V(a, 0), V/(—a, 0) and the points W(0, b), W(0, —b) (see Figure
72). The line segment W' W of length 2b is the conjugate axis of the hy-
perbola. If horizontal and vertical lines are drawn through the endpoints
of the conjugate and transverse axes, respectively, then the diagonals of
the resulting rectangle have slopes b/a and —b/a. Hence, by extending
these diagonals, we obtain lines with equations y = (+b/a)x, which are

N
(3]

Qlk
(o]
%l

o8 |

Viu, 0)




Figure 73
' 9x% — 4y? = 36

Figure 74

X
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the asymptotes. The hyperbola is then sketched as in Figure 72, using the
asymptotes as guides. The two curves that make up the hyperbola are the
branches of the hyperbola.

EXAMPLE® || Discuss and sketch the graph of 9x? — 4y? = 36.
Then find the foci and the equations of the asymptotes.

SOLUTION The graph is a hyperbola with the center at the origin.
Dividing both sides of the given equation by 36 and simplifying gives

x2 y2

4 9 |
which is of the form stated in Theorem (38), with a’>=4 and b> =09.
Hence, a = 2 and » = 3. The vertices (2, 0) and the endpoints (0, +3)
of the conjugate axis determine a rectangle whose diagonals (extended)
give us the asymptotes. The graph of the equation is sketched in Figure 73.
To find the foci, we calculate

=a’+b*=4+9=13.

Thus, ¢ = +/13 and the foci are (£+/13, 0).
The equations of the asymptotes, y = :I:%x, can be found by referring
to the graph or to the equations y = +(b/a)x.

The preceding example indicates that for hyperbolas it is not al-
ways true that a > b, as is the case for ellipses. Indeed, we may have
a<b,a>b,ora=hb.

EXAMPLE® |2 A hyperbola has vertices (£+3,0) and passes
through the point P(5, 2). Find its equation, the foci, and the equations of
the asymptotes.

SOLUTION We begin by sketching a hyperbola with vertices
(£3, 0) that passes through the point P (5, 2), as in Figure 74.
An equation of the hyperbola has the form

x2 y2

o
Since P (5, 2) is on the hyperbola, the x- and y-coordinates satisfy the last
equation; that is,

_9

Solving for b? gives us b2 = =, so the desired equation is
g g ) q

E Conic Sections

Theorem

or, equivalently,
x?—4y*=09.
To find the foci, we first calculate
F=at+b=9+3=%

Hence, ¢ = ,/% = %\/5, and the foci are (:i:%«/g, 0).

The general equations of the asymptotes are y = +(b/a)x. Substitut-

inga=3and b = % givesus y = :l:%x.

If the foci of a hyperbola are the points (0, +=¢) on the y-axis, then
by the same type of argument used previously, we obtain the following
theorem.

The graph of the equation
L .,
a> b

is a hyperbola with vertices (0, =a). The foci are (0, £c), where
ct=a* + b2

For the hyperbola in the preceding theorem, the endpoints of the con-
jugate axis are W(b, 0) and W’'(—b, 0). We find the asymptotes as before,
by using the diagonals of the rectangle determined by these points, the
vertices, and lines parallel to the coordinate axes. The graph is sketched
in Figure 75. The equations of the asymptotes are y = 3-(a/b)x. Note the
difference between these equations and the equations y = 4=(b/a)x for the
asymptotes of the hyperbola considered first in this section.

y2
Figure 75 A 1
a
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EXAMPLE®= I3 Discuss and sketch the graph of 4y? — 2x? = 1.
Then find the foci and the equations of the asymptotes.

SOLUTION We may obtain the form in Theorem (39) by writing the
equation as

2 2
y x
ToT-h
g 2
Thus, at=1 =Ll I=dl+pr =3,
1 2 3
and hence, a=3, b:_\g, C:§

The vertices are (0, :I:%), the foci are (0, :t«/g/ 2), and the endpoints of the
conjugate axes are (£+/2/2, 0). The graph is sketched in Figure 76.

4y —2x2 =1

To find equations of the asymptotes, we can use y = +(a/b)x, obtain-
ing y = +(v/2/2)x.

If the center of a hyperbola is at any point (%, k) in the xy-plane, then
it has the equation

x=m -k _

1
2 b2

a
if the foci lie on a horizontal line, or the form of the equation is
G-k &-—h>
a® b? N

if the foci lie on a vertical line.

Squaring the indicated terms in these equations and simplifying allows
us to write the equation for the hyperbola in the form

Ax* 4+ Cy*+ Dx+ Ey+ F =0,

1

E Conic Sections

=3 6+2° _

4

9

3,

/

’ \

—— —— —
! (3a _5) \\

where the coefficients are real numbers and A and C have opposite signs
(one is positive and the other is negative). Conversely, if we begin with
such an equation, then by completing squares, we can obtain a form that
displays the center of the hyperbola and the transverse and conjugate axes.
The next example illustrates this technique.

EXAMPLE®= 14 Discuss and sketch the graph of the equation
9x2 — 4y% — 54x — 16y + 29 = 0.

SOLUTION  We arrange our work as follows:
9x2—6x )—4(y*+4y )=-29
9(x2 —6x +9) —4(y> +4y +4) =-294+81-16
9(x —3)2 —4(y+2* =136

x=3" 0+2?_
4 9

1

Note that # = 3 and k = —2. The graph of the equation is a hyperbola
with center (3, —2). The foci lie on the horizontal line y = —2 through the
center. We see that

a’® =4, pr =09, ? =a’>+b* =13.

Hence, a =2, b=23, c=+13.

As illustrated in Figure 77, the vertices are (3 &2, —2)—that
is, (5,—2) and (1, —-2). The endpoints of the conjugate axis are
(3, — 2+ 3)—that is, (3,1) and (3, —5). The foci are (3 + /13, —2),
and the equations of the asymptotes are

y+2=+3(x-3).

The results of the last three sections indicate that the graph of every
equation of the form

A2+ Cy’+ Dx+Ey+F=0

is a conic, except for certain degenerate cases in which a point, one or two
lines, or no graph is obtained. Although we have considered only special
examples, our methods are perfectly general. If A and C are equal and
not 0, then the graph, when it exists, is a circle or, in exceptional cases, a
point. If A and C are unequal but have the same sign, then by completing
squares and properly translating axes, we obtain an equation whose graph,
when it exists, is an ellipse (or a point). If A and C have opposite signs, an
equation of a hyperbola is obtained or possibly, in the degenerate case, two
intersecting straight lines. If either A or C (but not both) is 0, the graph is
a parabola or, in certain cases, a pair of parallel lines.
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Exer. 1-6: Find the vertex, the focus, and the directrix of
the parabola. Sketch its graph, showing the focus and the
directrix.

Iyz—%x2 2 x =2y%
3 2y2 = —3x 4 x*= —3y
5 y = 8x? 6 y> = —100x

Exer. 7-16: Find the vertex and the focus of the parabola.
Sketch its graph, showing the focus.

7 y=x>—4x+2 8 y=8x>+16x+ 10
9y —12=12x 10 y2 — 20y + 100 = 6x

1 y?—4y—2x—4=0

12 y2 + 14y +4x+45=0

13 4x% +40x +y + 106 = 0

14 y = 40x — 97 — 4x2

15 x2 420y =10

16 4x® 4 4x+4y+1=0

Exer. 17-24: Find an equation of the parabola that

satisfies the given conditions.

17 focus F(2,0); directrix x = -2
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34 x> +2y? +2x— 20y +43 =0

35 9x2 +16y> +54x — 32y —47 =0
36 4x2+9y” +24x+ 18y +9=10

37 25x% +4y% — 250x — 16y + 541 =0
38 4x2+y2=2y

Exer. 39-48: Find an equation for the ellipse that has its
center at the origin and satisfies the given conditions.

Exercises E

Exer. 67-76: Find an equation for the hyperbola that has
its center at the origin and satisfies the given conditions.

67 foci F(0, +4);
68 foci F(£8, 0);
69 foci F(£5,0);

70 foci F(0, £3);

71 foci F(0, £5);

72 vertices V(44, 0);
73 vertices V(£3, 0);
74 foci F(0, +10);
75 x-intercepts +5;

vertices V(Q, +1)
vertices V (L5, 0)
vertices V(£3, 0)
vertices V (0, +2)
conjugate axis of length 4
passing through (8, 2)
asymptotes y = £2x
asymptotes y = :I:%x

asymptotes y = +2x

39 vertices V(£8, 0);
40 vertices V (0, £7);
41 vertices V(0, £5);
42 foci F(£3,0);

43 vertices V (0, 6);

foci F(£5,0)
foci F(0, £2)
minor axis of length 3
minor axis of length 2

passing through (3, 2)

44 passing through (2, 3) and (6, 1)

45 eccentricity % ;

46 eccentricity % ;

47 x-intércepts +2:

48 x-intercepts +1;

vertices V (0, +4)

vertices on the x-axis;
passing through (1, 3)

y-intercepts :I:%

y-intercepts +4

18 focus F(0, —4),
19 vertex V(3, —5);
20 vertex V(-2, 3);

directrix y = 4
directrix x = 2

directrix y = 5

Exer. 49-66: Find the vertices and the foci of the
hyperbola. Sketch its graph, showing the asymptotes and
the foci.

21 vertex V(—1,0); focus F(—4,0)
22 vertex V(1,—2); focus F(1,0)

23 vertex at the origin; symmetric to the y-axis; and passing
through the point (2, —3)

24 vertex V(—3, 5);axis parallel to the x-axis; and passing
through the point (5, 9)

Exer. 25-38: Find the vertices and the foci of the ellipse.
Sketch its graph, showing the foci.

zs%2+y72=1 zeg f—é:l
27 42 +y2 =16 28 y2 +9x2 =9
29 5x2 +2)* =10 30 AP +2)% =38
31 42 +25y2 =1 32 10y2 +x% =5

33 4x? +9y? — 32x — 36y + 64 =0

2 2 2 2
X y y x
L= 50 - — =1
W g-g=l 49 16
2 2 2 2
51 2% 52 2 -2 =
9 4 49 16
53 y2 —4x? =16 54 x> -2y =38
55 x> —y? =1 56 y? —16x% =

57 x2 —5y* =25
59 3x2 —y? =3

58 4y —4x’ =1
60 16x% —36y* =1

61 25x2 — 16y> +250x + 32y + 109 =0
62 y2—4x2—12y—16x+16=0

63 4y? — x2 + 40y —4x +60=0

64 25x2 — 9y +100x — 54y + 10 = 0
65 9y —x2 — 36y +12x —36 =0

66 4x* —y? +32x —8y +49 =0

76 y-intercepts +2; asymptotes y = :i:%x
77 The graphs of the equations

Q |><
[
SN
N
S

are called conjugate hyperbolas. Sketch the graphs of
both equations on the same coordinate plane, with a = 5
and b = 3. Describe the relationship between the two
graphs.

78 The parabola y? = 4 p(x + p) has its focus at the origin
and its axis along the x-axis. By assigning different
values to p, we obtain a family of confocal parabolas,
as shown in the figure. Families of this type occur in the
study of electricity and magnetism. Show that there are
exactly two parabolas in the family that pass through a
given point P(x;, y,) if y, # 0.

Exercise 78

79 The arch of a bridge is semielliptical, with major axis
horizontal. The base of the arch is 30 ft across, and the
highest part is 10 ft above the horizontal roadway, as
shown in the figure. Find the height of the arch 6 ft from
the center of the base.

Exercise 79

80

82

&
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Assume that the length of the major axis of the
earth’s orbit is 186,000,000 mi and the eccentricity
is 0.017. Find, to the nearest 1000 mi, the maximum
and minimum distances between the earth and the sun.

In 1911, the physicist Ernest Rutherford (1871-1937)
discovered that when alpha particles are shot toward the
nucleus of an atom, they are eventually repulsed away
from the nucleus along hyperbolic paths. The figure
illustrates the path of a particle that starts toward the
origin along the line y = %x and comes within 3 units
of the nucleus. Find an equation of the path.

Exercise 81

Alpha particle
Nucleus Prap

=¥

A cruise ship is traveling a course that is 100 mi from,
and parallel to, a straight shoreline. The ship seuds out
a distress signal, which is received by two Coast Guard
stations A and B, located 200 mi apart, as shown in the
figure. By measuring the difference in signal reception
times, officials determine that the ship is 160 mi closer
to B than to A. Where is the ship?

Exercise 82




