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QDUCTION

HE NATURAL WORLD is filled with curves that excite both the

imagination of the artist and the curiosity of the scientist: the

outline of the moon against the evening sky, the delicate folds
of a flower, the sinuous curve of a river, the graceful sithouette of a
bird in flight, the curls and spirals of a cresting wave. In this chapter, we
examine several different ways of representing curves in mathematical
forms that will enable us both to understand the curves better and to
gain new appreciation of their beauty.

For an equation of the form y = f(x), where f is a function, the
graph is a curve in the xy-plane. The concept of curve is more general,
however, than that of the graph of a function, since a curve may cross
itself in figure-eight style, be closed (as are circles and ellipses), or
spiral around a fixed point. In fact, some curves studied in advanced
mathematics pass through every point in a coordinate plane!

The curves discussed in this chapter lie in an xy-plane, and each has
the property that the coordinates x and y of an arbitrary point P on the
curve can be expressed as functions of a variable 7, called a parameter. Ve
choose the letter ¢ because in many applications this variable denotes
time and P represents a moving object that has position (x, y) at time
t. In later chapters, we will use such representations to define velocity,
acceleration, and other concepts associated with motion. In Section 9.1,
we consider the definitions of a curve and parametric equations, and we
discuss a number of examples and applications. The determination of
tangent lines and arc length from a parametric representation of a curve
is the topic of Section 9.2; we also discuss how to determine the area
of a surface of revolution of a curve given its parametric equations.

In Sections 9.3 and 9.4, we discuss polar (or circular) coordinates
and use definite integrals to find areas enclosed by graphs of polar equa-
tions. Our methods are analogous to those developed in Chapter 5.
The principal difference is that we consider limits of sums of circular
sectors instead of vertical or horizontal rectangles. Switching from an
xy-coordinate system to a polar coordinate system often yields a much
simpler equation for a plane curve. The circles and spirals evident in such
natural phenomena as the curl of an ocean wave have much simpler rep-
resentations in polar coordinates than in rectangular xy-coordinates.
Thus, we may be able to describe and understand some facets of na-
ture more easily by using polar coordinates. Equations for a curve in
the xy-coordinate system can also be simplified by adopting a rectangu-
lar coordinate system obtained from the standard xy-coordinates by a
translation or rotation of axes, which we discuss in Section 9.5,

Parametric equations and polar
coordinates provide useful frameworks
for the analysis of many natural
phenomena such as those exhibited
by ocean waves.

Parametric Equations
and Polar Coordinates
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786 CHAPTER 9 Parametric Equations and Polar Coordinqtes 9.1 Parametric Equations m

A convenient way to represent curves is given in the next definition.

9.1  PARAMETRIC EQUATIONS

PR In this section, we introduce a new way to describe curves in the plane Definition 9.2

by using parametric equations. If f is a continuous function, the graph of
the equation y = f(x) is often called a plane curve. However, this defini-
tion is restrictive because it excludes many useful graphs. The following x = f(), y =g,
definition is more general.

Let C be the curve consisting of all ordered pairs (f (), g(¢)), where
f and g are continuous on an interval /. The equations

for t in I, are parametric equations for C with parameter z.

Definition 9.1 . . ' The curve C in this definition is referred to as a parametrized curve,
A plane curve is a set C of ordered pairs (f(?), (1)), where f and and the parametric equations are a parametrization for C. We often use
g are continuous functions on an interval /. the notation

i x=f@), y=g@); tinl

to indicate the domain / of f and g. Sometimes it may be possible to

For simplicity, we often refer to a plane curve as a curve. The graph eliminate the parameter and obtain a familiar equation in x and y for C. In
of C in Definition (9.1) consists of all points P(t) = (f(z), g(¢)) in an xy- simple cases, we may sketch a graph of a parametrized curve by plotting
plane, for 7 in 1. We shall use the term curve interchangeably with graph points and connecting them in the order of increasing ¢, as illustrated in the
of a curve. We sometimes regard the point P(¢) as tracing the curve C as ¢ next example.

varies through the values of the interval /.
The graphs of several curves are sketched in Figure 9.1, where [ is a

closed interval [a, b]. In Figure 9.1(a), P(a) # P(b), and P(a) and P(b) & Figure 9.2 . % EXAMPLE= 1 Let C be the curve that has parametrization

are called the endpoints of C. The curve in (a) intersects itself; that is, ' @ x=2y=1"-L-l=t=2 x=2 y= -1, —1<t<2.

two different values of ¢ produce the same point. If P(a) = P(b), as in Ay o

Figure 9.1(b), then C is a closed curve. If P(a) = P(b) and C does not (a) Sketch the graph of C by hand by plotting several points and joining
intersect itself at any other point, as in Figure 9.1(c), then C is a simple -+ them with a smooth curve.

closed curve. (b) Obtain an equation for the curve in the form y = f(x) for some func-

tion f.
(c) Use a graphing utility to plot a graph of C. Set the viewing window so

Figure 9.1 that it contains the entire graph.
(a) Curve (b) Closed curve (c) Simple closed curve !
r SOLUTION
AY Ay AY ) ) )
(a) We use the parametric equations to tabulate coordinates of points
P(x, y) on C as follows.
P(a)
b) —1<t<2,—47<x <48, L i 3
P(a) = P(b) ()_21<y<42 -1 =L 0 1122
, 1=<y=<4 (Emer i B
P(a) = P(b) i x -2 -1 0 12 3 4
| y 0 -3 -1 -2 0 3 3
P(1) :
P(b) P P() . . . o
- _J____,.-* Plotting points leads to the sketch in Figure 9.2(a). The arrowheads on
- > = 2 0| e . . .
X X x T=1.zE the graph indicate the direction in which P(x, y) traces the curve as ¢
[#=Z. 5 ¥=.EBEE increases from —1 to 2.
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CHAPTER 9 Parametric Equations and Polar Coordinates

(b) We may obtain a clearer description of the graph by eliminating the
parameter. Solving the first parametric equation for ¢, we obtain 1 = 2x
Substituting this expression for ¢ in the second equation gives us
y=QGx)? -1
The graph of this equation in x and y is a parabola symmetric with respect
to the y-axis with vertex (0, —1). However, since x = 2t and it satisfies
—1 <t <2, we see that —2 < x < 4 for points (x, y) on C, and hence C
is that part of the parabola between the points (—2, 0) and (4, 3) shown in
Figure 9.2(a).
(c) We set the graphing utility to parametric mode and enter the parametric
equations. We also specify the interval for the parameter ¢ as [—1, 2]. To
select a viewing window that will contain the entire graph, we first note
that since x = 2¢, x will range from —2 to 4 as ¢ ranges from —1 to 2.
Similarly, since y = t* — 1, y has a minimum value of —1 at7 =0 and a
maximum value of 3 at ¢ = 2. Thus, the smallest viewing window that will
accommodate the entire graph is —2 < x <4, —1 <y < 3. We will use
the slightly larger viewing window shown in Figure 9.2(b).

The graphing utility may show the curve tracing out its path in the
direction indicated by the arrowheads in Figure 9.2(a). If not, we can
use the trace operation to verify that the graph begins at (-2, 0), moves
downward through the third quadrant to (0, —1), and then moves upward
through quadrants IV and I until it reaches (4, 3).

As indicated by the arrowheads in Figure 9.2(a), the point P(x, y)
traces the curve C from left to right as t increases. The parametric equa-
tions

x=-2t, y=t2—-1; =2<t<1

give us the same graph; however, as ¢ increases, P(x, y) traces the curve
from right to left. For other parametrizations, the point P(x, y) may oscil-
late back and forth as ¢ increases.

The orientation of a parametrized curve C is the direction determined
by increasing values of the parameter. We often indicate an orientation
by placing arrowheads on C as in Figure 9.2(a). If P(x, y) moves back
and forth as ¢ increases, we may place arrows alongside of C. As we
have observed, a curve may have different orientations, depending on the
parametrization.

The next example demonstrates that it is sometimes useful to eliminate
the parameter before plotting points.

EXAMPLE=2 A point moves in a plane such that its position
P(x,y) at time ¢ is given by

x =acost, y=asint; t >0,

where a > 0. Describe the motion of the point.

9.1 Parametric Equations

Figure 9.3

x =acost,y=asint;t >0

J
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P(x, y)

! A(a, 0)

Figure 9.4
(@)

=

/
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’/y -1 =2x+2)

(b)
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SOLUTION We may eliminate the parameter by rewriting the para-
metric equations as

Q=

= Ccost, Y- sint
a
and using the identity cos® ¢ + sin? 1 = 1 to obtain
x\2 v\ 2
Ao
a a

x2+y2 =a’.

or

This result shows that the point P(x, y) moves on the circle C of radius
a with center at the origin (see Figure 9.3). The point is at A(a, 0) when
t =0, at (0,a) when t = /2, at (—a, 0) when ¢t = m, at (0, —a) when
t = 3x/2, and back at A(a,0) when r = 2. Thus, P moves around C
in a counterclockwise direction, making one revolution every 2m units of
time. The orientation of C is indicated by the arrowheads in the figure.

Note that in this example we may interpret ¢ geometrically as the radian
measure of the angle generated by the line segment OP.

EXAMPLE®3 Sketch the graph of the curve C that has the
parametrization
x=-2+1, y=1+2% tinR

and indicate the orientation.

SOLUTION Toeliminate the parameter, we use the first equation to
obtain 2 = x + 2 and then substitute for #> in the second equation. Thus,

y=142(x+2).

This result is an equation of the line of slope 2 through the point (-2, 1),
as indicated by the dashes in Figure 9.4(a). However, since 2 > 0, we see
from the parametric equations for C that

x=-2+41>>-2 and y=142>>1.

Thus, the graph of C is that part of the line to the right of (—2, 1) (the
point corresponding to ¢ = 0), as shown in Figure 9.4(b). The orientation
is indicated by the arrows alongside of C. As ¢ increases in the interval
(—00, 0], P(x,y) moves down the curve toward the point (-2, 1). As ¢
increases in [0, 00), P(x, y) moves up the curve away from (-2, 1).

If a curve C is described by an equation y = f(x) for a continuous
function f, then an easy way to obtain parametric equations for C is to let

x=t, y=f,
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CHAPTER 9 Parametric Equations and Polar Coordinates

where ¢ is in the domain of f. For example, if y = x3, then parametric
equations are

x =1, y=t3; tin R.

We can use many different substitutions for x, provided that as ¢ varies
through some interval, x takes on every value in the domain of f. Thus,
the graph of y = x? is also given by

X =t1/3, y=t; tinR.
Note, however, that the parametric equations
x =sint,’ y = sinf; tinR

give only that part of the graph of y = x> between the points (—1, —1) and
{a, D).

EXAMPLE®=4 Find three parametrizations for the line of slope m
through the point (x;, y,).

SOLUTION By the point—slope form, an equation for the line is
y =y =mx —xp). |

If we let x = ¢, then y — y; = m(¢ — x,) and we obtain the parametriza-
tion

x=t, y=y, +m(—x)); tinR.

We obtain another parametrization for the line if we let x —x; =¢.In
this case, y — y; = mt, and we have

x=x,+t, y=y +mt; tinR.

As a third illustration, if we let x — x; = tan¢, then

/4 T
X =x| +tant, y =y +mtang; ) <t < 5

There are many other parametrizations for the line.

Parametric equations of the form
x =asinwt, y=bcoswyt; =0,

where a, b, w,, and w, are constants, occur in electrical theory. The vari-
ables x and y usually represent voltages or currents at time . The resulting
curve is often difficult to sketch; however, using an oscilloscope and im-
posing voltages or currents on the input terminals, we can represent the
graph, a Lissajous figure,* on the screen of the oscilloscope. Computers
are also useful in obtaining these complicated graphs.

* Jules Antoine Lissajous (1822-1890) was a French physicist known for his research in acoustics
and optics. He invented a system of optical telegraphy used during the 1871 siege of Paris.

9.1 Parametric Equations

Figure 9.5

x =sin2t,y=cost;0 <t <2m
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EXAMPLE®=5 A graph of the Lissajous figure
x =sin2¢, y=cost; 0<t<2n

is shown in Figure 9.5, with the arrowheads indicating the orientation.
Verify the orientation and find an equation in x and y for the curve.

SOLUTION Referring to the parametric equations, we see that as
t increases from O to 7/2, the point P(x, y) starts at (0, 1) and traces
the part of the curve in quadrant I (in a generally clockwise direction).
As t increases from 7/2 to 7, P(x, y) traces the part in quadrant IIT (in
a counterclockwise direction). For w <t < 37/2, we obtain the part in
quadrant IV; and 37/2 < ¢ < 27 gives us the part in quadrant II.

We may find an equation in x and y for the curve by using trigono-
metric identities and algebraic manipulations. Writing x = 2sin¢ cos ¢ and
squaring, we have

x2 = 4sin? t cos’ t,

or x2 = 4(1 — cos® t) cos’ 1.
Using y = cost gives us

x?=4(1- yz)yz.

To express y in terms of x, let us rewrite the last equation as

4y4—4y2+x2 =0

and use the quadratic formula to solve for y? as follows:
, 4xV16—16x7 117
y = 8 T2

Taking square roots, we obtain

121
YEWN T

These complicated equations should indicate the advantage of express-
ing the curve in parametric form.

A curve C is smooth if it has a parametrization x = f (1), y = g(t)
on an interval I such that the derivatives f’ and g’ are continuous and not
simultaneously zero, except possibly at endpoints of I. A curve C is piece-
wise smooth if the interval I can be partitioned into closed subintervals
with C smooth on each subinterval. The graph of a smooth curve has no
corners or cusps. The curves given in Examples 1-5 are smooth. The curve
in the next example is piecewise smooth.

EXAMPLE® 6 The curve traced by a fixed point P on the circumfer-
ence of a circle as the circle rolls along a line in a plane is called a cycloid.
Find parametric equations for a cycloid and determine the intervals on
which it is smooth.




—

Figure 9.7
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SOLUTION  Suppose the circle has radius a and that it rolls along
(and above) the x-axis in the positive direction. If one position of P is the
origin, then Figure 9.6 displays part of the curve and a possible position of
the circle.

Figure 9.6

+y

=Y

0] T 7a 271m

Let K denote the center of the circle and T the point of tangency
with the x-axis. We introduce, as a parameter ¢, the radian measure of
angle TKP. The distance that the circle has rolled is d (0, T)=at. Con-
sequently, the coordinates of K are (at, a). We set up a new rectangular
coordinate system centered at K (at, a) with the horizontal and vertical
axes designated by x” and y’, respectively. In this x’y’-coordinate system,
if P(x’, y") denotes the point P, then we have

x=at+x, y=a+y.

If, as in Figure 9.7, 6 denotes an angle in standard position on the x’ y'-
plane, then # = (37/2) — t. Hence,

’ 3 .
X' =acosf = acos 7—t = —asint

, . , (371 )
Y =asinf = asin 7—t = —acost,

and substitution in x = az +x’, y = a + y’ gives us parametric equations
for the cycloid:

x=a(t —sint), y=a(l —cost); rinR
Differentiating the parametric equations of the cycloid yields

D a1~ cost
= =a(l — cost),

dy s

— =asint,

dt

These derivatives are continuous for every ¢, but are simultancously 0 at
¢t = 27wn for every integer n. The points corresponding to t = 2mn are the
x-intercepts of the graph, and the cycloid has a cusp at each such point
(see Figure 9.6). The graph is piecewise smooth, since it is smooth on the
t-interval [27rh, 27 (n + 1)] for every integer n.

9.1 Parametric Equations

Figure 9.8
A

~_,
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If a < 0O, then the graph of x = a(t — sint), y = a(1 — cost) is the in-
verted cycloid that results if the circle of Example 6 rolls below the x-axis.
This curve has a number of important physical properties. To illustrate,
suppose that a thin wire passes through two fixed points A and B, as
shown in Figure 9.8, and that the shape of the wire can be changed by
bending it in any manner. Suppose further that a bead is allowed to slide
along the wire and the only force acting on the bead is gravity. We now
ask which of all the possible paths will allow the bead to slide from A to
B in the least amount of time. This question is the brachistochrone prob-
lem discussed in Section 7.5. It is natural to believe that the desired path
is the straight line segment from A to B; however, this is not the correct
answer. In Section 7.5, we saw that the path requiring the least amount of
time coincides with the graph of an inverted cycloid with A at the origin.
Because the velocity of the bead increases more rapidly along the cycloid
than along the line through A and B, the bead reaches B more rapidly,
even though the distance is greater.

There is another interesting property of this curve of least descent.
Suppose that A is the origin and B is the point with x-coordinate 7 |a|—
that is, the lowest point on the cycloid in the first arc to the right of A. If
the bead is released at any point between A and B, it can be shown that the
time required for the bead to reach B is always the same.

Variations of the cycloid occur in applications. For example, if a mo-
torcycle wheel rolls along a straight road, then the curve traced by a fixed
point on one of the spokes is a cycloidlike curve. In this case, the curve
does not have corners or cusps, nor does it intersect the road (the x-axis)
as does the graph of a cycloid. If the wheel of a train rolls along a railroad
track, then the curve traced by a fixed point on the circumference of the
wheel (which extends below the track) contains loops at regular intervals.
Other cycloids are defined in Exercises 33 and 34.

As another application of parametric equations, we consider how they
can be used to study projectile motion. Suppose that an object is projected
into the air with an initial horizontal velocity of h ft/sec and an initial
vertical velocity of v ft/sec. If an xy-coordinate system is set up with
the origin at the object’s initial position at time ¢t = 0, then we can find
parametric equations that describe the position of the object at subsequent
times if we assume that the only force acting on the object is the gravita-
tional attraction of the earth. (We ignore air resistance, for example.) Then
since there is no force to accelerate or decelerate the horizontal motion,
the horizontal velocity remains constant, and we have x(¢) = ht. For the
vertical motion, we have, from our discussion of free fall in Section 3.7,
y(t) = —16> 4 vt

In Chapter 11, we will see that if the object is projected into the air at
an angle of # with an initial speed of s ft/sec, then the initial horizontal and
vertical velocities are given by

h=scosf and v =ssinb.
We summarize our discussion with a slightly generalized statement of

parametric equations for the motion of a projectile acted on only by a
constant gravitational force.
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CHAPTER 9 Parametric Equations and Polar Coordinates

The equations of motion of a projectile in a plane launched from
an initial position (x,, y;) at time £ =0 with an initial horizontal
velocity 4 and an initial vertical velocity v, are

() x(6) = xy+hot, y(t) = ~Sgt* + vet + ¥y

where g is the magnitude of the assumed constant acceleration of
gravity. If the projectile is launched at an angle of elevation 6 with
an initial speed s, then

(i) hy=syc088, v,=s5,sin6.

EXAMPLE®7 A pitcher on a baseball team throws a ball to a friend
who is standing on the roof of a building 90 ft high. The pitcher stands
30 ft from the base of the building and releases the ball from a height of
8 ft with an initial horizontal velocity of 23.5 ft/sec and an initial vertical
velocity of 84.8 ft/sec. (See Figure 9.9.)

(a) Determine whether the ball will reach the top of the building.
(b) Estimate the initial speed of the ball and the angle of release.

SOLUTION
(a) The parametric equations for the motion of the ball are

x(t) =23.5t and y(t) = —161% + 84.81 + 8.

When the ball reaches the wall, x = 30 and the corresponding time T
satisfies 23.5T = 30, so

T = ﬂ ~ 1.2765957 sec.
23.5

At this time T, the y-coordinate is given by
y(T) ~ —16(1.2765957)% 4 84.8(1.2765957) + 8 ~ 90.18 ft.

Thus, since the ball will be 90.18 ft high when it reaches the building, it
will just clear the top of the building.

(b) If s is the initial speed and the ball is released at an angle of 6, then
ssinf = 84.8 and scosf = 23.5.
If we square each equation and then add them, we obtain

s2sin? 0 + 5% cos? 6 = (84.8)% + (23.5)%
s2(sin? 0 + cos? ) = 7191.04 + 552.25
5% = 7743.29
s = +/7743.29 ~ 87.99596582.

9.1

Parametric Equations
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Thus, the original speed was approximately 88 ft/sec (about 60 mi/hr). To
determine the angle 6 of release, we note that

ssing  84.8 valentl P 84.8
Toosd — 735 or, equivalently, tanf = B35

Thus, the angle of release is

" 84.8 N . R
6 = tan 5]~ 1.3 radians or about 74.5°.

We next examine an important application of parametric curves that
was first introduced by the French scientist Pierre Bézier.* Bézier curves
are special parametric curves commonly used in computer-aided design,
microcomputer drawing applications, and the mathematical representation
of different fonts for laser printers. Bézier was trying to solve a prob-
lem plaguing the designers of stamped parts such as car-body panels: The
curves they created at the drawing board did not coincide exactly with what
was produced. He wanted to devise a method to represent in a computer
“an accurate, complete and indisputable definition of freeform shapes.” He
discovered that this could be done by piecing together particular types of
cubic polynomials.

A cubic Bézier curve is specified by four control points in the plane,
Py(pys 99)» Pi(P1> 41)> Pr(py, q5), and P;(ps, q5). The curve starts at the
first point for the parameter ¢ = 0, ends at the last point for r = 1, and
roughly “heads toward” the middle points for parameter values between
0 and 1. Artists and engineering designers can move the control points to
adjust the end locations and the shape of the parametric curve until what
appears on the computer screen is the shape they want. The cubic Bézier
curve for the four control points has the following parametric equations:

x(6) = py(1 — 1> +3p;(1 = %1 + 3py(1 = D> + pyt?,

Y0 = go(1 =1’ +3q,(1 = D’ +3g,(1 = + q5t%; 0=t =1
Note that

x(0) = po(1 = 0)* +3p,(1 = 0)*- 0+ 3p,(1 — 0) - 0> + p, - 0° = p,.

Similarly, we have y(0) = g, so the curve passes through the control point
Py at t = 0. We may also compute that x(1) = p; and y(1) = g, so the
curve passes through P; at # = 1. For values of ¢ between 0 and 1, x(¢)
is a “weighted average” of the x-coordinates of all four control points and
y(t) is a weighted average of their y-coordinates. For example, at t = %,
we have

W Pot3p +3p,+ s 1\ _ 90 T34, +34, + g5
x(3) = 3 and y(3) = g :

*Pierre E. Bézier is a contemporary French scientist whose mathematical, engineering, and design
work for the Rénault automobile company beginning in the mid-1960s led to the development of
the field of computer-aided geometric design.
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In general, the cubic Bézier curve will not pass through the control points
P, and P,. The relative locations of these points, however, will determine
the shape of the Bézier curve.

EXAMPLE®8 Use agraphing utility to obtain the graph of the cubic
Bézier curve with the control points Py(32, 6), P, (85, 30), P,(6, 35), and
P;(45, 8). Set the viewing window so that the control points appear within
it and plot the control points.

SOLUTION Using the general form for the parametric equations for

the cubic Bézier curve with
p; =85 p3 =45

g, =30

P2:6
g, =35 g =38,

py=32
qdo = 6
we obtain the parametric equations for this Bézier curve:

x(t) = 32(1 — 1)> +255(1 — )% + 18(1 — 1)£> +45¢°,
y(6) = 6(1 — )3 +90(1 — )% +105(1 —1)* + 8% 0<r=<1

!

The x-coordinates of the control points range from 6 to 85, and‘fthe y-
coordinates of the control points range from 6 to 35. To ensure that all
four control points and the coordinate axes will appear on the screen, we
set the viewing window to —10 < x <90, —10 < y <50, and plot the
equations and the control points to obtain the curve shown in Figure 9.10.

Several Bézier curves can be pieced together continuously by making
the last control point on one curve the first control point on the next curve.
Piecewise parametric equations can be constructed in a similar manner.
For simplicity, we treat each piece as a separate parametric curve so that
we may use the same form (repeatedly) in a graphing utility. If we use
the four control points Py, P;, P,, and P; to determine the first piece of
the curve with parametric equations for 0 <t < 1, then control points P,
P,, Py, and Py are used for the next piece, again with 0 < ¢ < 1. Because
the fourth control point for the first piece is the first control point for the
next piece, the two pieces fit together continuously. The equations for the
second piece of the curve are

x(t) = ps(1 —1)° +3p,(1 = 1)t +3ps(1 — NE2 + pet,
y(O) = g5(1 — 0 +3q,(1 — 0 +3q5(1 — )i +q1> 0= =1.

EXAMPLE®9 Use a graphing utility to obtain the graph of the
continuous piecewise Bézier curve with the control points Py(10, 15),
P, (16, 14), P,(25,38), P;(30, 40) (repeated), P,(18,5), P5(50, 20), and
P, (16, 30). Set the viewing window so that the control points appear
within it and plot the control points.

9.1 Parametric Equations

Figure 9.11
—10<x <85 -10<y<353
Py P,

L P,
. 0 4r L
..P4
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SOLUTION Since seven control points have been specified, the
curve will have two pieces. We use the first four control points
(Py, P, Py, Py) for the first piece and the last four (P3, Py, Ps, Fy)
for the second piece. Using the general form for the parametric equations
of a cubic Bézier curve, we obtain the parametric equations:

x(1) = 10(1-— 1)* + 48(1 — )%t + 75(1 — )¢ + 3043,

¥ () = 15(1 — 1)* + 42(1 — 1)1 + 114(1 — £)r% + 4013,
and
X, (1) = 30(1 — 1)* + 54(1 — 1)t + 150(1 — 1)r* + 16¢°,

¥, (1) = 40(1 — £)> + 15(1 — 1)t + 60(1 — 1)t + 3013,

bothforO0 <t < 1.
Figure 9.11 shows a plot of the equations and the control points.

Cubic Bézier curves are often used in the design of characters (letters,
numerals, and punctuation marks) that will be printed in different font
sizes on a laser printer. Stored in the memory of the laser printer are the
control points for each character. When it needs to print a letter “A,” for
example, the printer recalls the control points for “A” and then directs a
graphing utility to plot the cubic Bézier curve with those points. Since
there are a relatively small number of control points for each character, the
memory requirements for storing the information about all the characters
on the keyboard is not large. Another advantage is that only one size for
the font need be stored in the memory of the laser printer. A simple scaling
or rotation of the control points will yield characters of different size or
rotational orientation. The general form of the cubic equations that give the
parametrization of the Bézier curves and the specific control points for a
particular character form a mathematical representation of that character.

The mathematical representation of other designs besides characters is
also given by specifying particular collections of control points. To obtain
such a mathematical representation for a given figure, we begin by sketch-
ing the figure on a sheet of rectangularly ruled graph paper, mark some
points on the figure, and then use these points as “end” control points for
a piecewise continuous sequence of Bézier curves. Other control points
needed between these “ends” will not lie on the final curve, but will “pull”
the curve in certain directions.

EXAMPLE®= 10 Use several Bézier curves to obtain a parametriza-
tion of a curve whose graph is the numeral “2.”

SOLUTION We begin with a crude drawing of the numeral “2”
on a large sheet of graph paper. We draw it in a cursive style with no
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Figure 9.12 line segments, and then subdivide the character into pieces that appear Exer. 27-28: The parametric equations specify the Exercise 33

3<x<9, —3<y<60 to be possible to obtain by a single Bézier curve. For the segments we position of.a moving point P(x, y) at time ¢. Sketch the Ay

@ have chosen, we try control points P,(40, 40), P;(48,55), P,(70,45), graph and indicate the motion of P as # increases.
P5(50,25) (repeated), P,(43, 18), P5(40,13), Pg(40,10) (repeated), 27 (a) x = cos?, y = sint; O<t<m
P, (46, 14), P8(53', 9), a.md Py(58, 10). Plotting‘ thg associated equations (b) x = sint, y =cost; O<t<m
and the control points gives us the graph shown in Figure 9.12(a). ©x =1, y o T —1<t=<1 i

28 (a) x =12, y=1-t% 0=<t<l b \
The use of a graphing utility makes it quite easy to experiment with (b) x=1-Inz, y=Ing l<t<e l 3 o

modifications in the locations of the control points until we are satisfied (€) x =cos’t, y=sin’s; 0<r<2m

(b) that the Bézier curve produced. represents the figure we have designed. If 29 Show that t
the result of the first attempt is not satisfactory, we move some control _
points and try again. Software for computer-aided geometric design allows x=uacost+h, y=bhsint+k; 0<t<2y (0] ‘;4(& 0) x
the designer to use a mouse or trackball to drag a control point from one

i part of the computer screen to another. The software then recalculates the are parametric equations of an ellipse with center (h, k)
; equations for the Bézier curves on the basis of the new coordinates of the and axes of lengths 2a and 2b. 34 If the circle C of Exercise 33 rolls on the inside of the
control points and immediately plots the graph of the new curve. 30 Show that second circle (see figure), then the curve traced by P is
a hypocycloid.
' x=asect+h, y=btani+k; (a) Show that parametric equations for this curve are

T 3 T
——<t< = =
> <t< > and 1 # 5

x = (a—b)cost+ bcos (a;bt>,

- EXERCISES 9.1 e

are parametric equations of a hyperbola with center

(h, k), transverse axis of length 2a, and conjugate axis _ b si . (a—
. =(a-—-b)sint—»b ;
of length 2b. Determine the values of ¢ for each branch. y=(a—b)sin - t); 0=ts2m
Exer. '1—24: -(a)'Find an equation (i:n xbarécli( y v&;lholie grapll: 17 x = cosht, y = sinh¢; tin R | 31 Ilt;af 1 (x> ¥)) and P,(x,, y,) are distinct points, show (b) If b= %a, show that x = acos’ 1, y = a sin’ t and
contains t.he Pomts on tl.1e curve C. (b) Sketch the grap I8 x = 3cosh, y = 2sinh1; rin R sketch the graph.
of C and indicate the orientation. ( )+ ( )"+ rin R
- =2 _1: Y= =rirx, y=U—0 Yy
| x=1—2, y=2t+3; 0<t<5 19 x =1, y=vt L; lt] =1 \ Exercise 34
21— y=1tn l<t<4 20 x=-2/1-¢%, y=r; t] <1 are parametric equations for the line / through P, and AY
’ - ’ == ’ - P,.
— 2
3 = 2 = 2 —1: — = = z — N : .
x=1"+1, y=t L 2=1=2 2l x =1, y=v 2t+1; 0=r=4 32 Describe the difference between the graph of the
4 x=t3+1, y:t3— 1 —2<t<? 22 x = 2t, y=8t3; -1 <<l hyperbola (xz/az)—(yz/b2)= 1 and the graph of
5 x =41 =5, y=2+3; tinR 23 x = (t+ 1)°, y:(t+2)2; 0<r<?
X ) . x =acosht, y=bsinht; ¢rinR.
6 x=1, y =1t tin R 24 x =tant, y=1; —n/2 <t <m/2
7 x=¢, y= eVZ’; tinR (Hint: Use Theorem (6.42).)
8 x = /1, y=3t+4; t>0 Exer. 25-26: Curves C;, C,, C;, and C, are given 33 A circle C of radius b rolls on the outside of the circle
9 x—2sins _ 3cost: 0<i<2 parametrically, for ¢ in R. Sketch their graphs and x*+y?=a% and b < a. Let P be a fixed point on C,
r=zsmi,  y = 5008k == indicate orientations. and let the initial position of P be A(a,0), as shown 4 .
10 x —cost—2, y=sint+3; 0<t<2y 2 C: g y=1 in the figure. If the parameter ¢ is the angle from the o P A(@,0) =
N x = sect . /2 <t <n)2 1 4 2 | positive x-axis to the line segment from O to the center
- ’ y= ’ Crx=t oy y=t ' | of C, show that parametric equations for the curve traced
12 x = cos2t, y = sint; —w <t<m Cy:x=sin"¢, y=sint I by P (an epicycloid) are 35 If b = 1a in Exercise 33, find the parametric equations
Cp: x=é* y=—¢' - . K
13 x =12, y=2Int; £=0 4 , ath for the epicycloid and sketch the graph.
14 5 — cos’t y = sin’1: 0<t<2r 26 C:x=t, y=1-t¢ x = (a+b)cost — bcos < f) , 36 The radius of circle B is one third that of circle A. How
s == ) C,x=1- P, y=1? many revolutions will circle B make as it rolls around
X = sinf, =csct; 0<t<m/2 2 ) i il i i i int? (Hint:
Y Cy:x=cos™t, y=sin"t y=(a+h)sinf — bsin a—+ bt . 0<1<om 01rcle.A until it reaches its starting point? (Hinz: Use
16 x =¢, y=¢e'; tinR Cpox=Int—1, y=1+t—Int; t>0 Exercise 35.)



800

37 If a string is unwound from around a circle of radius
a and is kept tight in the plane of the circle, then a
fixed point P on the string will trace a curve called the
involute of the circle. Let the circle be chosen as in the
figure. If the parameter ¢ is the measure of the indicated
angle and the initial position of P is A(a, 0), show that
parametric equations for the involute are

x =a(cost +tsint), y=a(sint —1cost).

Exercise 37

=Y

ol I A(a, 0)

38 Generalize the cycloid of Example 6 to the case where
P is any point on a fixed line through the center C of the
circle. If b = d(C, P), show that

x =at —bsint, y=a —bcost.

Sketch a typical graph if b <a (a curtate cycloid)
and if b > a (a prolate cycloid). The term trochoid is
sometimes used for either of these curves. .

39 Refer to Example 5.

(a) Describe the Lissajous figure given by f(t) =
asinwt and g(t) = bcoswt fort > 0 and a # b.
(b) Suppose f(¢) = asinw;t and g(t) = bsinw,t,
where w; and w, are positive rational numbers,
and write w,/w, as m/n for positive integers m
and n. Show that if p = 27n/w,, then f(r + p) =
f () and g(t + p) = g(¢). Conclude that the curve

retraces itself every p units of time.

40 Shown in the figure is the Lissajous figure given by
x =2sin3¢, y=3sinl.5t; ¢t>0.

(a) Find the period of the figure—that is, the length of
the smallest ¢-interval that traces the curve.

(b) Find the maximum distance from the origin to a
point on the graph.

CHAPTER 9 Parametric Equations and Polar Coordinates

Exercise 40

LAY

— P-—i—!—’;
| c | Exer. 41-44: Graph the curve.
41 x=3sin5t, y:3cosst;
0<t<2m

42 x =8cost — 2cos4t, y = 8sint — 2sin4t;

0<rtr<2m
43 x = 3t — 2sint, y=3—2cost;
—-8<1r<8
44 x =2t — 3sint, y =2—3cost;
—8<r<8

Exer. 45-48: Graph the given curves on the same
coordinate axes and describe the shape of the resulting
figure.

. ) - _ T
45 C;: x =2sin3t, y = 3cos 2t; T_t_a
1 3 17 3 0<s<2
C22x=ZCOSt+Z,y=ZSIHI+§, <t <2m
1 3 1. 3 0<t<2
C3:x:ZCOSt_Z’y:ZS1nt,+§’ <t <2mw
C 3 t L t 0<t<2m
Tx == , y = —sint; =<
4 X 4cos y 2
C L t L t+3 T<t<2m
X = -cost, y= —sin - <
St x 4co y g 1
3 T
46 C1:x=§cost+1,y:smt—1, Tft_—z—
3 . _ - _ _T
Cz:xzicost—i—l,y:slnt—t—l, T_t_i
) - _ T
Cy:x=1,y=2tant; T_t_z
T
47 CI:x:tant,y=3tant; OStSZ
T
C,: x =1+tant, y =3 —3tans; Oftfz
) 1 3 0 < T
C3.x=§—|—tant,y=§, _I_Z

Exercises 9.1

48 C|: x =1+4cost, y=1+sint; 7/3<t<2mw

Cy:x=1+tant, y=1, 05152

49 If a tock is thrown from a point 3 ft above the ground
with a horizontal velocity of 90 ft/sec and a vertical
velocity of 47 ft/sec, how far away will it land if nothing
is obstructing its path? If there is a 7-ft high fence 9 ft in
front of you, will the rock sail over the fence?

50 A basketball player shoots a ball with a speed of 25
ft/sec from a point 15 ft horizontally away from the
center of the basket. The basket is 10 ft above the floor
and the player releases the ball from a height of 8 ft. At
what angle should the player shoot the ball?

51 If a projectile is launched at an angle @ to the horizontal,
show that its horizontal range is 4M/(tan0), where M
is the maximum height reached by the projectile.

52 Anne kicks a soccer ball toward her brother Sasha with
an initial velocity of 48 ft/sec at an angle of elevation of
/6. At the moment of the kick, he is 90 ft away and
starts running to meet the ball. Sasha’s top speed is 20
ft/sec.

(a) Can Sasha reach the ball before it hits the ground?

(b) If Sasha is 5 ft 6 in. tall, can he reach the ball in time
to bounce it off the top of his head?

(c) For what range of angles can Anne kick the ball so
that Sasha has time to hit the ball with his head?

Exer. 53 -58: Plot the graph of the continuous piecewise
Bézier curve for the given control points. Set the viewing
window so that all control points appear within the

window. If possible, use equally scaled axes and also plot
the control points. For the first piece of each curve, use
control points Py, P,, P,,and P;. If more points are given,
use P;, P,, Pg, and P for the second piece and Py, Py, Py,
and P, for the third piece.

53 Fy(10, 2), P,(2, 60), P,(100, 56), and Py (110, 10)
54 Py(1, 32), P;(257 85), P,(30, 1), and Py (3, 40)

55 Py(5, 10), P, (4, 16), P,(28, 25), P;(30, 30),
P,(1, 18), P5(18, 40), and P,(20, 16)

56 P,(60, 40), P, (50, 30), P,(43, 10), P;(55, 10),
P,(65, 10), P(68, 25), and P,(50, 22)

57 Py(30, 30), P, (58, 10), P,(12, 12), P;(45, 10)
P,(40, 5), P5(66, 31), and P,(25, 30)

58 Py (48, 20), P;(20, 15), P,(20, 50), P, (48, 45),
P,(28, 47), P5(28, 18), (48, 20), P, (48, 36),
Py(52, 32), and Py(40, 32)

s

E| Exer. 59-60: Experiment with the locations for control

points to obtain piecewise Bézier curves approximating
the given shape or object. Give the final control points
chosen, and sketch the resulting parametric curve.

59 Find a piecewise Bézier curve with two components that
approximates the letter “S” in a simple font. Improve
the sketch by using a piecewise Bézier curve with three
components.

60 Find a piecewise Bézier curve that approximates the
Gateway Arch to the West. (See Exercise 35 of Section
6.8.)
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Mathematicians and Their Times

AUGUSTIN-LOUIS CAUCHY

THE PEOPLE OF PARIS rose on July 14, 1789, to storm the Bastille and
begin the struggle and violence of the French Revolution. The Revolution
promised a new era of democracy, liberty, and equality to replace the
supreme power of the king. It was tarnished by the Reign of Terror begun
in 1793 by the Committee of Public Safety, which swept hundreds to
the guillotine in its zeal to protect France’s

internal security.

Among those in gravest danger were
government officials suspected of loyalty
to the king. Many fled to small villages to
find safety. One such man was the father
of Augustin-Louis Cauchy. A child of the
Revolution, Cauchy was born on August
21, 1789. His earliest years were spent in
fear and exile. Tumultuous political events
continued to dominate France for most of his life: revolution in 1789,
the rise and fall of Napoleon, the restoration of the Bourbon kings in
1814, more revolutions in 1830 and 1848, the overthrow of the second
republic and establishment of the second empire by Napoleon ill.

Cauchy’s conservative political and religious attitudes put him at
odds with many of his fellow scientists. His detractors called him self-
righteous and arrogant, a narrow-minded bigot, and a smug hypocrite.
His defenders regarded him as a pious believer in traditional religion,
highly principled, and sincere but naive in his politics. All agree now,
however, that Cauchy was one of the most influential mathematicians of
the nineteenth century.

Cauchy’s specific contributions to pure and applied mathematics
were both deep and broad. He essentially created, for example, both
the theory of functions of a complex variable and finite group theory.
Even more important was his lead in raising the standards of rigor.
Both Gauss and Cauchy were the “apostles of rigor” who transformed
mathematics. “It is difficult to find an adequate simile for the magnitude
of this advance,” wrote E. T. Bell. “Suppose that for centuries an entire
people had been worshipping false gods and that suddenly their error is
revealed to them.” Although Gauss preceded him, Cauchy had greater

9.2 Arc Length and Surface Area

9.2

Theorem 9.4

impact because of his gift for effective teaching, and his many textbooks
and research papers that showed how calculus could be developed in a-
rigorous manner.

Cauchy died unexpectedly on May 23, 1857. Although estranged
from many colleagues who charged him with judging scientists more on
the basis of their political and religious views than on their scientific
achievements, Cauchy was actively planning new charitable works. His
last words were addressed to the Archbishop of Paris: “Men pass away,
but their deeds abide.”

ARC LENGTH AND SURFACE AREA

If a curve is described by an equation of the form y = f(x), where f is
a differentiable function, we know from earlier chapters how to find the
slope of the tangent line at a point on the curve, the length of a segment of
the curve, and the area of the surface of revolution obtained by revolving
the curve about an axis. In this section, we discuss how to find these
quantities when the curve is described by parametric equations.

The curve C given parametrically by

x=2, y=t*—-1;, —-1<t<2

can also be represented by an equation of the form y = k(x), where k is
a function defined on a suitable interval. In Example 1 of Section 9.1, we
eliminated the parameter ¢, obtaining

y=k(x)=4x*~1 for —2<x<4.
The slope of the tangent line at any point P(x, y) on C is
K(x)=1x, or K(x) =3Q)=t.

Since it is often difficult to eliminate a parameter, we next derive a formula
that can be used to find the slope directly from the parametric equations.

If a smooth curve C is given parametrically by x = (1), y = g(2),
then the slope dy/dx of the tangent line to C at P(x, y) is
dy _ dy/dt

dx
=t ided — 0.
dx  dx/dt provide dt 70
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Figure 9.13
x=£—3t,y=1*=5t—1;tinR

CHAPTER 9 Parametric Equations and Polar Coordinates

PROOF If dx/dt #0 at x =, then, since f is continuous at c, it
follows from the intermediate value theorem (1.26) that dx/dt > O or
dx/dt < 0 throughout an interval [a, b], with a < ¢ < b. Applying Theo-
rem (6.6) or the analogous result for decreasing functions, we know that
f has an inverse function f ~1, and we may consider t = f ~“1(x) for x
in [ f(a), f(b)]. Applying the chain rule to y = g(¢) and t = f_l(x), we
obtain

dy dydt dy/dt

dx  dtdx  dx/dt’

where the last equality follows from Corollary (6.8). =

EXAMPLE®1 Let C be the curve with parametrization
x=2t, y=t>—1; —1<t<2.

Find the slopes of the tangent line and normal line to C at P(x, y).

SOLUTION The curve C was considered in Example 1 of Section
9.1 (see Figure 9.2). Using Theorem (9.4) with x = 27 and y = 12— 1, we
find that the slope of the tangent line at P(x, y) is

dy dy/dt 2

dx  dx/dt 2

This result agrees with that of the discussion at the beginning of this sec-
tion, where we used the form y = k(x) to show that m = %x =1.

The slope of the normal line is the negative reciprocal —1/1, provided

t#0.

EXAMPLE =2 Let C be the curve with parametrization
x =1 =3 y=t2—5t——1; tin R.
(a) Find an equation of the tangent line to C at the point corresponding to
1 =2.
(b) For what values of ¢ is the tangent line horizontal or vertical?

SOLUTION

(a) A portion of the graph of C is sketched in Figure 9.13, where we
have also plotted several points and indicated the orientation. Using the
parametric equations for C, we find that the point corresponding to t = 2
is (2, —7). By Theorem (9.4),

dy —dy/dt 2t-5

dx  dx/dt 323
The slope m of the tangent line at (2, —7) is

dy 22) -5 1

m= — = =—
dx |,_,

T325)-3 9
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Second Derivative
in Parametric Form 9.5

Figure 9.14
x=e¢l,y=e";1inR

AY

Applying the point—slope form, we obtain an equation of the tangent line:
y+7=-5(x—2), or x+9y=—61

(b) The tangent line is horizontal if dy/dx = O—that is, if 2t — 5 =0, or
t9 73% The corresponding point on C is (&, -—%Tg), as shown in Figure

The tangent line is vertical if 3t> — 3 = 0. Thus, there are vertical
tangent lines at the points corresponding to t = 1 and t = —1—that is, at

(—2,5) and (2, 5).

If a curve C is parametrized by x = f(z), y = g(t) and if ¥ is a
differentiable function of ¢, we can find dzy/ dx? by applying Theorem
(9.4) to y’ as follows.

It is important to observe that
d*y  d*y/dr®
dx* " d’x/dt*

EXAMPLE®3 Let C be the curve with parametrization
x=ef, y=¢e*; tinR.
(a) Sketch the graph of C and indicate the orientation.

(b) Use (9.4) and (9.5) to find dy/dx and d’y/dx>.

(c) Find a function k that has the same graph as C, and use k' (x) and k¥ (x)
to check the answers to part (b).

(d) Discuss the concavity of C.

SOLUTION

(a) To help us sketch the graph, let us first eliminate the parameter. Us-
ingx = e~ = 1/¢', we see that ¢’ = 1/x. Substituting in y = e* = (¢')?

gives us
_ (1 2_ 1
y= =

Remembering that x = e~" > 0 leads to the graph in Figure 9.14. Note that
the point (1, 1) corresponds to r = 0. If ¢ increases in (—oo, 0], the point
P(x, y) approaches (1, 1) from the right, as indicated by the arrowhead. If
t increases in [0, 00), P(x, y) moves up the curve, approaching the y-axis.
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Figure 9.15

|
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(b) By (9.4) and (9.5),
2
f_ dy _ dy/dt _ 2e4 o
dx  dx/dt —e!
d’y dy _dy'/dr _ —6e™ e

dx®  dx  dx/dt  —e!
(c) From part (a), a function k that has the same graph as C is given by

-2

1
k(x)=— =x for x > 0.
x

Differentiating twice yields
K(x)=—2x" = =2(e) ™ = —2¢*
K'(x) = 6x7* = 6(e™) ™" = 6e™,
which is in agreement with part (b).

(d) Since d?y/ dx? = 6¢* > 0 for every ¢, the curve C is concave upward
at every point.

If a curve C is the graph of y = f(x) and the function f is smooth on
[a, b], then the length of C is given by [ ab V1+[f (x)]2 dx (see Definition
(5.14)). We shall next obtain a formula for finding lengths of parametrized

curves.
Suppose a smooth curve C is given parametrically by

x=f@), y=g@); a<t<bh.

Furthermore, suppose C does not intersect itself—that is, different values
of ¢ between a and b determine different points on C. Consider a partition
Pofla,blgivenbya =1, <t; <ty <--- <t =b. LetAf, =1 —f_,
and let P, = (f(z,), g(%,)) be the point on C that corresponds to #,. If
d(P,_,, P,) is the length of the line segment P, _, P, then the length L,
of the broken line in Figure 9.15 is

Lp=Y d(P_,, Py
k=1

As in Section 5.5, we define

L= lim L
1Pl P

and call L the length of C from P, to P, if for every € > O there exists a

§ > 0 such that |LP — L| < e for every partition P with || P|| < é.
By the distance formula,

AP P =VIF @) — [P +18(t) — gt,_)T

By the mean value theorem (3.12), there exist numbers w, and z; in the
open interval (,_, t;) such that

£ — f ) = Fw)ar,
g(tk) - g(tk_1) = g'(zk)Atk.

9.2 Arc Length and Surface Area
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Substituting these in the formula for d(P,_,, P,) and removing the com-
mon factor (Atk)2 from the radicand gives us

d(P_y, B) = VIf (Wl + ¢ )P At,.

Consequently,

n oo
L= lim L,= lim \/ /w 2+ / zAl’
fP|—=0 P | P|l—0 ; [f ( k)] [g (Zk)] k>
provided the limit exists. If w , = , for every k, then the sums are Riemann

sums for the function defined by V[ f(1)]* + [g'(t)]_z. The limit of these
sums is

b

L= f VIFOP + 18 0P dr.
a

The limit exists even if w; # z;; however, the proof requires advanced

methods and is omitted. The next theorem summarizes this discussion.

If a smooth curve C is given parametrically by x = f(2), y = g(1);
a <t < b,andif C does not intersect itself, except possibly fort = g
and ¢t = b, then the length L of C is

b b ( d 7 d’ o
L= f JIFOP + 18R dr = f \/(Zz‘?) +(71) "

The integral formula in Theorem (9.6) is not necessarily true if C
intersects itself. For example, if C has the parametrization x = cos¢, y =
sint; 0 <t < 4m, then the graph is a unit circle with center at the origin. If
t varies from 0 to 4, the circle is traced twice and hence intersects itself
infinitely many times. If we use Theorem (9.6) with a = 0 and b = 47,
we obtain the incorrect value 47 for the length of C. The correct value
2m can be obtained by using the z-interval [0, 27r]. Note that in this case
the curve intersects itself only at the points corresponding to t = 0 and
t = 2m, which is allowable by the theorem.

If a curve C is given by y = k(x), with k" continuous on [a, b], then
parametric equations for C are

x=t, y=k(t), a<t<h.

In this case,

dx dy

— =1 =K = / , dl’ =d s

7 , it k() =k (x) %
and from Theorem (9.6),

b pe—————
L=f V14 [K(x)] dx.

a

This result agrees with the arc length formula given in Definition (5.14).
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EXAMPLE =4 Find the length of one arch of the cycloid that has the
parametrization

x=¢t—sint, y=1—cost; tinR.

SOLUTION The graph has the shape illustrated in Figure 9.6. The
radius a of the circle is 1. One arch is obtained if ¢ varies from 0 to 27 .
Applying Theorem (9.6) yields

2w g
L= f ‘/(1 —cost)? + (sinz)? dr
0

27-[ -
=f \/1—2cost+cos2t+sin2tdt.
0

Since cos®t + sin’ ¢ = 1, the integrand reduces to

V2 =2cost = 21— cost.
2
Thus, L=| ~2J1=costdt.

0
By a half-angle formula, sin’ %t = %(1 — cost), or, equivalently,
1 —cost = 2sin’ %t.
Hence, J1—cost = \/2 sin’ %t = x/i|sin %t| .
The absolute value sign may be deleted, since if 0 < ¢ < 27, then we have

0< %t < v and hence sin %t > (. Consequently,

2T 2
L= «/Eﬁsin%tdt=2f sin%tdt
0 0

= —4fcos L] = —4(-1-1) =38,

To remember Theorem (9.6), recall that if ds is the differential of arc
length, then, by Theorem (5.17),

(ds)? = (dx)? + (dy)>.

Assuming that ds and dt are positive, we have the following,

Parametric Differential
of Arc Length 9.7

e 2 (& ‘_"X)z
ds =/ (dx)* + (dy) _\/(dt) +(dt dt

Using (9.7), we can rewrite the formula for arc length in Theorem (9.6)

as t=b
L= f ds.
t=a

The limits of integration specify that the independent variable is ¢, not s

9.2 Arc Length and Surface Area 809

Figure 9.16 If agfunction S is smooth and nonnegative for a < x < b, then, by
A Definition (5.19), the area S of the surface that is generated by revolving
ds & the graph of y = f(x) about the x-axis (see Figure 9.16) is given by
x=h
S= f 2y ds,
X=a

where ds. = \f'fl +1f ’(x)]2 dx. We can regard 2wy ds as the surface area
of a frustum of a cone of slant height ds and average radius y (see (5.18)).
If a curve C is given parametrically by x = f(t), y =g(t);a <t <b
and if g(r) > O throughout [a, b], we can use an argument similar to that
given in Section 5.5 to show that the area of the surface generated by re-
volving C about the y-axisis S = f:ab 2wy ds, where ds is the parametric
differential of arc length (9.7). Let us state this for reference as follows.

Theorem 9.8
Let a smooth curve C be given by x = f(t), y=g(t);a <t <b,

and suppose C does not intersect itself, except possibly at the point
corresponding tof = g and t = . If g(¢) > 0 throughout |a, b], then
the area S of the surface of revolution obtained by revolving C about
the x-axis is

f=h b dx b1 dy 2
E 2ayds = | 2ng(t — — | dr.
s=]_ =] ”g“\/(dr) +(@)

The formula for S in Theorem (9.8) can be extended to the case in
which y = g(¢) is negative for some ¢ in [a, b] by replacing the variable y
that precedes ds by |y/|.

If the curve C in Theorem (9.8) is revolved about the y-axis and if
x = f(t) > 0fora <t < b (see Figure 9.17), then

1=b b .'J dx\? dy\?
S=ft=a 27 x ds :L 27'tf(t)v' (E) + <E> dt.

In this case, we may regard 27 x ds as the surface area of a frustum of a
cone of slant height ds and average radius x.

Figure 9.17

EXAMPLE =5  Verify that the surface area of a sphere of radius a is

Ama?.

SOLUTION If Cis the upper half of the circle x> + y?> = a2, then

the spherical surface may be obtained by revolving C about the x-axis.
Parametric equations for C are

x =acost, y=asint; 0<t<um.

Applying Theorem (9.8) and using the identity sin®t +cos”t = 1, we

have
T

% o
S= f 2ma sintv’fa2 sin®f + a® cos® t dt = 2ma® f sin ¢ dt
0 0
= —2ma’[cos thy = —27wa’[-1—-1] = 4nd.
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37 x =e'sint, y =é cost; O0<t<mw /2 E 43 Approximate the arc length for the Bézier curve in
- EXERCISES 9.2 38 x =32, y =2 0<1< E)gerc;ise 5.3 of Section 9.1. Approximate the length of
S == the piecewise linear curve made up of the line segments
|Z| Exer. 39-40: Use Simpson’s rule, with n=2, to from P, to Py, from P, to P,, and from P, to P;.
. . approximate the area of the surface generated b Compare the two lengths. "

Exer. 1-8: Find the slopes of the tangent line and the 20 x = Ssin 3, y rg}:)lving e curre b O ivenuaxis 8 y ' N . .
normal line at the point on the curve that corresponds to y = 4sin2s g ' [c] 44 Work Exercise 43 for the Bézier curve in Exercise 54
f=1. 39 x =cos(t?), y=sin?s; 0<t<1; thex-axis of Section 9.1. Make a conjecture about a general result

concerning these two lengths.

l x=02+1, y=12-1 -2<t<2 J 40 x=1>+2, y=1t*% 0<r<]I; the y-axis

2 x=0+ 1, y= 23— 1; —-2<t<2 41 Prove that the tangent line at the initial control point P,
) . . . on any Bézier curve will pass through the second control
3x=4"—-5 y=2+3 tinR . point P,.
3 2, ;
4x=r, y=1r; tinR 42 Prove that the tangent line at the final control point P,
5 x =é, y= e ; tinR on any Bézier curve will pass through the third control
int P,.

6 x=4/71, y=3t+4 120 point P,

7 x = 2sint, y=23cost; 0<r<2m

8 x=cost—2, y=sint+3 0=t=2n Exer. 21 - 26: Find the length of the curve.

Exer. 9-10: Le? C be t.he curve vyith the given p'flrame- 2 x=5 t2, y=2 t3; 0<r<1 1
trization, for ¢ in R. Find the points on C at which the i 9 3 POLAR COORDINATES
slope of the tangent line is m. 22 x =3¢, y=2 / ; 0<t<4
3 2 ) _ _ — i — SRR . . . s . .

9 x=—1t’, y=-61"—18t; m=2 23 x =’ cost, y=e smi; O0<t<n/2 ! B PN MM TP The polar coordinate system, which we discuss in this section, provides
10 x =241, y=52—3; m=4a 24 x = cos2t, y = sin?1; O<t<n a useful alternative to the rectangular coordinate system in investigating
Exer. 11— 18: (a) Find the points on the curve C at which 25 x =tcost —sint, y=tsint+cost; 0 <t <m/2 P lani: curves, particularly circles, ellipses, spirals, and other curves with
the tangent line is either horizontal or vertical. (b) Find 3 3 0<t<n/2 similar symmetries. .
dy/ds”. (c) Sketch the graph of C. 26 x = cos’ ¢, y=sint; =t=mw In a rectangular coordinate system, the ordered pair (a, b) denotes the

X 5 . Figure 9.18 point whose directed distances from the x- and y-axes are b and a, respec-

I x =4, y=t —12t; tinR Exer. 27-28: Use Simpson’s rule, with n=3, to P(r, 6) tively. Another method for representing points is to use polar coordinates.

12 x=1—4, y=t*—4;, +tinR approximate the length of the curve. » We begin with a fixed point O (the origin, or pole) and a directed half-line

. §

13 x=£2341, y=r-21; tinR 27 x = 2cost, y = 3sint; 0<t<2m / (the polar axis) with endpoint O. Next we consider any point P in the

i ) <1 ¥ plane different from O. If, as illustrated in Figure 9.18, r = d(O, P) and

14 x=12r—13, y=¢*—51; tinR 28 x =41 —1, y =2 =r= i 6 denotes the measure of any angle determined by the polar axis and OP,

I5 x =32 =61, y=/i: t>0 9 then r and 6 are polar coordinates of P, and the symbols (r, 8) or P(r, 6)

, ' , B Exer. 29— 34: Find the area of the surface generated by 0 »= are used to denote P. As usual, 0 is considered positive if the angle is

16 x = /1, y=Jt—1 tinR revolving the curve about the x-axis. Pole Polar axis  seperated by a counterclockwise rotation of the polar axis and negative

17 x=cos’s, y=sinis; 0<t<2m — _— 0<i<4 g) rthee rotation is clockwise. Either radian or degree measure may be used
18 x = cosht, = sinh¢; tin R { . . . .

X = coS8 y ) v 30 x =4, y=1t% i<r=<2 The polar coordinates of a point are not unique. For example, (3, 7/4),
Exer. 19-20: Shown is a Lissajous figure (see Exegmpl'e 30 5 =2 f_ L t3 0<1<1 (3,97/4), and (3, —77/4) all represent the same point (see Figure 9.19).
5 of Section 9.1). Determine where the tangent line is r=r y= ===
horizontal or vertical. 32 x=4241, y=3-2 —2<1<0 .

— 44j Fi 9.19
19 x—‘2‘31n23’v Ay 33 x=r—sint, y=1—cost; 0<t<2m ‘gure . . \
y = 2cos 3t 4 i L _m _3 27 )
S _1P el 1022 | P(3, 4) P(3, 4> P<3, 4) P< 3, 4) P<—3, _T)
il | ; /,’ //ﬁ [ ®
\\/ /
o K ] Exer. 35-38: Find the area of the surface generated by /¢< T / /%2/( 5777
T revolving the curve about the y-axis. 4 > d - > . 1)
1/2 1,2, -1 0 0./ u o G
1 35 x=4tY", y=g3t"4t7; 1<1<4 - Nk S 3w
36 x =31, y=t+1; 0<t<5 4 4 4
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Figure 9.20 We shall also allow 7 to be negative. In this case, instead of measuring || The proof that the graph of » = 4sin# is a circle is given in Example
units along the terminal side of the angle 6, we measure along the half-line 6. Additional points obtained by letting 6 vary from 7 to 27 lie on the
(@ 0) o with endpoint O that has direction opposite that of the terminal side. The same circle. For example, the solution (-2, 77/6) gives us the same point
\ points corresponding to the pairs (—3, 5m/4) and (-3, —37/4) are also as 2,7/ 6); the point corresponding to (—242, 5m/4) is the same as that
[ \<ﬁ\ plotted in Figure 9.19. . obtained from (2+/2, 7/4); and so on. If we let # increase through all
|| 0 » = We agree that the pole O has polar coordinates (0, §) for any 6. An real numbers, we obtain the same points again and again because of the
(a, 0) assignment of ordered pairs of the form (r, 6) to points in a plane is a periodicity of the sine function.
polar coordinate system, and the plane is an ro-plane. .
\"\ / A polar equation is an equation in r and 6. A solution of a polar ‘
~— equation is an ordered pair (a, b) that leads to equality if a is substituted .
for r and b for 8. The graph of a polar equation is the set of all points (in 5 _’f_gg:’; E®2 Sketch the graph of the polar equation r=
an r6-plane) that correspond to the solutions. The simplest polar equations ’
are r = a and 0 = a, where a is a nonzero real number. Since the solutions . . )
of the polar equation = a are of the form (a, 0) for any angle 0, it follows S O. LUTION Smce the cosine function decreases fr_o m 1 to N Daso
! . . : varies from 0 to , it follows that r decreases from 4 to 0 in this 8-interval.
. that the graph is a circle of radius |a| with center at the pole. A graph for The following table exhibit luti M
Figure 9.21 a > 0 is sketched in Figure 9.20. The same graph is obtained for r = —a. . g & SAIDILS S0ME SOMHONS of r =2+ 2cosb, together
0=a/ The advantages of using polar coordinates to represent naturally occur- with one-decimal-place approximations to r.
g gp p y
% a) ring curves is already becoming apparent. In the xy-coordinate system, the
equation for the circle of radius a with center at the origin is a quadratic I — — —
expression in both variables, X2+ y2 =a* In polar coordinates, we have 9 ) T T T T 2_” 3 5_” p
A\a radians one of the simplest possible equations, a variable equals a constant, for the | 6 4 3.2 3 4 6
= > same circle. I J 4 243 2442 3 2 1 2-42 2-3 0
/ The solut1on§ of the polar equation 0= a are of the form (7, a) _for any i | » (approx) @ 4 3.7 34 3 2 1 o 03 0
' real number r. Since the (angle) coordinate g is constant, the graph is a line |
/ through the origin, as illustrated in Figure 9.21 for the case 0 < a < 7/2. = === =
In the following examples, we obtain the graphs of polar equations by
plotting points. As you proceed through this section, you should try to Figure 9.23 Plotting points in an r@-plane leads to the upper half of the graph sketched
recognize forms of polar equations so that you will be able to sketch their r=2+2cos6 in Figure 9.23. (We have used polar coordinate graph paper, which displays
graphs by plotting few, if any, points. . lines through O at various angles and concentric circles with centers at the
33 pole.) '
EXAMPLE = | Sketch the graph of the polar equation r = 4sin6. T\ ‘,‘/T:_ y If § increases from  to 2, then cosé increases from —1 to 1 and,
Sm_ ///(\\/» a cgnsequeEﬂ)l/, r increases from 0O to 4. Plotting points for 7 <6 < 2x
SOLUTION The following table displays some solutions of the 6_ 7 ‘“/{Kfﬂ: glveilghust © owerllil alf ofbthebgrz}phab . .
equation. We have included a third row in the table that contains one- _Hl-!"“‘f-a,f;;g‘“ for 6 e same graph may be obtained by taking other intervals of length 27
decimal-place approximations to r. G o s = )
AR
N @ %
- 55 o
Figure 9.22 o 0o I T T w 2r 3m 5m . XN The heart-shaped graph in Example 2 is a cardioid. In general, the
6 4 3 2 3 4 6 sm H/\T graph of any of the following polar equations, with a # 0, is a cardioid:
U6 0 e | e Ar
(2v3.Z) BN 0 2 V2 23 4 23 22 2 0 ![ 3 r=a(l4cosf), r=a(l+sinb),
(2\[2, %ﬂ) r (approx.) 0 2 28 34 4 34 28 2 0 r=a(l — cos8), r =a(l —sin8)

The points in an r#-plane that correspond to the pairs in the table
appear to lie on a circle of radius 2, and we draw the graph accordingly
(see Figure 9.22). As an aid to plotting points, we have extended the polar
axis in the negative direction and introduced a vertical line through the
pole.

If @ and b are not zero, then the graphs of the following polar equations
are limacons:

r=a+bcosb, r=a+bsinb

Note that the special limagons in which |a| = |b| are cardioids. Some
limagons contain a loop, as shown in the next example.
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EXAMPLE=3 Sketch the graph of the polar equation r = a graph that consists of a number of loops through the origin. If n is even,
2 4 4cosd. there are 2n loops, and if n is odd, there are n loops (see Exercises 15-18).

The graph of the polar equation » = a for any nonzero real number
a is a spiral of Archimedes. The case a = 1 is considered in the next

CHAPTER 9 Parametric Equations and Polar Coordinates

SOLUTION Coordinates of some points in an r8-plane that corre-

spond to 0 < 6 < x are listed in the following table. example.
— — - N Figure 9.26
. . x - r 7 o 3 - EXAMPLE®=5 Sketch the graph of the polar equation r =6 for
| 6 i 3 2 3 4 c oz 0.
—_— — = —— i 4+
RS 6 2+ 2*@ 2+2v2 4 2 0 2 _2_‘/5 2-2v/3 2 r=9 S.O LUTION The graph consists of all points that have polar coor-
r(approx) 6 54 48 4 2 0 —0.8 14 =2 y 5o+ dinates of the form (c, c¢) for every real number ¢ > 0. Thus, the graph
_ | — ] contains the points (0, 0), (7r/2, /2), (w, 7), and s0 on. As 6 increases,
=0 > r increases at the same rate, and the spiral winds around the origin in a

counterclockwise direction, intersecting the polar axis at 0, 2, 4m, ..., as

I 1 1l E\ Il .
1 T | = I L
Mcos 6

Y

Note that » = 0 at & = 27/3. The values of r are negative if 27/3 < 6 <
7, and this leads to the lower half of the small loop in Figure 9.24. Letting
6 range from 7 to 27 gives us the upper half of the small loop and the
lower half of the large loop.

EXAMPLE®=4 Sketch the graph of the polar equation r = a $in 26
fora > 0.

SOLUTION Instead of tabulating solutions, let us reason as follows.
If 6 increases from O to /4, then 26 varies from O to /2 and hence
sin 20 increases from O to 1. It follows that r increases from O to a in
the G-interval [0, z/4]. If we next let § increase from 7/4 to /2, then
26 changes from 7/2 to 7w and hence sin26 decreases from 1 to 0. Thus,
r decreases from a to O in the @-interval [7/4, w/2]. The corresponding
points on the graph constitute the first-quadrant loop illustrated in Figure
9.25. Note that the point P(r, ) traces the loop in a counterclockwise
direction (indicated by the arrows) as # increases from O to /2.

If 7/2 <60 < m, then w < 20 < 2x and, therefore, r = asin26 < 0.
Thus, if 7/2 < 6 < 7, then r is negative and the points P(r,0) are in
the fourth quadrant. If 6 increases from /2 to 7, then we can show, by
plotting points, that P(r, §) traces (in a counterclockwise direction) the
loop shown in the fourth quadrant.

Similarly, forw < 8 < 37/2 we get the loop in the third quadrant, and
for 37/2 < 6 < 27 we get the loop in the second quadrant. Both loops are
traced in a counterclockwise direction as 6 increases. You should verify
these facts by plotting some points with, say, a = 1. In Figure 9.25, we
have plotted only those points on the graph that correspond to the largest
numerical values of r.

The graph in Example 4 is a four-leafed rose. In general, a polar
equation of the form

r=asinnd or r =acosnb

for any positive integer n greater than 1 and any nonzero real number a has

illustrated in Figure 9.26.

If 6 is allowed to be negative, then as 6 decreases through negative
values, the resulting spiral winds around the origin and is the symmetric
image, with respect to the vertical axis, of the curve sketched in Figure
9.26.

Spirals seen in nature, such as those apparent in the curl of an
ocean wave, may have quite complicated equations in the rectangular
fwcy—coordinate system, but much simpler and more elegant representations
in polar coordinates. For the spiral of Archimedes in Example 5, the
corresponding equation in xy-coordinates is a quite complex expression,

\/ x2 4y = tan~!(y/x). The graphs of polar coordinates illustrating
other spirals are given in Exercises 21, 24, and 66.

Let us next superimpose an xy-plane on an r6-plane so that the positive
x-axis coincides with the polar axis. Any point P in the plane may then
be assigned rectangular coordinates (x, y) or polar coordinates (r, 8). If
r > 0, we have a situation similar to that illustrated in Figure 9.27(a). If
r < 0, we have that shown in Figure 9.27(b), where, for later purposes,

Figure 9.27
(@ r>0 (b) r <0
Ay AY
P(r, 0) P'(=x, —y)
» .
/" P(x, y) _
// //I
: Irl /
/4\ 0 ,"/\ 0
o) x 1o s
/
’
/
/
/
J
P(r, 6)
P(x, y)
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we have also plotted the point P’ having polar coordinates (|r|, ) and
rectangular coordinates (—x, —y).

The following result specifies relationships between (x, y) and (7, 8),
where it is assumed that the positive x-axis coincides with the polar axis.

Relationships between Rectangular

and Polar Coordinates 9.9 The rectangular coordinates (x, y) and polar coordinates (r, ) of a

point P are related as follows:
y = rsiné
tanf = y/x

() x = rcoséd,

@) r? =x>+y% if x#0

PROOF Although we have pictured 6 as an acute angle in Figure
9.27, the discussion that follows is valid for all angles. If r > 0 as in
Figure 9.27(a), then cos § = x/r, sinf = y/r, and hence

x =rcos#, y = rsinf.
If » < 0, then \r| = —r, and from Figure 9.27(b) we see that
cosB:izj—:i, Siﬂ@:jz—_—y:—)—).
rl  —r 1 lrl  —r r

Multiplication by r gives us relationship (i), and therefore these formulas |
hold if r is either positive or negative. If » = 0, then the point is the pole
and we again see that the formulas in (i) are true.

The formulas in (ii) follow readily from Figure 9.27. mm

We may use this result to change from one system of coordinates to
the other. A more important use is for transforming a polar equation to an
equation in x and y, and vice versa, illustrated in Examples 6—8.

EXAMPLE =6 Find an equation in x and y that has the same graph
as the polar equation r = a siné, with a # 0. Sketch the graph.

SOLUTION From (9.9)(i), a relationship between sinf and y is
given by y = rsiné. To introduce this expression into the equation r =
a sin @, we multiply both sides by r, obtaining

r* = arsiné.
Next, using r?=x?+ y2 and y = rsin@, we have
x*+ y2 =ay,
or x*4+y?—ay=0.
Completing the square in y gives us

an? an?
ceroo (3 ()

. O
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Figure 9.29

r

acos 8,
a<(

——

AY

r=acos®o,
a>0

L

=Y

817

Figure 9.28

" 4

/ .
Sol s r=asiné,
a<0

In the xy-plane, the graph of the last equation is a circle with center
(0, a/2) and radius |a| /2, as illustrated in Figure 9.28 for the case a > 0
(the solid circle) and a < 0 (the dashed circle).

Using the same method as in the preceding example, we can show that
the graph of r = acos 8, with a # 0, is a circle of radius a/2 of the type
illustrated in Figure 9.29.

EXAMPLE®=7 Find a polar equation for the hyperbola given by
22

x-—y = 16.

SOLUTION Using the formulas x = rcos# and y = r sin6, we ob-

tain the following polar equations:

(rcos9)? — (rsinf)* = 16
r2cos’§ — r¥sin’ 6 = 16
r*(cos? 6 — sin?0) = 16
2 cos20 = 16
a_ 16
cos 26

The division by cos26 is allowable because cos28 # 0. (Note that if
cos 26 = 0, then 2 cos 26 #16.)

or r?=16sec26

EXAMPLE®S8 Find a polar equation of an arbitrary line.

SOLUTION Every line in an xy-coordinate plane is the graph of
a linear equation ax + by = ¢. Using the formulas x = rcosf and y =
rsin 9 gives us the following equivalent polar equations:
arcosf + brsinf = ¢
r(a’tosf + bsinf) = ¢
&
r=———
acosf 4+ bsinb
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Figure 9.30

Symmetries of graphs of polar equations

(a) Polar axis

—

(r, 0)

Y

Tests for Symmetry 9.10

Figure 9.31
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(b) Line = m/2 (<) Pole
(r,m— 6)

('_ r, — 0)
\. r4 k “,
Nl | m+ 6 Y

||
~ =
3
|
(o
T

A

(r, m + 0)

If we superimpose an xy-plane on an r@-plane, then the graph of a
polar equation may be symmetric with respect to the x-axis (the polar
axis), the y-axis (the line & = 7/2), or the origin (the pole). Some typical
symmetries are illustrated in Figure 9.30. The next result states tests for
symmetry using polar coordinates.

(i) The graph of r = f(0) is symmetric with respect to the polar
axis if substitution of —6 for 6 leads to an equivalent equation.

(i) The graph of r = f(#) is symmetric with respect to the vertical
line 8 = m/2 if substitution of either (a) = — 8 for 8 or (b) —r
for r and —6 for 8 leads to an equivalent equation.

(i) The graph of r = f(8) is symmetric with respect to the pole if
substitution of either (a) —r for r or (b) 7 + 6 for # leads to an
equivalent equation.

To illustrate, since cos(—8) = cos 8, the graph of the polar equation
r = 2 + 4 cos 6 in Example 3 is symmetric with respect to the polar axis,
by test (i). Since sin(x — 6) = sin6, the graph in Example 1 is symmetric
with respect to the line 6 = 7/2, by test (ii). The graph in Example 4 is
symmetric to the polar axis, the line § = 7/2, and the pole. Other tests
for symmetry may be stated; however, those we have listed are among the
easiest to apply.

Unlike the graph of an equation in x and y, the graph of a polar equa-
tion r = f(8) can be symmetric with respect to the polar axis, the line
6 = m/2, or the pole without satisfying one of the preceding tests for sym-
metry. This is true because of the many different ways of specifying a point
in polar coordinates.

Another difference between rectangular and polar coordinate systems
is that the points of intersection of two graphs cannot always be found by
solving the polar equations simultaneously. To illustrate, from Example 1,
the graph of r = 4sin6 is a circle of diameter 4 with center at (2, /2)
(see Figure 9.31). Similarly, the graph of » = 4 cos 6 is a circle of diameter

9.3 Polar Coordinates

Theorem 9.11

4, with center at (2, 0) on the polar axis. Referring to Figure 9.31, we see
that the coordinates of the point of intersection P(2+/2, 7r/4) in quadrant I
satisfy both equations; however, the origin O, which is on each circle, can-
not be found by solving the equations simultaneously. Thus, in searching
for points of intersection of polar graphs, it is sometimes necessary to refer
to the graphs themselves, in addition to solving the two equations simul-
taneously. An alternative method is to use different (equivalent) equations
for the graphs.

Tangent lines to graphs of polar equations may be found by means of
the next theorem.

The slope m of the tangent line to the graph of r = f(0) at the point
P(r,6)is

dr sin6 + p
. in r COS

r "
EB-COSQ — rsing

PROOF If (x, y) are the rectangular coordinates of P(r, @), then, by
Theorem (9.9),

x =rcosf = f(f)cosb
y=rsinf = f(0)sin6.

These may be considered as parametric equations for the graph with
parameter 8. Applying Theorem (9.4), we find that the slope of the tan-
gent line at (x, y) is

dy dy/dd  f(f)cosf + f'(®)sinf

dx ~ dx/d0  f(O)(—sinb) + f'(8)cosb

_ f'(8)sinf + f(6) cos
= £'(@)cosf — f(B)sinb’

which is equivalent to the formula for m in Theorem (9.11). W=

Horizontal tangent lines occur if the numerator in the formula for m
is 0 and the denominator is not 0. Vertical tangent lines occur if the de-
nominator is 0 and the numerator is not 0. The case 0/0 requires further
investigation. 2

To find the slopes of the tangent lines at the pole, we must determine the
values of 6 for which r = f(6) = 0. For such values (and with r = 0 and
dr/d6 # 0), the formula in Theorem (9.11) reduces to m = tanf. These
remarks are illustrated in the next example.




Figure 9.32
r=242cosf
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EXAMPLE=9 For the cardioid r =2 + 2cos@ with 0 <6 < 2,
find

(a) the slope of the tangent line at 0 = /6

(b) the points at which the tangent line is horizontal

(c) the points at which the tangent line is vertical

SOLUTION

(a) The graph of r = 2 + 2 cos 8 was considered in Example 2 and is re-
sketched in Figure 9.32. Applying Theorem (9.11), we find that the slope
m of the tangent line is

_ (—2sin@)sinf + (2 + 2cosf) cosbd
"= (—2sinf®)cos@ — (2 + 2cosH)sinf
_ 2(cos2 6 — sin? 6) + 2cosb
~ —2(2sinf cosh) —2sinb
_ cos 26 + cos 6
T sin20 +sinf
At @ = 7/6 (that is, at the point (2 + /3, 7/6)),
_ cos(m/3) +cos(n/6)  (1/2)+(V3/2) _
~ sin(x/3) + sin(/6) (/3/2) + (1/2)

(b) To find horizontal tangents, we let

cos 20 + cos8 = 0.
This equation may be written as
2¢08260 — 1 4 cos@ =0,
or (2cosf — 1)(cosB + 1) =0.

From cosf = %, we obtain 6 = 7/3 and 6 = 57/3. The corresponding
points are (3, 7r/3) and (3, 57/3).

Using cos® = —1 gives us § = 7. The denominator in the formula
for m is 0 at & = 7, and hence further investigation is required. If § = 7,
then r = 0 and the formula for m in Theorem (9.11) reduces to m = tan 9.
Thus, the slope at (0, ) is m = tanw = 0, and therefore the tangent line
is horizontal at the pole.

(c) To find vertical tangent lines, we let
sin26 +siné = 0.
Equivalent equations are
2sinf cosf +sinf =0
and sinf(2cosf + 1) = 0.

Letting sinf# = 0 and cos 6 = —% leads to the following values of 6: 0, 7,
27/3, and 47r/3. We found, in part (b), that w gives us a horizontal tangent.
The remaining values result in the points (4, 0), (1, 27/3), and (1, 47/3),
at which the graph has vertical tangent lines.

Exercises 9.3

- EXERCISES 9.3

Exer. 1-26: Sketch the graph of the polar equation.

Il r=5 2 r=-2
30=-n/6 4 0=m/4

5 r=3cos0 6 r=—2sinf

7 r=4—4sin0 8 r=—6(1+cosf)
9 r=2+4sin6 10 r=1+2cos6
Il r=2—cosé 12 r =5+3sin#
13 r=4csch 14 r = —3sech

I5 r =8cos 30 16 r =2sin46

17 r =3sin26 18 r = 8cos 56

19 r2 =4cos20 (lemniscate)

20 r* = —16sin20

21 r=¢€, 6>0 (logarithmic spiral)
22 r = 65sin(6/2)

23 r=20, 6=>0

24 r8 =1, 6 > 0(spiral)

25 r = 2+ 2sec @ (conchoid)

26 r=1—csch

Exer. 27-36: Find a polar equation that has the same
graph as the equation in x and y.

27 x = -3 28 y=2

29 X2 +y* =16 30 x2 =8y
31 2y = —x 32 y=~6x
33 y2—x2:4 34 xy/;S

35 24+ yHtan l(y/x) =ay, a >0 (cochleoid, or
Ouija board curve)

36 3+ y3 — 3axy = 0 (Folium of Descartes)

Exer. 37-50: Find an equation in x and y that has the
same graph as the polar equation and use it to help sketch
the graph in an ré-plane.

37 rcosf@ =5 38 rsinf = -2
39 r = —3csch 40 r =4sech
41 r%cos20 =1 42 r’sin20 =4

43 r(sinf —2cosf) =6
44 r(3cosH —4sinf) = 12
45 7(sin@ + r cos’ f)y=1

46 r(rsinZO—cose) =3
47 r = 8sinf — 2cos O
48 r =2cos6 — 4sinf
49 r =tan@

50 r = 6¢otf

Exer. 51-60: Find the slope of the tangent line to the
graph of the polar equation at the point corresponding to
the given value of 6.

51 r =2cos8; 0=mn/3

52 r = —2sin8; 0 =m/6

53 r=4(1 —sinf); 0=0

54 r=142cosf; 6 =m/2

55 r = 8cos30; 0=m/4

56 r =2sin40; 0=mn/4

57 r2 = 4cos26; 0 =m/6

58 r>=—2sin20; 6 =3rn/4

5 r= 29; f=um

60 ro =1, 6 =2m

61 If P/ (r), 8)) and P,(r,, 0,) are points in an r6-plane,
use the law of cosines to prove that

[d(P,, PYI* = 1} + 7} = 2r,r, cos(6, — 6,).

62 If g and b are nonzero real numbers, prove that the graph
of r = asin® + bcosd is a circle, and find its center and
radius.

63 If the graphs of the polar equations r = f(8) and r =
g(0) intersect at P(r, 0), prove that the tangent lines at
P are perpendicular if and only if

' ©)g ©®)+ f(©)g®) =0.

(The graphs are said to be orthogonal at P.)

64 Use Exercise 63 to prove that the graphs of each pair of
equations are orthogonal at their point of intersection:

(a) r =asinf, r =acosf
(byr=a6, ré=a
65 If cos@ # 0, show that the slope of the tangent line to
the graph of r = f(0) is
(dr/dP)tan6 + r
m=-—————-:
(dr/df) — rtan 8




66 A logarithmic spiral has a polar equation of the form
r = ae®® for nonzero constants a and b (see Exercise
21). A famous four bugs problem illustrates such a
curve. Four bugs A, B, C, and D are placed at the four
corners of a square. The center of the square corresponds
to the pole. The bugs begin to crawl simultaneously—
bug A crawls toward B, B toward C, C toward D, and D
toward A, as shown in the figure. Assume that all bugs
crawl at the same rate, that they move directly toward
the next bug at all times, and that they approach one
another but never meet. (The bugs are infinitely small!)
At any instant, the positions of the bugs are the vertices
of a square, which shrinks and rotates toward the center

Exercise 66
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of the original square as the bugs continue to crawl. If
the position of bug A has polar coordinates (r, ), then
the position of bug B has coordinates (r, 8 + 7/2).

(a) Show that the line through A and B has slope
sind — cos @
sin@ + cos 6’
(b) The line through A and B is tangent to the path of

bug A. Use the formula in Exercise 65 to conclude
that dr/d6 = —r.

(c) Prove that the path of bug A is a logarithmic spiral.
(Hint: Solve the differential equation in part (b) by
separating variables.)

Exer. 67-68: Graph the polar equation for the given
values of 6, and use the graph to determine symmetries.

67 r =2sin*0tan’0; —n/3<6 <m/3
4

1 +sin“ @

68 r

[c|Exer. 69-70: Graph the polar equations on the same

coordinate plane, and estimate the points of intersg’ction
of the graphs.

69 r =8cos30, r=4—25cos0
70 r =25in%0, r=3(0+cos’0)

Figure 9.33

9.4

INTEGRALS IN POLAR COORDINATES

The areas of certain regions bounded by graphs of polar equations can be
found by using limits of sums of areas of circular sectors. We shall call a
region R in the rf-plane an R, region (for integration with respect to )
if R is bounded by lines § =« and 8 = B for 0 < o < B < 2m and by the
graph of a polar equation » = f(8), where f is continuous and f(¢) > 0
on [a, B]. An R, region is illustrated in Figure 9.33.

Let P denote a partition of [«, 8] determined by

a=0,<6, <6, <---<6, =8
and let A6, =0, —0,_, for k =1,2,...,n. The lines 6§ = 6, divide R
into wedge-shaped subregions. If f(u,) is the minimum value and f (v;)

is the maximum value of f on [, _,, 6], then, as illustrated in Figure 9.34,
the area AA,, of the kth subregion is between the areas of the inscribed and

9.4 Integrals in Polar Coordinates

Theorem 9.12

Figure 9.35

=B _ (fOve), W)

Figure 9.34

O

circumscribed circular sectors having central angle A6, and radii f(u,)
and f(v;), respectively. Hence, by the formula for finding the area of a
circular sector (page 38),

Hf@Pae, < A4, < L fw)1ae,.

Summing from k = 1 to k = n and using the fact that the sum of the AA k
is the area A of R, we obtain

n n
D Af@PAf, < A <Y M fwlAs,.
k=1 k=1
The limits of the sums, as the norm || P|| of the subdivision approaches

zero, both equal the integral [ f %[ f(6)1> d6. This gives us the following
result.

If f is continuous and f(#) > O on [«, B], where 0 < o < 8 < 27,
then the area A of the region bounded by the graphs of r = f(8),
6=q,and @ = B is

p p
A ==f Hf®Fas :f irtds.

o

The integral in Theorem (9.12) may be interpreted as a limit of sums
by writing
B n
a=[lr@ra=lin > iirwras,
N k=1

for any number w, in the subinterval [6,_;, 6,] of [«, B]. Figure 9.35 is a
geometric illustration of a typical Riemann sum.



Guidelines for Finding the Area

Figure 9.37

of an R, Region 9.13
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Figure 9.36
86=p

The following guidelines may be useful for remembering this limit of
sums formula (see Figure 9.36).

I Sketch the region, labeling the graph of r = f(8). Find the small-
est value 6 = « and the largest value 6 = § for points (r, 8) in the
region.

2 Sketch a typical circular sector and label its central angle d6.
Express the area of the sector in guideline (2) as -;-rz do.

4 Apply the limit of sums operator [ f to the expression in guideline
(3) and evaluate the integral.

EXAMPLE = | Find the area of the region bounded by the cardioid
r=2+42cosé.

SOLUTION Following guideline (1), we first sketch the region as
in Figure 9.37. The cardioid is obtained by letting 8 vary from 0 to 27;
however, using symmetry we may find the area of the top half and multiply
by 2. Thus, we use o = 0 and = n for the smallest and largest values
of 6. As in guideline (2), we sketch a typical circular sector and label its
central angle d6. To apply guideline (3), we refer to the figure, obtaining
the following:

radius of circular sector: r =2+ 2cosf
area of sector: %rz do = %(2 +2cos6)% do

We next use guideline (4), with « = 0 and 8 = 7, remembering that ap-
plying foﬂ to the expression %(2 +2cos6)? do represents taking a limit of
sums of areas of circular sectors, sweeping out the region by letting 6 vary
from O to 7. Thus,

T
A= 2]0 22+ 2cos8)*do

i g
=f (4 +8cosO + 4cos’6) db.
0

9.4 Integrals in Polar Coordinates

Figure 9.38
=2

Y

Figure 9.39

T
3

Using the fact that cos” 6 = %(1 + cos 26) yields

T
A =f (64 8cos6 +2cos20)db
0

= [60 + 8sin6 + sin 20| = 6.

We could also have found the area by using « = 0 and 8 = 2.

A region R between the graphs of two polar equations r = f(9) and
r = g(#) and the lines 8 = o and 8 = f is sketched in Figure 9.38: We
may find the area A of R by subtracting the area of the inner region
bounded by r = g(f) from the area of the outer region bounded by r =
f(®) as follows:

B B
A= f £ do— f L) do

o o

We use this technique in the next example.

EXAMPLE=2 Find the area A of the region R that is inside the
cardioid r = 2 4+ 2 cos 8 and outside the circle r = 3.

SOLUTION Figure 9.39 shows the region R and circular sectors
that extend from the pole to the graphs of the two polar equations. The
points of intersection (3, —m/3) and (3, 7/3) can be found by solving the
equations simultaneously. Since the angles « and S in Guidelines (9.13)
are nonnegative, we shall find the area of the top half of R (using @ =0
and B = 7/3) and then double the result. Subtracting the area of the inner
region (bounded by r = 3) from the area of the outer region (bounded by
r =2+ 2 cos#), we obtain

/3 /3
A=2 f %(2+2c0s9)2d9—f 1(3)*dv
0 0

/3
= f (4cos’0 + 8cosf — 5)db.
0

As in Example 1, the integral may be evaluated by using the substitution
cos’ 9 = %(1 + cos 20). It can be shown that

A =33 -7 ~4.65.

If a curve C is the graph of a polar equation r = f(8) from § = o to
6 = B, we can find its length L by using parametric equations. Thus, as in
the proof of Theorem (9.11), a parametrization for C is

x = f(B)cosh, y= f(@)sinf; o <6 <p.



Differential of Arc Length
in Polar Coordinates 9.14

Figure 9.40

r=1+cos 6

Y

CHAPTER 9 Parametric Equations and Polar Coordinates

Differentiating with respect to 6, we obtain
dx

i —f(6)sinf + f'(9)cosb
dy , .
i f(@)cosb + f(0)sind.

Using the trigonometric identity sin? @ + cos? @ = 1, we can show that

dx\* (dy 2_ 2 (012
(35) +<E) _FOP + 1 OR.

Substitution in Theorem (9.6) witht = 8, a = o, and b = B gives us

p A dr\?
2 10ay12 2
= do = — ) df
L L ‘/[f(9)] + [ 0)] L r +<d9>
As an aid to remembering this formula, we may use the differential

of arc length ds = ,/ (dx)2 + (dy)2 in (9.7). The preceding manipulations

give us the following.

We may now write the formula for L as

o=p
L= f ds.

O=u

The limits of integration specify that the independent variable is &, not s.

EXAMPLE®=3 Find the length of the cardioid r = 1 + cos 6.

SOLUTION The cardioid is sketched in Figure 9.40. Making use of
symmetry, we shall find the length of the upper half and double the result.
Applying (9.14), we have

ds = \/(1 + cos 0)* + (- sin ) do

e \/1 +2¢c0s8 + cos> 8 + sin® § db

=+/2+2cos6 do
= /21 + cos6 db.

Hence,

O=m T
L=2J ds:2J V21 + cos 6 db.
=0 0

9.4 Integrals in Polar Coordinates

Figure 9.41

Surfaces of Revolution in Polar
Coordinates 9.15

Figure 9.42
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The last integral may be evaluated by employing the trigonometric identity
cos? %9 = %(1 + cos ), or, equivalently, 1 + cos 8 = 2 cos? %9. Thus,

T
L=2\/§f V/ZTosz—%GdG
0

T
=4f cos%@d@
0

! = 8[sin36]; = 8.

In the solution to Example 3, it was legitimate to replace ,/cos’ %0
by cos %9, because if 0 < @ <7, then 0 < %9 < 7/2, and hence cos %9
is positive on [0, w]. If we had not used symmetry, but had written L

as f02” Jr? + (dr/de)? do, this simplification would not have been valid.
Generally, in determining areas or arc lengths that involve polar coordi-
nates, it is a good idea to use any symmetries that exist.

Let C be the graph of a polar equation r = f(0) for o <6 < 8. Let
us obtain a formula for the area S of the surface generated by revolving
C about the polar axis, as illustrated in Figure 9.41. Since parametric
equations for C are

x = f(@)cosd, y=f(0)sinf; o <6 <8,

we may find S by using Theorem (9.8) with 6 = 7. This gives us the
following result, where the arc length differential ds is given by (9.14).

=4 =8
About the polar axis: S = f 2nyds = f 27 rsiné ds

O==cx O=u
o=p 9=p

About the line 8 = w/2: §= f 2nxds = f 2mrcos @ ds
O=0 f=q

When applying (9.15), we must choose « and B so that the surface
does not retrace itself when C is revolved, as would be the case if the
circle r = cos 8, with 0 < 8 < m, were revolved about the polar axis.

EXAMPLE=4  The part of the spiral r = ¢?/? from 6§ =010 6 = 7
is revolved about the polar axis. Find the area of the resulting surface.

SOLUTION The surface is illustrated in Figure 9.42. By (9.14), the
polar differential of arc length in polar coordinates is

/ 5
ds = \/(66/2)2 + (%69/2)2 do = %69 do = %_ee/de.
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Hence, by (9.15),

O=m O=m
S:f 2ryds =f 2mrsiné ds
6=0 9=0

T 5
:f 27?2 5in 6 (%ef)ﬁ) de
0

by
= \/S—JTJ ¢’ sinf db.
0
Using integration by parts or Formula 98 in the table of integrals (see
Appendix II), we have
NES V5m
2

[¢°sin® — cos )] = — (@ + D)~ 848,

S =

We have already seen many applications of calculus that involve the
calculation of area. The next example illustrates an application in which the

area is most naturally represented as an integral using polar coordinates.
|

EXAMPLE=5 An industrial plant releases its discharge through a
circular pipe of diameter 10 cm. The flow is controlled by a valve con-
sisting of a circular disk of the same diameter. Moving the valve back and
forth across the pipe increases or decreases the rate of discharge. (See Fig-
ure 9.43.) If the flow of discharge is proportional to the area of the opening,
what percentage of the maximum flow occurs when the center of the valve
disk is 5 cm from the center of the pipe?

Figure 9.43

SOLUTION We setup a coordinate system with the pole at the cen-
ter of the pipe. The polar coordinate equation of the pipe will then be
r = 5. Since the radius of the valve disk is 5 cm, when its center is 5 cm
from the center of the pipe, the center is at the point with rectangular co-
ordinates (5, 0). The polar coordinate equation for the valve disk is then

9.4

Integrals in Polar Coordinates

Figure 9.44

r = 10 cos 6. The maximum flow is proportional to the area of the circular
opening of the pipe, which is 7 (5). With the valve blocking the flow, the
actual flow is proportional to the shaded area shown in Figure 9.44.

To find this area A, we begin by noting that it is made up of the left
semicircle of the pipe plus additional regions in quadrants I and IV. By
symmetry, the regions in quadrants I and quadrant IV have the same area.
Thus,

A = (area of semicircle of radius 5) 4 2(area of region in quadrant I).

To find the area in quadrant I, we first determine the intersection point of
the two circles. They intersect when 5 = 10cos 6, or cos = 1/2. Thus,
6 = /3 or 57/3. The first value, & = 7/3, is the one in quadrant I.

The area of the region in quadrant I is the shaded area between the pipe
and the valve as 6 varies from 7/3 to 7/2. This area is

/2
f 2[5% — (10cos )1 d9
/3 "

/2
= %f [25 — 100 cos® 0] d6
/3

/2
= %f (25 — 50(1 + cos 28)]do
/3

/2
- %f [~25 — 50c0s 261d0 = L [~250 — 25sin20]"/2

7/3
S5 (-]

Thus, the total shaded area is

257 1 {25V3 257 7 3
T“HT“T)}:”(?*T)-
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Since the entire area of the pipe is 257, the fraction that is left uncovered 16 LY Exer. 23 -26: Find the area of the region that is inside the
is ns graphs of both equations.
25(7/3+32) 1 3 T B r=sing, r=v3coss
o :§+Ez0_61_ - y = %x 24 r =2(1+sinf), r=1
= 25 r=1+4siné, r =5sin8

Hence, when the center of the valve is 5 cm from the center of the pipe, it : f e —— > 26 12 = 4cos20, F=1
restricts the flow to about 61% of the maximum possible flow. f 4 Yok Exer. 27— 32: Find the length of the curve,

27 r=¢? from8 =0t0 6 =21
28 r=60from0 =0to0 =4xn

29 r = cos? %9fr0m0=0t00=7t

- EXERCISES 9.4 Exer. 17-18: Set up integrals in polar coordinates that 30 r=2"from6 =0t 6 =x
can be used to find the area of (a) the blue region and 31 7 = sin’ %9
(b) the green region.

32 r=2—2cos8

_6 Fi : 17
Exer. 1-6: Find the area of the region bounded by the 14 1 IE, Exer. 33— 34: Use Simpson’s rule, with = 2, to approx-

graph of the polar equation.

| r=2cosf 2 r=>5sind

3 r=1-cosf 4 r=6—06sinb
5 r =sin26 6 r2 =9cos26

Exer. 7-8: Find the area of region R.

7 R={(r0:0<0<m/2,0<r<é)

8 R={(r,0):0<60 <m,0<r=<20}

Exer. 9—12: Find the area of the region bounded by one
loop of the graph of the polar equation.

9 r2 =4cos26 10 r =2cos 360

1l r=3cos50 12 r =sin66

Exer. 13 -16: Set up integrals in polar coordinates that
can be used to find the area of the region shown in the
figure.

13

r = 4 cos 20

18

r=2+ 2cos 8

Exer. 19-22: Find the area of the region that is outside
the graph of the first equation and inside the graph of the
second equation.

19 r=2+2cos@, r=3
20 r=2, r =4cosd
21 r=2, ¥ = 85sin 260

22 r=1-—sind, r =3sinf

imate the length of the curve.
33 r=0+cosOfromf =0t06 =m/2
34 r=sinf +cos’f fromf =0t0f =7

Exer. 35-38: Find the area of the surface generated by
revolving the graph of the equation about the polar axis.

35 r=2+4+2cosf 36 2 =4cos26
37 r =2asind 38 r =2acosd

E| Exer. 39-40: Use the trapezoidal rule, with n =4,

to approximate the area of the surface generated by
revolving the graph of the polar equation about the line
0= /2. (Use symmetry when setting up the integral.)

39 r =sin%0 40 r = cos? 9

41 A rorus is the surface generated by revolving a circle
about a nonintersecting line in its plane. Use polar
coordinates to find the surface area of the torus
generated by revolving the circle x% + y? = a? about
the line x = b, where 0 < a < b.

42 Let OP be the ray from the pole to the point P(r, 0)
on the spiral r = a6, where a > 0. If the ray makes two
revolutions (starting from 6 = 0), find the area of the
region swept out in the second revolution that was not
swept out in the first revolution (see figure).

Exercise 42 r = a6
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43 The part of the spiral r = e ? fromf=0t06= /2 of the valve disk should be in order to limit the flow to
is revolved about the line # = /2. Find the area of the half the maximum possible flow.

resulting surface.

E Exer. 44 - 45: Refer to Example 5.

44 Determine how far from the center of the pipe the center

45 Obtain a graph of the percentage of flow blocked as a
function of the distance from the center of the valve to
the center of the pipe.

TRANSLATION AND ROTATION OF AXES

In the study of plane curves, it is often helpful to consider new coordinate
systems obtained by translating or rotating the original coordinate axes.
In these new systems, the equation of a curve may be much simpler than
it was in the original system. We define and illustrate the use of these
translations and rotations in this section. One of our main goals is to show
that the graph of the general second-degree equation in x and y

Ax> + Bxy+Cy*+ Dx+Ey+F=0_

is either a conic or a degenerate conic. You may wish to review the material
on conic sections in the Precalculus Review.

TRANSLATION OF AXES

Figure 9.45 illustrates a translation of axes, where the x- and y-axes are
shifted to positions—denoted by x" and y’—that are parallel to their orig-
inal positions. Every point P in the plane then has two different ordered-
pair representations: P(x, y) in the xy-system and P(x', y') in the x'y’-
system. If the origin of the new x’y’-system has coordinates (%, k) in the
xy-plane, as shown in Figure 9.45, we see that

x=x'+h and y=y +k.
These formulas are true for all values of i and k. Equivalent formulas are

xX'=x—h and y =y—k.

Figure 9.45
Ay AY'
P(x, y)
-_—K_ ———————————— % P(x', y")
' !
Y I
V) _¢ E— I— — —145—
T 0, k) | x’
I
k |
v |
- I ,
| X
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9.5 Translation and Rotation of Axes

Translation of Axes
Formulas 9.16

We may summarize this discussion by the following.

If (x, y) are the coordinates of a point P in an xy-plane and if (x’, y")
are the coordinates of P in an x'y’-plane with origin at the point
(h, k) of the xy-plane, then

() x=x"+h, y=y +k
) xX'=x—h, y=y—k

If a certain collection of points in the xy-plane is the graph of an
equation in x and y, then to find an equation in x’ and y’ that has the
same graph in the x’y’-plane, we substitute x’ + 4 for x and y’ + k for y.
Conversely, if a set of points in the x"y’-plane is the graph of an equation in
x" and y’, then to find the corresponding equation in x and y, we substitute
x — h for x" and y — k for y'.

To illustrate the use of (9.16), we begin by noting that

@)+ =1

is an equation of a circle of radius 1 with center at the origin O’ of the
x’y’-plane. Using translation of axes formulas (9.16)(ii), we see that

@ =h?+(—k’=1

is an equation of the same circle in the xy-plane with center (4, k).
The next example shows another application of translation of axes to
simplify a second-degree equation.

EXAMPLE®=1 Discuss and sketch the graph of
25x2 + 250x — 16y% 4+ 32y + 109 = 0.
SOLUTION  We first complete the square in x and y by rewriting the
equation as
25(x% 4 10x) — 16(y? — 2y) = —109.
Then' we add constant terms to obtain squares of binomials in x and y:
25(x? 4 10x +25) — 16(y* — 2y + 1) = —109 + 25(25) — 16(1),
which we can write as
25(x + 5)% — 16(y — 1)? = 500.

We now use the translation of axes formulas (9.16)(ii), with x' = x + 5
and y’ = y — 1, in order to write the equation as

25(x")? — 16(y")* = 500
or, equivalently,
o o)
20 s T
4




CHAPTER 9 Parainetric Equations and Polar Coordinates

Figure 9.46
25x% + 250x — 16y + 32y + 109 = 0,
[(x)2/20] — [4(y)*/125] = 1

which has the form
(CORNNCO R
a’ b?
with a? =20 and b* = —1%. In this form, we recognize that the curve
represented by the equation is a hyperbola with vertices on the x’-axis

and center at the origin of the x’y’-coordinate system. From Theorem 38
in the Precalculus Review (page 75), the hyperbola has vertices with x’y’-
coordinates (+a, 0) = (£2+/5, 0). The foci have x"y’-coordinates (Zc, 0),
where ¢ = Va® + b? = /20 + (125/4) = +/205/2, and the asymptotes
have equations y’ = £(b/a)x’ = £(5/4)x’. Figure 9.46 shows a sketch
of the curve.

Since x =x'—5 and y =y’ + 1, we can translate the information
about the center, the vertices, and the foci to xy-coordinates. The vertices,
for example, have xy-coordinates (—5 =+ 2+/5, 1), and the asymptotes are
the lines (y — 1) = £3 (x + 5).

In a similar manner, by completing the square and translating axes, we
can replace

Ax2+Bxy+Cy2+Dx+Ey+F=0
by an equivalent equation of the form
A+ Bx'y +C )Y+ F =0.
That is, we can eliminate the linear terms. Translation of axes, however,

will still retain the second-degree term x’y’. To remove such a term, we
must introduce rotation of axes.

' ! .//
R'(0 ,y’)\

9.5 Translation and Rotation of Axes

Figure 9.47

LY

'

y
R(0, y) |

Rotation of Axes Formulas 9.17

Figure 9.48
y=1/x

ROTATION OF AXES

As we have seen, translation of axes gives a new coordinate system that
may result in simpler representations for the equations of curves. Rotation
of axes, which we now investigate, provides an additional way to build new
coordinate systems in which we may obtain even further simplifications of
such equations. We obtained the x’y’-plane used in a translation of axes
by moving the origin O of the xy-plane to a new position C(h, k) without
changing the positive directions of the axes or the units of length. We now
consider a new coordinate plane obtained by keeping the origin O fixed
and rotating the x- and y-axes about O to another position, denoted by x’
and y’. A transformation of this type is a rotation of axes.

Consider the rotation of axes in Figure 9.47, and let ¢ denote the acute
angle through which the positive x-axis must be rotated in order to coincide
with the positive x'-axis. If (x, y) are the coordinates of a point P relative
to the xy-plane, then (x’, y") will denote its coordinates relative to the new
x'y’-plane.

Let the projection of P on the various axes be denoted as in Figure
9.47, and let 6 denote angle POQ'. If p = d(O, P), then

x' = pcos8, y' = psinf
x = pcos(6 + ¢), y = psin(@ + ¢).
Applying the addition formulas for the sine and cosine, we see that
x = pcosfcos¢ — psinfsing
y = psinf cos ¢ + pcos6 sing.

Using the fact that x’ = pcos@ and y' = psin@ gives us (i) of the next
theorem. The formulas in (ii) may be obtained from (i) by solving for x’
and y'.

If the x- and y-axes are rotated about the origin O, through an acute
angle ¢, then the coordinates (x, y) and (x’, y') of a point P in the
xy- and x’y'-planes are related as follows:

() x =x'cos¢ — y'sing, y=x"sing+ y cos¢
(i) x' =xcos¢ +ysing, y = —xsing+ ycos¢

EXAMPLE=2 The graph of xy = 1, or, equivalently, y = 1/x, is
sketched in Figure 9.48. If the coordinate axes are rotated through an angle
of 45°, find an equation of the graph relative to the new x’y’-plane.

SOLUTION Welet ¢ = 45° in rotation of axes formulas (9.17)(i):

V2N (V2N V2,
XxX=x (7>—y (7)=7(X—}’)

y=x (?) + ' (?) = ?(X’ + )
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Substituting for x and y in the equation xy = 1 gives us

V2., V2
T(X y)- )

This equation reduces to

x'+y)=1

o) )
2 2
which is an equation of a hyperbola with vertices (£+/2, 0) on the x’-axis.

Note that the asymptotes for the hyperbola have equations y’ = £x’ in the
new system. These correspond to the original x--and y-axes.

1,

Example 2 illustrates a method for eliminating a term of an equation
that contains the product xy. This method can be used to transform any
equation of the form

Ax*> + Bxy+Cy*+ Dx+ Ey + F =0,

where B # 0, into an equation in x’ and y’ that contains no x’y’-term. Let
us prove that this may always be done. If we rotate the axes through an
angle ¢, then using rotation of axes formulas (9.17)(i) to substitute for x
and y gives us
A (x' cos ¢ — y'sing)? + B(x'cos ¢ — y' sing)(x sinp + y’ cos ¢)
+ C(x'sing + y' cos p)*> + D(x' cos ¢ — y' sin )
+ E(x'sing + y' cos¢) + F
=0.
By performing the multiplications and rearranging terms, we may write
this equation in the form
AN+ Bxy +CG)Y+Dx +EYy +F =0
with
A’ = Acos’¢ + Bcos¢sing + Csin® ¢
B’ =2(C — A)sin¢ cos ¢ + B(cos® ¢ — sin® ¢)
C' = Asin’ ¢ — Bsing cos ¢ + Ccos? ¢
D' = Dcos¢ + Esing
E' = —Dsin¢ + Ecos¢
F' =F.
To eliminate the xy’-term, we must select ¢ such that B’ = 0—that is,
2(C — A)sin¢ cos ¢ + B(cos> ¢ — sin® ¢) = 0.
Using double-angle formulas, we may write this equation as
(C — A)sin2¢ + Bcos2¢ =0,
which is equivalent to
A-C

cot2¢p = —3

9.5 Translation and Rotation of Axes

Figure 9.49

Theorem 9.18

=Y
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This formulation proves the next result.

To eliminate the xy-term from the equation
Ax®+ Bxy + Cy* + Dx + Ey + F =0,
where B # 0, choose an angle ¢ such that

A~-C
c0t2¢=——~§— with 0<2¢ <

and use the rotation of axes formulas.

The graph of any equation in x and y of the type displayed in the
preceding theorem is a conic, except for certain degenerate cases.

In using Theorem (9.18), note that sin2¢ > 0, since 0 < 2¢ < 7x.
Moreover, because cot 2¢ = cos 2¢/ sin 2¢, the signs of cot 2¢ and cos 2¢
are always the same.

EXAMPLE =3 Discuss and sketch the graph of the equation
41x2 — 24xy + 34y — 25 = 0.

SOLUTION Use the notation of Theorem (9.18):
A =41, B =-24, C=34

41 - 34 7
cot2¢ = =——
—24 24
Since cot 2¢ is negative, we choose 2¢ such that 7/2 < 2¢ < ', and con-
sequently, cos 2¢p = — % ‘We now use the half-angle formulas to obtain
sing = fH—coqub _ I,“l—(—%) B 4
Vo2 TV 2 T
/1+cos2¢ l+(=%) 3
sp=\—g =5 =%

Thus, the desired rotation of axes formulas are
3 4 4 3.
x=3x'—32y and y=3x'+3zy.

After substituting for x and y in the given equation and simplifying, we
obtain the equation

&) +20) =1.
The graph therefore is an ellipse with vertices at (%1, 0) on the x’-axis.
Since tan¢ = sin¢/ cos ¢ = (‘5—‘)/(%) = %, we obtain ¢ = tan_l(%). The

angle ¢ is approximately 0.927 radian; to the nearest minute, ¢ ~ 53°8’.
The graph is sketched in Figure 9.49.




838

Identification Theorem 9.19
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The next theorem states rules that we can apply to identify the type of
conic before rotating the axes.

The graph of the equation
Ax*+ Bxy+ Cy* + Dx + Ey+ F =0
is either a conic or a degenerate conic. If the graph is a conic, then it
is
(i) aparabolaif B2 —4AC =0
(i) anellipseif B* —4AC <0
@iii) ahyperbolaif B> —4AC > 0

PROOF If the x- and y-axes are rotated through an angle ¢, using the
rotation of axes formulas gives us

A’(x/)z + B’x’y’ + C/(y/)2+ D’x’—}- E/y/_I_ F =0.

Using the formulas for A’, B’, and C’ on page 836, we can show that

(B')? —4A'C' = B* — 4AC.
For a suitable rotation of axes, we obtain B’ = 0 and

A/(x/)z + C’(y’)2+ D/x’+ E'y'+ F =0.

Except for degenerate cases, the graph of this equation is an ellipse if
A'C’ > 0 (A’ and C’ have the same sign), a hyperbola if A'C’ < 0 (A’
and C’ have opposite signs), or a parabola if A'C’ = 0 (either A’ =0 or
C’ = 0). However, if B’ = 0, then B> — 4AC = —4A’C’, and hence the

graph is an ellipse if B — 4AC < 0, a hyperbola if B> —4AC >0,0ra
parabola if B2 — 4AC =0. ==

The expression B* — 4AC is called the discriminant of the equation in
the identification theorem (9.19). We say that this discriminant is invariant
under a rotation of axes, because it is unchanged by any such rotation.

EXAMPLE®=4 Use the identification theorem (9.19) to determine if
the graph of the equation

41x% — 24xy 4+ 34y> —25=0
is a parabola, an ellipse, or a hyperbola.
SOLUTION We considered this equation in Example 3, where we

performed a rotation of axes. Since A = 41, B = —24, and C = 34, the
discriminant is

B> — 4AC = 576 — 4(41)(34) = —5000 < 0.

Hence, by the identification theorem, the graph is an ellipse.

!
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In some cases, after eliminating the xy-term, it may be necessary to
translate the axes of the x’y’-coordinate system to obtain the graph, as
illustrated in the next example.

EXAMPLE®=5 Discuss and sketch the graph of the equation
x2+2x/§xy—|—3y2+8«/§x—8y+32=0.

SOLUTION Using A =1, B=2+3,and C = 3, we see that
B*—4AC=12-12=0.
By the identification theorem (9.19), the graph is a parabola.
To apply a rotation of axes, we calculate
A— _
corzp=2-"C 173 1
1 B 243 V3
Hence 2¢p = 27/3, ¢ = n/3, and
) 3
smqb:%, cos¢=%.

Figure 9.50 The rotation of axes formulas (9.17)(i) are as follows:

- _1 / ﬁ/ 1 ! /
e R AR LIRS

4 8T V3 1 1
\ L # y= TXI + 5)’, = E(ﬁx’ + )

=N . Substituting for x and y in the given equation and simplifying leads to
'/“ \’\\?{ 8 4(x"y? — 16y’ +32 =0,
£ 1 ’{\"\A or, equivalently, ("2 =4y - 2).

‘/ T The parabola is sketched in Figure 9.50, where each tic represents two
/ units. Note that the vertex is at the point (0, 2) in the x’y’-plane, and the
graph is symmetric with respect to the y’-axis.

- J

- EXERCISES 9.5

Exer. 1-6: Find the vertices and the foci of the conic, and Exer. 7-19: (a) Use the identification theorem (9.19)
use the translation of axes formulas to sketch its graph. to determine whether the graph of the equation is a
parabola, an ellipse, or a hyperbola. (b) Use a suitable

Iy —8x+8y+32=0 .
y X +8y+ rotation of axes to find an equation for the graph in an

2 x=2y>+8y+3 x'y'-plane, and sketch the graph, labeling vertices.
‘ 3 4x% +9y% +24x — 36y +36 =0 7 32— 2xy 43> —2V/2x =242y =0

4322 +4y> —18x +8y+19=0 8 x2—2xy+y’+4x+4y=0

5 x> —9y? +8x +90y —210 =0 9 5x2 —8xy+5y°=9

64x2—y2—40x—8y+88=0 10 xz—xy+y2:3
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] 11x2+10\/§xy+y2=4

12 7x? — 48xy — Ty? =225

13 16x% — 24xy 4 9y> — 60x — 80y + 100 = 0

14 x2 + 4xy +4y> +64/5x — 185y +45=0

I5 40x — 36xy +25y> — 84/13x — 124/13y = 0

16 18x% — 48xy + 82y% + 64/10x -+ 2+/10y — 80 = 0
17 522 +64/3xy —y? +8x —8/3y —12=0
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Exer. 1-4: (a) Find an equation in x and y whose graph
contains the points on the curve C. (b) Sketch the graph
of C and indicate the orientation.

2

1
|x:?+1, y:;—t; O0<t=<4

2x:coszt—2, y =sinf + 1; 0<rt <27
3 x =4/t y=274 t>0
4 x=3cost+2, y=-3sint—1; 0<1<2xw

Exer. 5-6: Sketch the graphs of C,, C,, C;, and C,, and
indicate their orientations.

5 Cix=1, y=v16—r} —4<1<4
Cpix=—/16—1, y=—1; 0<tr<16
Cy:x =4cost, y = 4sint; 0<rt<2nm
Cpix=é, y=—V16—-¢*; 1 <In4

6 C ix=1r, y =1 tinR
Cz:x=t4, y=t6; tin R
Cyix=e¥, y=¢et; tinR
C4:x=1—sinzt, y:cos3t; tinR

Exer. 7-8: Let C be the given parametrized curve.
(a) Express dy/dx in terms of ¢t. (b) Find the values of
t that correspond to horizontal or vertical tangent lines

to the graph of C. (c) Express d’y/dx? in terms of £.
7 x =12, y=23+4—-1; rinR

8 x=1r—-2sint, y=1-—2coss; tin R
Exer. 9-26: Sketch the graph of the polar equation.
9 r=—4sin6 10 » =10cos@

Il »=6—3cosf 12 r=3+2cosb
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18 15x% + 20xy — 4+/5x + 8+/5y — 100 = 0
19 32x% — 72xy + 53y* = 80

E Exer. 20-22: Graph the equation.

20 1.1x% — 1.3xy 4+ y*2 —2.9x — 1.9y =0
21 2.1x% —4xy+15y2 —4x+y—1=0
22 3.2x% —4/2xy +2.5y7 +21y+3x —2.1=0

f ‘|| X - [ i v :\'_

13 2 =9sin26 14 7% = —45sin26

I5 r =3sin50 16 r =2sin360

17 2r=0 18 r=e? 6>0

19 r = 8sech 20 r(3cosd —2sinf) =6
21 r=4—4cos 22 r =4cos? 16

23 r=6-—rcosh 24 r = 6¢c0s260

B = i eese 2 r= r:‘*f;me‘

Exer. 27-32: Find a polar equation that has the same
graph as the given equation.

27 y? =4x
29 2x —3y=28
31 y? =x% -2

28 x2+y2—3x+4y=0
30 x2+y2=2xy
32 x2:y2+3y

Exer. 33-38: Find an equation in x and y that has the
same graph as the polar equation.

33 72 = tan@ 34 r =2co0s6 +3siné
35 r2 = 4sin20 36 2 =sec26
37 9 =43 38 r=-—6

Exer. 39-40: Find the slope of the tangent line to the
graph of the polar equation at the point corresponding to
the given value of 4.

p— 3 .
© 2+42cos6’
40 r=¢%; 0 =mn/4

39 r 0 =m/2

41 Find the area of the region bounded by one loop of
r* = 4sin26.
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42 Find the area of the region that is inside the graph of
r = 3 4+ 2sin @ and outside the graph of r = 4.

43 The position (x, y) of a moving point at time ¢ is given
by x =2sinz, y =sin’r. Find the distance that the
point travels from ¢t = 0 to t = 7/2.

44 Find the length of the spiral r = 1/6 from 6 =1 to
=2

45 The curve with parametrization x = 22 + 1, y=
41 — 3,0 <t < 1 is revolved about the y-axis. Find the
area of the resulting surface.

46 The arc of the spiral r =&’ from 6 =0t 6 =1 is
revolved about the line 8 = /2. Find the area of the
resulting surface.

47 Find the area of the surface generated by revolving the
lemniscate r> = a” cos 26 about the polar axis.

48 A line segment of fixed length has endpoints A and B
on the y-axis and x-axis, respectively. A fixed point P
on AB is selected with d(A, P) =a and d(B, P) =b
(see figure). If A and B may slide freely along their

Exercise 48
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respective axes, a curve C is traced by P. If ¢ is the
radian measure of angle ABO, find parametric equations
for C with parameter ¢ and describe C.

Exer. 49-51: Find the vertices and the foci of the conic,
and use the translation of axes formulas to sketch its
graph.

49 y* -2y +4x-7=0

50 4x2 +y2 — 24x +4y +36 =0

51 x2—9y>+8x+7=0

52 Use the discriminant to identify the graph of each
equation. (Do not sketch the graph.)

(a) 2x* = 3xy +4y* +6x -2y —6=0
(b)3x2+2xy—y? - 2x+y+4=0
(€ x> —6xy+9y* +x -3y +5=0

Exer. 53-54: Use a suitable rotation of axes to find an
equation for the graph in an x'y’-plane, and sketch the
graph, labeling vertices.

53 x2 — 8xy + 16y% — 124/17x — 34/17y =0
54 8x2 + 12xy + 17y% — 164/5x — 124/5y =0

- EXTENDED PROBLEMS AND GROUP PROJECTS

I Investigate the representation of conic sections in polar
coordinates.

(a) Let F be a fixed point and / a fixed line in a plane.
Prove that the set of all points P in the plane, such
that the ratio d(P, F)/d (P, Q) is a positive constant
e with d(P, Q) the distance from P to [, is a conic
section. Show that the conic is a parabola if ¢ = 1,
an ellipse if 0 < e < 1, and a hyperbolaif e > 1.

(b) Prove the following theorem: A polar equation that
has one of the four forms
de de
"T Txesing

is a conic section. Show that the conic is a parabola
if e =1, an ellipse if 0 < e < 1, or a hyperbola if
e>1.

(c) Describe and sketch the graph of each of the
following polar equations:
(i) r=10/(3+2cosb)
(i) r=10/(2+ 3sinb)
(iii) r=15/(4 —4cosB)
(d) Find a polar equation of the conic with a focus

at the pole, eccentricity e = 1/2, and directrix r =
—3secH.




2 Develop formulas in polar coordinates for the center of
mass using the following as an outline for a possible
approach.

(a) Show that the center of mass of a triangle is located
on each median, two thirds of the way from a vertex
to the opposite side.

(b) Consider a thin triangle as shown in the figure.
Discuss why it is reasonable to assume that its center
of mass has polar coordinates that are approximately
(3r,0).

Problem 2

~2
~ZT Cos 7

(c) Consider a region in the plane bounded by the
lines # = a, 8 = b, and the curve r = f(6). Slice
the region into triangular wedges. Show that
the moment of the region about the x-axis is
approximately Y %r3 sinf A8,

(d) Show that the sum in part (c) is a Riemann sum and
find the form for the definite integral that is the limit

as A6 — 0.
(e) Show that the coordinates of the center of mass are
given by
_ fab %r3cosed9 _ fab %r3sin9d9
X=—— y — JR———— —
fab 2 do fab r2 do

(f) Show that the formulas in part () give the correct
answer if the region is a circle centered at the origin.

(g) Find the center of mass of the region enclosed by a
semicircle of radius a.

(h) Find the center of mass of the region enclosed by the
cardioid r = a(l + sin6).

3 Investigate space-filling curves, which are curves whose
graphs fill a solid region of the plane. The discovery of
such curves in the late nineteenth century dramatically
revealed that our intuitive understanding of the “one
dimensionality” of curves was deeply flawed. This
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Problem 3

et

™
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H3 H4

revelation led to an intensive research into a precise
definition of dimension and the properties of curves that
has actively continued to the present.

The first such curve was discovered in 1890 by
Giuseppe Peano (1858-1932)." In this problem, we
consider an example published in 1891 by David
Hilbert (1862-1943). The Hilbert curve is the limit of
a sequence of curves H, H,, H, ..., each of which is
contained in the unit square S of side 1. The first four
curves in this sequence are shown in the figure.

(2) Examine the first stage, H;, which is made up
of three line segments. Show that the curve H,
can be given a simple parametric representation,
(f1®), gy (), for0 <t < 1.

(b) Show that if the unit square is divided into four
congruent squares, then H, passes through the
center of each of these squares.

(c) Show that every point in the unit square is within a
distance of ~/2/4 units of a point on the curve H,.
To obtain H,, a smaller copy of H, is placed
in each of the four small squares together with
extending segments, connecting the copies of H; to
form a curve made up of lire segments.

*For a description of Peano’s curve and other attempts to create space-
filling curves, see Heinz-Otto Peitgen, Hartmut Jurgens, and Dietmar
Saupe, Fractals for the Classroom, Part One: Introduction to Fractals
and Chaos, New York: Springer-Verlag, 1991.
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(d) Determine the number of line segments in H,. Show
that it is possible to give a parametric representation
of H,. Show that if the unit square is divided into 16
congruent smaller squares, then H, passes through
the center of each of these squares, and that every
point in the unit square is within +/2/8 units of a
point on H,.

At each stage in the construction, the unit square
is divided into four congruent subsquares and a
shrunken copy of H, is placed inside each of the
four subsquares; these are joined to form H, 1

(e) Show that if the unit square is divided into 4"
congruent subsquares, then the curve H, passes

through the center of each of these subsquares.
Show that each point of the unit square is within
v/2/2"*" units of a point on H,. Show that each
H, has a parametric representation ( 5, (@), g, (@) for
0<r<l

(f) Let H =lim, H,. Show that H has a para-
rpetric representation (f(¢), g(¢)), where f(f) =
lim,  f (t)and g(r) = lim, g, (t). Prove that
J() and g(r) are continuous functions and that the
graph of H passes through every point in the unit

square.




