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JUCTION

N THE GRACEFUL FLOW of a river, the smooth passage of

time, and the majestic ascent of a hot air balloon, we perceive

continuity of motion. There are no abrupt changes, no jumping
over intermediate points in the movement. Through the idea of limits,
calculus provides the means to study continuity rigorously.

The concept of limit is the central idea of calculus. All the fundamental
notions — continuous functions, derivatives, integrals, and convergent
series —are limits in one sense or another. Limits are also essential for
understanding the geometric properties of curves and surfaces, such
as length, slope, area, and volume. The principal features of motion—
velocity, speed, acceleration —are best comprehended as limits as well.

Paradoxes about limits play a vital role in the history of thought.
Zeno (495—435 B.C.) posed many vexing paradoxes. In Achilles -and the
Tortoise, Zeno argues that a swift runner (Achilles) cannot overtake a
slow opponent (the tortoise) if the latter has a head start. While Achilles
runs to the tortoise’s initial position, the tortoise moves forward to a
new spot. While Achilles races to that spot, the tortoise moves to a
further position, This process continues indefinitely, and Achilles always
remains behind the tortoise! The paradox challenges our common sense
that given enough time, a fast runner will pass a slower one. At the heart
of the paradox lie sequences of numbers {the positions of the two racers)
and the limit of these sequences.

As calculus developed in the eighteenth century, mathematicians
treated the limit concept intuitively: Limits exist if a function’s outputs
get close to some value as its inputs get close to another value. In
Section 1.1, we explore this intuitive definition, flawed by its use of the
imprecise word close. A scientist may consider a measurement as being
close to a value L if it is within 107% em of L. A marathon runner is
close to the finish line when 100 yd are left in the race. An astronomer
may measure closeness in terms of light-years.

To avoid ambiguity, we require a definition of limit not containing
the word close. In Section 1.2, we present the traditional € ~§ definition
of limit of a function. This definition is precise and applicable to every
situation we consider. The formal definition leads to theorems we use
to determine the values of limits or to verify that a limit does not exist.
The theorems give us techniques to find many limits, without applying the
€ -8 definition directly. Section 1.3 examines some of these techniques.

" We consider in Section 1.4 limits of a function f(x) where either
|x| or | f(x)| grows unboundedly large. Finally, we use limits to define
continuous functions, a concept used extensively throughout calculus.

Limits provide a powerful toof for the
mathematical analysis of objects, such
as a river, that flow in a continuous
manner.
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CHAPTER | Limits and Continuity

INTRODUCTION TO LIMITS

In calculus and its applications, we are often interested in function values
f(x) of a function f when x is close to a number a, but not necessarily
equal to a. In fact, there are many instances where a is not in the domain
of f; thatis, f(a) is undefined. For example, consider

3 2
x° —2x
fx) = v

with @ = 2. Note that 2 is not in the domain of £, since substituting x = 2
gives us the undefined expression 0/0. The following table, obtained with
a calculator, lists some function values (to eight-decimal-place accuracy)
for x close to 2.

@ x @ | a f@

1.293633333 1.9997 1.332933363 1.999997 1.333329333
!

Introduction to Limits

If the answers to these questions are yes, we use the notation
lim f(x) =L
x—>a

and say that the limit of f(x), as x approaches a, is L, or that f(x)
approaches L as x approaches a. We may also write

f(x)—> L as x—a.

Thus the point (x, f(x))-on-the graph of [ approaches the point (a, L)
as x approaches a. Using the limit notation, we denote the result in our
example as follows:
. x> — 2x?
im—-——--=z
x—2 3x—6 3
Note that in this section we define limit using the phrases close to and
approaches in an intuitive manner; the next section contains a formal defi-
nition of limit that avoids this terminology. This discussion of the intuitive
meaning of limit may be summarized as follows.

1.98 1306800000 & 19998 1333066680 = 1.999998  1.333330667 m _ SO '| = T :

199 1320033333 | 19999 1333200003 = 1.999999  1.333332000 Limit of a Function Notation | Intuitive meaning | Graphical interpretation

201 1346700000 | 2.0001 1333466670 | 2.000001  1.333334667 lim f(x) =L  We canmake f(x) y

202 1360133333 | 20002 1333600013 = 2.000002  1.333336000 f‘iisciigzebty"c'ﬁogzmg X = )

203 1373633333 | 20003 1333733363 | 2.000003  1.333337333 x sufficiently close PO
— = e - to a, and x # a. b lf(x).:

It appears from the table that the closer x is to 2, the closer f(x) is to %;
however, we cannot be certain of this because we have merely calculated
several function values for x near 2. To give a more convincing argument,
let us factor the numerator and the denominator of f(x) as follows:

B xz(x -2)
fx)y= 3a=2)

If x # 2, then we may cancel the common factor x — 2 and observe that

f(x) is given by %xz. Thus the graph of f is the parabola y = %xz with the

point (2, %) deleted, as shown in Figure 1.1. It is geometrically evident that
as x gets closer to 2, f(x) gets closer to %, as indicated in the preceding
table.

In general, if a function f is defined throughout an open interval con-
taining a real number a, except possibly at a itself, we may ask the follow-
ing questions:

x—=>a<—XxX X

If f(x) approaches some number as x approaches a, but we do not
know what that number is, we use the phrase lim _ , f(x) exists.

The graph of f shown '1‘n (1.1) illustrates only one way in which f(x)
might approach L as x approaches a. We have used an open circle, or
“hole,” in the graph rather than a point with x-coordinate a because, when
using the limit concept given in (1.1), we always assume that x # a; that
is, the function value f(a) is completely irrelevant. As we shall see, f(a)
may be different from L, may equal L, or may not exist, depending on the
nature of the function f.

Tn our discussion of f(x) = ()c3 — 2x2)/ (3x — 6), it was possible to
simplify f(x) by factoring the numerator and the denominator. In many
cases, such algebraic simplifications are impossible. In particular, when we
consider derivatives of trigonometric functions later in the text, it will be
necessary to answer the following question.

sinx
N I. As x gets closer to a (but x # a), does the function value f(x) get Question:  Does lim —— exist?
closer to some real number L? =0 X

T 2. Can we make the function value f(x) as close to L as desired by Note that substituting 0 for x gives us the undefined expression 0/0. The

T choosing x sufficiently close to a (but x # a)? following table lists some approximations of f(x) = (sinx)/x for x near
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cannot use this substitution technique for every algebraic function f. In the

fny next illustration, it is important to note that
i | ST ’ i > - D(x +2)
— | _ o 24 x—2 (x—D+

L — y = X7+ x _ _ : )

+2.0 0.454648713 /”__\ X o -1 x+2, providedx #1

+1.0 0.841470985 i o o

} i } — : — 0, and it is permissible to cancel the common
+0.5 0.958851077 ' ' 1 % (If x # 1, then x — 1 # p

factor x — 1 in the numerator and the denominator.) It follows that the

+0.4 0.973545856 graphs of the equations y = (x*+x —2)/(x — 1) and y = x + 2 are the
+0.3 0.985067356 same except for x = 1. Thus, the point (1, 3) is on the graphof y = x 4 2,
+0.2 0.993346654 but is not on the graph of y = (x> + x — 2)/(x — 1), as indicated in the
4+0.1 0.998334166 illustration.
+0.01 0.999983333
£0.001 0.999999833 ILLUSTRATION
40.0001 0.999999998
s Function value Graph Limitasx — 1 :
AY

0, where x is a real number or the radian measure of an angle. The graph
of f is sketched in Figure 1.2 beside the table.
Referring to the table or the graph, we arrive at the following cgnjec—
ture.
: _ lim f(x)=3
x)=x+2
Educated guess: lin}) Y A x>l
X—= X

As indicated, we have merely guessed at the answer. The table indicates
that (sinx)/x gets closer to 1 as x gets closer to 0; however, we cannot be
absolutely sure of this fact. The function values could conceivably deviate
from 1 if x were closer to 0 than are those x-values listed in the table.
Although a calculator may help us guess if a limit exists, it cannot be used T Y
in proofs. We will return to this limit in Section 2.4, where we will prove

that our guess is correct. 1
Itis easy to find lim,_, , f(x) if f(x) is a simple algebraic expression. -+
i For example, if f(x) =2x — 3 and a =4, it is evident that the closer x x24x—2 T/ lim g(x) =3
is to 4, the closer f(x) is to 2(4) — 3, or 5. This example gives us the gx) = x—1 /_ x—1 !‘
first limit in the following illustration. The remaining two limits may be AT ‘
obtained in the same intuitive manner. / T o
ILLUSTRATION
lm(Q2x —3)=2(4)~3=8-3=5 4’
x—4
lim3(x2+1)=(—3)2+1=9+1=10 L /
X—>— 2 —
. -2 .
imvVx +2=+7+2=+/9=3 e ifx#1 BV lim h(x) = 3 !
X7 h(x) = x—1 o x>l N
2 ifx = 1 | | /‘ | | JI E_ C—
In the preceding illustrations, the limits as x — a can be found by / "L X

merely substituting the number a for x. For a special class of functions
called continuous functions, which are discussed in Section 1.5, limits can
always be found by such a substitution. The next illustration shows that we
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In the preceding illustration, the limit of each functi

by x — 9 (that is, we can cancel the expression x —9) and thus obtain
on as x approaches lim f(x) = lim (VXx+3)=+/9+3=6.
1 is 3; but in the first case, f(1) = 3; in the second, g(1) does not exist; £ x—9 x->9 x—9
and in the third, h(1) = 2 # 3. Vx =3 i inator of f(x) as in part (a), we see that the
The following two examples illustrate how algebraic manipulations y (b) If we rationalize the denommZ;lorf thef e( uation y = /x + 3, except for
may be used to help find certain limits. A graph of f9i Sgle Sa?ﬁi;i;?e%%;agig?lre 1 3qu x gets closer to 9, the point
A int (9, 6), as i = :
+ (9, 6) Zlce 1}0(;',1))(0[1 the graph of f gets closer to the point (9, 6). Note tl;at f tE)x%
2x° —5x 42 i o’ = ver actually attains the value 6; however, f(x) can be made as close
EXAMPLE® | If f()=2">"% 604 lim f(x) =< HEVEE detng 1y e - Jose to 9
5eZ _ 75 _ g lnd lim . - S as desired by choosing x sufficiently clos .
: fx)y 16 1 f(x)
SOLUTI i -

UTION  The number 2 is not in the domain of S since the mean- O . 1 1 I ¢ braic manipula-
ingless expression 0/0 is obtained if 2 is substituted for x. Factoring the :F * '9 x The first two examples show that we can olften ?Ssi glagsp;?ent algert))raic
numerator and the denominator gives us tions to find limits. In many cases, however, there 15 merical evidence

(x —2)2x — 1) simplification to try. In such instances, we may obtain nu
X)=—r—
7&) (x —2)(5x + 3)

for the value of a limit by constructing a table of values or by graphing the

function. The next example illustrates both of these approaches.
We cannot cancel the factor x — 2 at this stage; however, if we take the

limit of f(x) as x — 2, this cancellation is allowed, because by (1.1),
x # 2 and hence x — 2 # 0. Thus,

m EXAMPLE®=3 Lend numerical support for the claim that

E logo *
lim f(3) = tim 25~ 5542 ' lim f(r) ~ 04343, where f(x) = —-
o R e - lues f lose to 1
i f function values for x ¢
— — (a) by creating a table o . b of
- Ex i;gx + ;; (b) by using a graphing utility to repeatedly zoom in on the grap f
-2 (x — X
' nearx =1
i 2x — 1 3
= lim = —.
=25x+3 13 i 1.4 SOLUTION ) : for x very close to
l(‘)lgsuze x<1503<y=<06 (a) We construct the following table of function values Ty
N but not equal to 1.
x—9 i
EXAMPLE®=2 Let f(x) = . — =
fx) N \\ 7o v £ x o
. . ) | 1
Find 1 . _ & _ vrv
o 097 0440042191 = 0997 0434947229 = 0.9997 0.43itl337917
(b) Sketch the graph of f and illustrate the limit in part (a) graphically. 098 0438696215 0098 0434729356 0.9998 0.43 o
SOLUTION 0'99 0.436480540 0.999 0.434511774 | 0.9999 8.2223;2769
] U 10001 0.
‘ 7378 1.001 0.434077479
(a) Note that the number 9 is not in the domain of f. To find the limit, we 101 0.433(1)3(‘)8588 Lo0D 0433860766 | 10002 0.434251058
shall change the form of f (x) by rationalizing the denominator as follows. 1.02 043 cho O measto | L0003 0434229351
9 Figure 1.5 1.03  0.42790 .
. . X = )
lim =1 0.999 < x < 1.001,
x_)gf(X) Jim N

0.43408 < y < 0.43451

. . aph
‘ i / (b) We graph the function with x-interval 0.5 < x < 1.5tto (;T‘ﬁ g;}i égtre (ﬁy
] }1_)1% v | e near x = 1, as in Figure 1.4, where we see that y 15 close to 0.4. R
x zooming in’ to obtain the graph in Figure 1.5 allows us to estimate
R of y to be 0.4343 in the x-interval [0.999, 1.001].

i i imit is
Both procedures provide strong circumstantial ev1§ence tha;c ;?te 111;V N
i sane an )
we assume that x # 9. approximately 0.4343. Neither procedure, however, give
or and the denominator

x—9 x—-9

By (1.1), when investigating the limit as x —» 9,
Hence x — 9 # 0, and we can divide the numerat

e R S e e |




CHAPTER | Limits and Continuity 1.1 Introduction to Limits

The finite limitations of calculators and graphing utilities allow us to get

e 1
close to x = 1, but not arbitrarily close. For example, if b is the smallest Figure 1.7 f(x) = sin x

positive number available on our calculating device, then the function f LY
could behave very differently inside the interval (1 — b, 1 + b) (where we

introduce a new idea that will permit us to determine the exact value of

cannot evaluate f) than it does outside that interval. In Chapter 6, we will +1
I
|
|
|
|

limits like the one in this example.

Figure 1.6 |
1 H j I
fx) = T j
oy The next two examples involve functions that have no limit as x ap- |
\ proaches 0. The solutions are intuitive in nature. Rigorous proofs require T
the formal definition of limit discussed in the next section.
I 1.7. Hence lim,_, sin(1 /x) does not exist, because the function values do
] 1 not approach a specific number L as x approaches 0.
il EXAMPLE® 4 Show that lim — does not exist.
I il i x—=0 X
l] —t—1—} F——— > We sometimes use one-sided limits of the following types.

i 4 ' SOLUTION The graph of f(x) =1/x is sketched in Figure 1.6.
il Note that we can make | f (x)| as large as desired by choosing x sufficiently )

T close to 0 (but x # 0). For example, if we want f(x) = —1,000,000, One-Sided Limits 1.2 | Notation Intuitive meaning | Graphical interpretation
L we choose x = —0.000001. For f(x) = 10°, we choose x = 1072, Since = o

(J; 0(::cs) ri)(:;eesxlils(it approach a specific number L as x approaches 0, the limit xl_ifg, fo=1L Zzedc;:erz)alzea{ Eixe)

(left-hand limit) sired by choosing x 9
sufficiently close to
a,and x < a.

1
EXAMPLE®=5 Show that lim sin — does not exist.

x—0 X I | | —
lim f(x)=L We can make f(x) y
SOLUTION Letus first determine some of the characteristics of the x—a® as close to L as de-
graph of y = sin(1/x). To find the x-intercepts, we note that the following (right-hand sired by choosing x : y = f(x)
statement is true for every integer n: limit) sufficiently close to ¢ 7’4 | )
1 a,and x > a. L ! _
. . | 1 T
sin— =0 ifandonlyif — =xnn, or x=— | d=—x *
X x TR

Some specific x-intercepts (with n = £1, 42, 3, ..., £100) are

1 1 1 1 Figure 1.8 For a left-hand limit, the function f must be defined in (at.least) an
0 i2—’ 5 1007 ° AY open interval of the form (c, ) for some real number c. For a rlghF—hand
T ™ 3w 00 limit, f must be defined in (a, c) for some c¢. The notation x — a~ is read
If we let x approach O, then the distance between successive x-intercepts x approaches a from the left, and x — a™ is read x approaches a from the
decreases and, in fact, approaches 0. Similarly, right.
1 . . 1 | .
sm;:l if and only if x=m EXAMPLE®6 If f(x) = ~/x — 2, sketch the graph of f and find, if
] ) T y=Vi=—2 possible,
nd in— =—1 ifandonlyif x= ————— T ' b) lim f(x (c) lim f(x)
a sin — if and only if x Gr/2) £ 2 | (a) x11)n21+ fx) (b) Jim, Fx) Jm
where n is any integer. Thus, as x approaches 0, the function values I —f———t— > . - 18
sin(1/x) oscillate between —1 and 1, and the corresponding waves on -+ SOLUTION  The graph of f is sketched in Figure o al P
the graph become very compressed horizontally, as illustrated in Figure (@) If x > 2, then x — 2 > 0 and hence f(x) = +/x — 2 is a real number;




Theorem 1.3

Figure 1.9
x
s =2
X
Yy
1¢
I I ,x.
-1

CHAPTER |  Limits and Continuity

that is, f(x) is defined. Thus,

Iim vx—-2=+/2-2=0.

x—>2%
(b) If x < 2, then x —2 < 0 and hence f(x) = +/x — 2 is not a real num-
ber. Thus, the left-hand limit does not exist.
(c) The limit of f as x approaches 2 does not exist because f(x) =
~/x —2 is not defined throughout an open interval containing 2 — that
is, an interval containing numbers that are less than 2 and numbers that are
greater than 2.

The relationship between one-sided limits and limits is described in the
next theorem.

lin}z fxy=L ifandonlyif lim f(x)=L = lim f(x)
X x—>a’t

X—>a

Theorem (1.3), which can be proved using definitions in Section 1.2,
tells us that the limit of f (x) as x approaches a exists if and only if both the
right-hand and left-hand limits exist and are equal to some real number L.

EXAMPLE=7?7
possible,

@ lim f(x)

If f(x)= m, sketch the graph of f and find, if
x

() lim f(x) (9) lim f(x)

x—0" x—0
SOLUTION  The function f is undefined at x = 0. If x > 0, then
|x| =x and f(x) = x/x = 1. Hence for x > 0, the graph of f is the
horizontal line y = 1. If x < 0, then |x| = —x and f(x) = —x/x = —1.
These results give us the sketch in Figure 1.9. Referring to the graph, we
see that

(a) lim f(x) = —1 the left-hand limit is —1
x—0"

(b) lim f(x) =1 theright-hand limit is 1
x—0%

() Since the left-hand and right-hand limits are not equal, it follows from
Theorem (1.3) that lim,__, f(x) does not exist.

In the next example, we consider a piecewise-defined function.

EXAMPLE =8  Sketch the graph of the function f defined as follows:
(3-x ifx<1
fx)=1{4 ifx=1

X241 ifx>1

Find lim f(x), lim f(x), and lim fx).
x—1" x—17" x—1

Introduction to Limits

Figure 1.10

Figure 1.11

0.3

/

L V (liters)

1t

SOLUT!ON - The graph is sketched in Figure 1.10. The one-sided
limits are

lim f(x)= lim 3 —x)=2
x—>1" x—>1"
and lim f(x) = lim (x> + 1) =2.
x—1" x—17

Since the left-hand and right-hand limits both equal 2, it follows from
Theorem (1.3) that

lim f(x) =2.

Note that the function value f(1) = 4 is irrelevant in finding the limit.

The following application involves one-sided limits.

EXAMPLE=9 A gas (such as water vapor or oxygen) is held at a
constant temperature in the piston shown in Figure 1.11. As the gas is
compressed, the volume V decreases until a certain critical pressure is
reached. Beyond this pressure, the gas assumes liquid form. Use the graph

in Figure 1.11 to find and interpret 2

lim V b) lim V lim V
@ P—:Ilr(}O‘ ®) P—100" © P—100
SOLUTION

(a) We see from Figure 1.11 that when the pressure P (in torrs) is low, the
substance is a gas and the volume V (in liters) is large. (The definition of
the unit of pressure, the torr, may be found in textbooks on physics.) If P
approaches 100 through values less than 100, V decreases and approaches
0.8; that is,

lim V=028.
P—100"

The limit 0.8 represents the volume at which the substance begins to
change from a gas to a liquid.

(b) If P > 100, the substance is a liquid. If P approaches 100 through
values greater than 100, the volume V increases very slowly (since liquids
are nearly incompressible), and

lim V =0.3.
P—>100"

The limit 0.3 represents the volume at which the substance begins to
change from a liquid to a gas.

() limp_, o, V does not exist since the left-hand and right-hand limits in
parts (a) and (b) are not equal. (At P = 100, the gas and liquid forms exist

together in equilibrium, and the substance cannot be classified as either a
gas or a liquid.)




CHAPTER |  Limits and Continuity Exercises 1.1
¢ 38
. 34 AY 3
- EXERCISES 1.1
Exer. 1-10: Find the limit. Exer. 31-40: Refer to the graph to find each limit, if it T 0/
I lm (3x— 1) 2 lim (22 +2) SXISS | P P
x—>=2 x—>3 (2) lim f(x) (b) lim f(x) (c) lim f(x) . L / I X
3 lim x 4 lim (—x) x—>2" x—>2" x—>2 |
x4 s (d) lim f(x) (e) lim f(x) (f) lim f(x) /,
5 lim 7 6 lim 100 x—0" x—>0" x>0
x—100 x—7 T
. L 31 AY ; Ly
i 0t . . 1
x+4 .ox+2 i i 4
| 9 Lk 10 1 +
‘ x—1>IE1 2x +1 x1—>InS x—4 /— 35 ALY L
Exer. 11-24: Use an algebraic simplification to help find /_ /—\ ! :
the limit, if it exists. - T \ P T S
2 —— - — % %
(x+3)(x—4) . x+DE"+3) x K 4 \(
I lim ———— = 12 lim ——"———= T 4
>=3 (x+3)x+1) x>—1 x+1 1 ik \
2 3 _ g2 -3 , , bz , ; | -+
13 lim}x 4 14 Tim 2% —6x" +x VY4 \of of 54_: |
x=28 x -2 x—3 x—3 <l>
. - . P 42r—3 32 ! 4 T =
15 lim ———— 16 lim —————
r—>12p2 457 -7 r>=3r"4+7r4+12 36 ! 94
2 . T AY
17 lim © 19 8 fim YXZO : i
k=>4 k-2 x—25 x — 25 il o —+ 40 T
(k- 4R X
19 - = 20 —_ s 4
am h A h o—p
3 3 _ | | -
21 fim 8 22 lim © =8 — X \
h—>-2 h+2 h—>2 p2 — 4 - |
———————— T o —e x
23 fim 24 24 lim 2145 & x 1 |
272278 z=5 77 — 10z + 25 - o—=o :
Exer. 25 - 30: Find each limit, if it exists:
(=) lim f(x) (®) lim_f(x) (¢) lim £(x) Exer. 41 -46: Sketch the graph of f and find each limit, if
x—a x—>a x—a 33 Ay 37 AY it exists:
_4 | i i lim f(x)
5 f) = "‘—4—'; =4 | @ lim fG)  (b) lim fG) () fimp f
x - -
. T 3 2 . 1
3 | L | RE; 1 ifx<
26 f(x)=|i%; a=-5 + | 1 { a0 fW=14_, ifx>1
1 _’_ 1 S i S L LI - X ifx<1
27 fx)=vx+6+x a=—-6 \ . > —H—Jqﬁ RN EUE. x 42 fO=13_, ifx>1
[~ |
28 f(x)=+5-2x-x% a=3 4\ 3x—1 ifx<l
| - 1 i \ + \l 4B fO=13_5 ifx>1
- fo == a=0 T T 0 | ifx#1
I X 1 = . x—1] ifx
. | T T T T 1 I I X | 44 f(x) = l] 1fx =1
30 f(x) = ——0j; a=38 T
x—8




2+1 ifx<l1

45 fo)y=11 ifx=1
x+1 ifx>1
—x?  ifx <1
46 f(x)=132 ifx =1

x—=2 ifx>1

47 A country taxes the first $20,000 of an individual’s in-
come at a rate of 15%, and all income over $20,000 is
taxed at 20%.

(2) Find a piecewise-defined function T for the total tax
on an income of x dollars.

(b) Find

lim T(x) and lim T(x).
x—>20,000~ x—>20,000*
48 A telephone company charges 25 cents for the first
minute of a long-distance call and 15 cents for each
additional minute.

(a) Find a piecewise-defined function C for the total
cost of a long-distance call of x minutes.

(b) If n is an integer greater than 1, find
lim C(x) and lim+ C(x).

x—>n" X—n
49 A mail-order company adds a shipping and handling fee
of $4 for any order that weighs up to 10 1b with an
additional 40 cents for each pound over 10 Ib.

(2) Find a piecewise-defined function S for the shipping
and handling fee on an order of x pounds.

(b) If @ is an integer greater than 10, find
lim S(x) and 1im+ S(x).

X—>a” X—>a
50 The Campus Cinema charges $3 admission for children
(under age 12), $6 for adults, and $4.50 for senior
citizens (over age 60).

(a) Find a piecewise-defined function T for the ticket
price for a person x years old.

(b) For which values of a are lim, - T(x) and
lim . T(x) equal and for which values of a are
they unequal?

51 The figure shows a graph of the g-forces experienced
by astronauts during the takeoff of a spacecraft with two
rocket boosters. (A force of 2g’s is twice that of gravity,
3g’s is three times that of gravity, etc.) If F(¢) denotes
the g-force r minutes into the flight, find and interpret

(a) lim F(z)
t—0t

(b) lim F(r)and lim F(r)
t—>3.5" t—>3.5%

(c¢) lim F(¢) and lim F@)
t—>5" -5+
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Exercise 51

F(t) (g’s)

10 [rirst

1
|
|
|
|
{
|
[
|

1
|

Spacecraft
engine
. / Engine
| |  shutdown
| | I A | | .
1 2 3 4 5 ¢ (minutes)

52 A hospital patient receives an initial 200-mg dose of
a drug. Additional doses of 100 mg each are then
administered every 4 hr. The amount f(@) of the drug
present in the bloodstream after ¢ hours is shown
in the figure. Find and interpret lim, ¢ f(#) and
lim, _ ¢+ f(2).

Exercise 52 A f(©) (mg)

400 - A
I

300
200-\;
100f>
Y Y R N Y Y
4 8 12 16 20 t (hours)

El Exer. 53 -60: The stated limit (of the form lim__ , f(x)=

L) may be verified by methods developed later in the
text. Lend numerical support for the stated result by
(a) creating a table of function values for x close to g
and (b) using a graphing utility to repeatedly zoom in on
the graph of f near x = a. Give additional digits if the
stated limit is an approximation.

53 lim(1+x)Y* ~272 54 lim(1 +2x)¥* ~ 403.4
x—0 x—0
X X

-9
55 lim 3 A 9.89 56 lim

x—2 X — x—>1 x —

x| o gl \ /1
57 lim (4—ﬁ ) =6
x—0 2

~ 1.39

1.2 Definition of Limit

sinx — 7x

58 lim [x|[* =1 59 lim —
x—=0

60 lim S2C7%) _

x=3 x—-3

,ZI 61 (a) Given that f(x) = cos(1/x) — sin(1/x), investigate
f(x) by first letting x = 3.1830989 x 10"

hmx —0

x—>0 Xxcosx

E] 62 (a) Given that f(x) = /100 _ 0.933, investigate
lim, o+ f(x) by letting x = 107" for n = 20, 40,
60, and 80. (If your calculator allows, use n = 200,
400, 600, and 800.)

(b) What appears to be the limit in part (a)?

- = —6

for n = 2, 3, and 4 and then letting x = 3 x 107"

forn =2,3, and 4.
(b) What is the limit in part (a)?

1.2

DEFINITION OF LIMIT

We state the precise meaning of a limit of a function in Definition (1.4) of
this section. Because the definition is rather abstract, let us begin with a
physical illustration that may make it easier to understand.

Scientists often investigate the manner in which quantities vary and
whether they approach specific values undér certain conditions. Suppose
that an industrial plant discharges waste water into a nearby river. The
discharge contains a chemical that in large concentrations is toxic to hu-
mans. Several miles downstream from the plant, the river flows through a
small town (Figure 1.12a on the following page). Since the townspeople
use the water from the river for drinking, washing, and cooking, they are
concerned about the possible dangers.

The operators of the plant have promised to keep the concentration of
the chemical at the point of discharge small enough so that by the time
the water reaches the town, its concentration will be low enough not to
cause any harm. Meters are installed at the plant and at the water station
in the town to measure the concentration of the chemical in the water at
both points. We let x denote the concentration indicated by the meter at the
plant and y represent the concentration indicated by the meter in town. The
plant operators agree to regulate the discharge so that the concentration y
at the town’s meter will be near a desired level of L, low enough so that
the chemical poses no hazard to the town.

Workers at the plant and officials of the town observe that when the
concentration x of the chemical is near the level a on the plant’s meter; the
measurement y-on the town’s meter is close to L. They also note that the
closer x is to a, the closer y is to L. Because of random fluctuations in
the opération of the plant, it is not possible to maintain the concentration
of the discharge exactly at a for extended periods; there will always be
fluctuations in the concentration.

We use these meters to give a precise meaning to the statement y
approaches L as x approaches a, or, symbolically,

limy = L.

xX—>a

——




Figure 1.12
CY

Water

station
with town's \

meter \

Concentration at town’s meter

CHAPTER |  Limits and Continuity

When monitoring these meters, we would not expect the concentration
Y in town to remain exactly at L over a long period of time. Instead, our
goal might be to force y to remain very close to L by restricting x to values
near a. In particular, if € (epsilon) denotes a small positive real number,
let us suppose it is sufficient that

L—e<y<L+e,

as indicated on the town’s meter in Figure 1.12(b). An equivalent statement
using absolute values is

ly—L| <e.

If these inequalities are true, we say that y has e-tolerance at L. Thus,
the statement y has 0.01-tolerance at L means that |y — L| < 0.01; that
is, y is within 0.01 unit of L. This tolerance may be sufficiently accurate
for our purposes.

Similarly, we consider a small positive number § (delta) and define
§-tolerance at a on the plant’s meter in Figure 1.12(b). In our later work
with functions, it will be important that x # q. Anticipating this restriction,
we say that x has §-tolerance at g if

O<|x—a|<s
or, equivalently, if
a—é<x<a+é and x #a.
Let us now consider the following question.

Question: Given any € > 0, is there a § > 0 such that
if x has §-tolerance at a, then ¥ has e-tolerance at L?

If the answer to this question is yes, we write

limy=L.
X—>a

It is important to note that if limx _qY = L, then no matter how small
the number €, we can always find a § > 0 such that if x is restricted to the
interval (@ — 8, a + &) on the plant’s meter (and x # a), then y will lie in
the interval (L — ¢, L + €) on the town’s meter.

This example has provided a more precise interpretation of the limit
concept than that given in Section 1.1, where we used words such as close
to and approaches. If we rephrase the last question and its answer in terms
of inequalities, we obtain the following statement:

limy =L

x—a’
means that for every € > 0, there is a 8§ > 0 such that
if 0<|x al <&, then ly—L| <e

It is now a small step to formulate the definition of a limit of a function
f. Letting y = f(x) in the preceding discussion gives us the following
definition, which also states the conditions required for the function f.

1.2 Definition of Limit

Definition of Limit

of a Function 1.4 Let a function f be defined on an open interval containing a, except

possibly at a itself, and let L be a real number. The statement
lim f(x) = L
X—>a

means that for every € > 0, there is a § > 0 such that

if 0<|x—a|l<$8, then |f(x)—L|<e

We sometimes call the inequality 0 < |x — a| < § a 8-tolerance state-
ment and the inequality | f(x) — L| < € an e-tolerance statement. .
If we wish to use a form of Definition (1.4) that does not contain

absolute value symbols, we note that

@ 0 < |x—a| <8isequivalenttoa —8§ <x <a+8andx #a
() |f(x)— L| <eisequivalentto L — ¢ < f(x) < L +¢

The inequalities in (i) and (ii) are represented graphically on real lines
in Figure 1.13. We may restate Definition (1.4) as follows.

&)
Alternative Definition of

Limit 1.5 }]-?31 fxy=1L

means that for every € > 0, there is a § > O such that if x is in the

O<l|r~a|l<3$ open interval (a — 8,a + 8) and x # a, then f(x) is in the open

:65——9:6—5%: interval (L — ¢, L + €).
I i I
I l I
— ¥ ': 2 If f(x) has a limit as x approaches a, then that limit is unique. A proof
a=90 «x “ at?o of this fact is given at the beginning of Appendix I. ‘
In using either Definition (1.4) or (1.5) to show that lim,_  f(x) =
[f@) —L| <€ L, it is very important to remember the order in which we consider the

A numbers € and §. Always use the following steps:

Step | Consider any € > 0.

el /F Step 2 Show that there is a 8§ > 0 such that if x has §-tolerance at a, then
f(x) has e-tolerance at L.

The number'$ in the limit definitions is not unique, for if a specific
& can be found, then any smaller positive number §, will also satisfy the
requirements. ‘ ‘

Before considering examples, let us rephrase the preceding discus-
sion in terms of the graph of the function f. In particular, for € > 0
and § > 0, we have the following graphical interpretations of tolerances,
where P(x, f(x)) denotes a point on the graph of f.




Figure 1.14

er
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- 1
Tolerance statement ‘

| f(x) has e-tolerance at L.

Graphical interpretatio:

P(x, f(x)) lies between the horizontal lines
y=L+te.

x has §-tolerance at a. ’_x is in the interval (a —E, a +4) on th_e
‘ ‘ x-axis, and x # a.

The two steps in showing that lim _  f(x) = L may now be inter-
preted graphically as follows:

Step | For any € > 0, consider the horizontal lines y = L % € (shown in
Figure 1.14).

Step 2 Show that there is a § > 0 such that if x is in the open interval
(@—4é,a+6) and x # a, then P(x, f(x)) lies between the horizontal
lines y = L + € (that is, inside the shaded rectangular region shown in
Figure 1.15).

Figure 1.15
AY

y=W

/y =L + ¢ /y =L+ e
Vs LT p(x, f0)—p]
y=L - ¢ y=L —-¢
I - [} -
a X /';a \ x
a— 6 a+ 6
EXAMPLE® | Use Definition (1.4) to prove that
lim(3x - 5) =7.
x—4
SOLUTION If, in Definition (I.4), we let f(x) =3x—5, a= 4,

and L = 7, then we must show that given any € > (0, wecanfinda § > 0
such that

() if 0<|x—4| <5, then |Bx =5 -7 <e.

To solve an inequality problem of this type, we can often obtain a cluetoa
proper choice for § by first examining the e-tolerance statement. Doing so

1.2 Definition of Limit

Figure 1.16
AY 5
Y=
I y = a* + €
|
a4 |
|
I
| y=@ e
| I
I I
L
\\_ | i l >
/ e\ ;
Va?-¢ VaZ+e
Figure 1.17
AY
/I( y =a’+ €
|
a’ T :
|
M
| [ y=a"—¢
- [ |
I |
[ l
[ |
et | : | =
/ e\ '

leads to the following list of equivalent inequalities:

|Bx—5)—7] <€
[3x — 12| <€
3x —4)| <€
3[x—4| <e

e-tolerance statement
simplifying

common factor 3

properties of absolute value

lx — 4| < %6 multiply by 1

The final inequality in the list gives us the needed clue. Specifically, we

choose § such that § < %e and obtain the following equivalent inequalities:

O<|x—4| <8
0<|x—4] < ie
0<3|x—4|<e¢
0<|3x—12] <e¢
0<|Bx—=5 -7 <e€

S-tolerance statement
choice of § < %e

multiply by 3

properties of absolute value

equivalent form

These equivalent inequalities verify (x) and hence complete the proof.

2

The next example illustrates how the geometric process shown in Fig-
ures 1.14 and 1.15 may be applied to a specific function.

Prove that lim x2 = a2.

x—>a

EXAMPLE®=2

SOLUTION Letusconsider the case a > 0. We shall apply the alter-
native definition (1.5) with f(x) = x?and L = a?. Thus, given any € > 0,
we must find a § > 0 such that

(*)if xisin(a—8, a+8)andx # q, 2

then x?isin (a® — e, a® + €).

We can obtain a clue to a proper choice for § by examining graphical
interpretations of tolerance statements. Thus, as in step (1) on page 100,
consider the horizontal lines y = a® & €. As shown in Figure 1.16, these

lines intersect the graph of y = x? at points with x-coordinates v'a> — ¢
and v'a? + €. Note that if x is in the open interval (v/ a* —e,Va* + €),
then the point (x, x2) on the graph of f lies between the horizontal lines.
If we choose a positive number § smaller than both va? + € — a and
a—+va*— €, witha? — ¢ > 0, as illustrated in Figure 1.17, then when x
has é-tolerance at a, the point (x, x2) lies between the horizontal lines y =
a® £ e (that is, x> has e-tolerance at a®). This geometric demonstration
proves (x). Although we have considered only a > 0, a similar argument
applies if a < 0.




Figure 1.19

f(x)=m
X
y
y=L +e€ T
. s
3 0
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The next two examples, which were also discussed in Section 1.1,
indicate how the geometric process illustrated in Figure 1.15 may be used
to show that certain limits do not exist.

1
Show that lim — does not exist.
x—>0x

EXAMPLE=3

SOLUTION Letus proceed in an indirect manner. Thus, suppose
that

lim 1 =L

x—0Xx
for some number L. Consider any pair of horizontal lines y = L + ¢, as
illustrated in Figure 1.18. Since we are assuming that the limit exists, it
should be possible to find an open interval (0 — 8, 0 + 8), or, equivalently,
(=38, 8), such thatif -8 < x < § and x # 0, then the point (x, 1/x) on the
graph lies between the horizontal lines. However, since |1/x| can be made
as large as desired by choosing x close to 0, some points on the graph will
lie either above or below the lines. Hence our supposition is false; that is,
lim _ ,(1/x) # L for any real number L. Thus, the limit does not exist.

Figure 1.18 f()c):l
X
YA

\ y=L+ e

y=L — ¢

\‘3 8 %
EXAMPLE®=4 If f(x) = M, show that lin%) f(x) does not exist.
X X

SOLUTION The graph of f is sketched in Figure 1.19. If we con-
sider any pair of horizontal lines y=Lzxe, with 0 < € < 1, then there
are always some points on the graph that do not lie between these lines. In
the figure, we have illustrated a case for L = 1; however, our proof is valid

1.2 Definition of Limit

Theorem I.6

for e\};ry L. Since we cannot find a § > 0 such that step (2) on page 100 is
true, the limit does not exist.

The following theorem states that if a function f has a positive limit
as x-approaches a, then f(x) is positive throughout some open interval
containing a, with the possible exception of a.

If lim, ,, f(x)=L and L >0, then there is an open interval
(@ —8,a+8) containing a such that f(x) >0 for every x in

(a — 4, a + 8), except possibly x = a.

PROOF IfL>0and welete= %L, then the horizontal lines y =
L + € are above the x-axis, as illustrated in Figure 1.20. By Definition
(1.5), there is a § > O such that if a —§ <x <a +8 and x # q, then
L—¢€< f(x) <L+e. Since f(x)>L—¢€ and L —e > 0, it follows
that f(x) > O for these values of x. ==

Figure 1.20
AY

y f(y
L+ € y=1L+e
L+ /-“/
L-e¢ 4 y=~L-e
/J:\ -
\21!\ X
1}

+ &

a —

ENY

We can also prove that if f has a negative limit as x approaches a,
then there is an open interval containing a such that f(x) < 0 for every x
in the interval, with the possible exception of x = a.

Formal definitions can be given for one-sided limits. For the right-hand
limit x — a™, we replace the condition 0 < |x —a| < § in D finition
(1.4) by a < x < a + 4. In terms of the alternative definition (1.5), we re-
strict x to the right half (a, a + 8) of the interval (a — 8, a + 8). Similarly,
for the left-hand limit x — a~, we replace 0 < |[x — a| < § in (1.4) by
a — 8 < x < a. This is equivalent to restricting x to the left half (a — §, a)
of the interval (a — 8, a + §) in (1.5).
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- EXERCISES 1.2

\

Exer. 1-2: Express the limit statement in the form of Exer. 25-30: Use the graphical method illustrated in

(2) Definition (1.4) and (b) Alternative Definition (1.5). Example 2 to verify the limit for a > 0
I lim v() = K Pt _ . ' .
= Jim f@6) =M 25 lim x? =4 26 lim 24+ 1) =4 1 1
Xx—>a
e ;l;gffg”(f‘)s Degone-sided limit stafement in a 27 jiy 3 = g3 28 lim 1t = ¢ DURING THE NIGHT of November 10, 1619, a twenty-three-year-old
iti : i = , A
Definition (15). on (1.4) and (b) Alternative , "'*’“ x—>a Frenchman, René Descartes, had three vivid dreams that changed the
3 lim gx)=C 4 lim h(z) =L ’ IIHB‘ VE=a 30 xﬁig Vi=1Ja course of intellectual history. In these dreams, filled with whirlwinds,
il sa ifying ph , thunderclaps, and sparks, Descartes felt :
- ra Exer. 31-38: Use the method illustrated in Examples 3 Siner anto.m? i ap.s = . &e ahilne et o ? |a e 5
11m+ f@ =N 6 lim s(x)=D and 4 to show that the limit does not exist. - natural force pointing to the unification and illumination of all knowl-
Z—>1 + .
Exer. 7 14: For the given | e x — 3] 2 edge by a single method, the method of
- /—14C Ior the given imx—> f(x) =L and €, use the 31 lim ! 32 lim X el d [siomHs
grap!l of the function f to find tl;le largest value of 5 such ¥3 X =3 =2 [x 4 2] T T,h SREETES 9 reveaj l,
thatif 0 < |x — a| < §, then [fx)~L| <e. . 3x+3 N marked, in' the words of mathematicians
4x2 33 lim 34 lim Ld Philip Davis and Reuben Hersh, the begin-
7 lim — _9_6. tinan 'x+1' x5 lx—j, 1 = )
x>3/2 2x =3 7 € =001 1 ning of “the modern world, our world of
2 35 lim — 36 lim triumphant rationality.™*
8 lim X4 _ =0 x x4 x —4 d
w33 3rpa = H €=01 The middle of the seventeenth century
9 lim x2 37 lim 38 lim _ was one of the most critical periods in
1 = . — >
B : 16 €=01 S =1 = 1)° the history of mathematics. In this period,
10 lim x3 = 27; € =0.01 * ;‘;Cg;)rimtrty taxfs t;“;’ first $20,000 of an individual’s France was the undisputed mathematical
— ’ — Y € at a 1 " -
o is taxed at zort;; ep(z,r ai?ﬁcilﬁeagf ?fl(:lrll; ovlert ;20’020 center of the world, boasting such great thinkers as Pierre de Fermat,
i . : 18, le A
i xll>nl16 Vx =4 € =0.1 the total tax and P(x) the percentage owed in ta)gs) 0:: Blaise Pascal, Gilles Persone de Roberval, and Girard Desargues. But few
men before or since have achieved as much distinction in philosophy and

the next dollar earned. Explain why lim__,, ooo T (x)

27 Sl exists but lim, _, 59,000 P(x) does not exist. mathematics as Descartes (1596—1650). Regarded by many historians
B 3 ]jm/ ; tan x = /3; €=0.1 40 Prove that if f has a negative limit as x approaches as the “father of modern philosophy,” Descartes is perhaps best known
X—>7 . . .
_ @, then there is an Open interval containing a such that to us through his dictum “Cogito, ergo sum” —that is, “I think; therefore
E 14 lim cos x = %; €=0.1 S ) < 0 for every x in the interval, with the possible > :
x—>7/3 exception of x = g. I am.
-24: iti : : i tant contribution to mathematics was the
Ex_er. 15-24: Use Definition (1.4) to prove that the limit 41 Give an example of a function f that is defined at @ such D.escartes mc?st RERA * i .' ,
exists. thatlim £ (x) exists and lim,_, f(x) £ f(a). VG R DT creation of analytic geometry, the linking of algebra and geometry. Be;
15 1 = - - . #ihem g g fg E S ginni i i int in the plane b air o
)611_1313 Sx =15 16 )}1_1)115 (—4x) = -20 42 If f is the greatest Integer function (see Example 5 Al VA R \:;? | ginning with the representatl:ron of ? pom't m‘ e plane by a pai
- of Section B in the Precalculus Review) and a is any ¢ YAV S v . numbers (now called Cartesian coordinates in his honor), Descartes set
,,Lm_g Gx+1)=-5 18 xh_lg Gx—-3)=7 Infeger, show that lim, 1 (x) does not exist. 70T R T R it Ml . out to show, in his own words, “how the calculations of arithmetic
9 T _ . , 43 Let f be defined as follows: AL 7 arerelated to the operations of geometry.” He demonstrated how the
19 fim (10 -9x) =64 20 lim (15— 8x) = 17 / 2 g
¥ x4 0 if x is rational ‘ & g . e familiar figures of Euclidean geometry — lines, polygons, circles, ellipses,
2 ]}l_fg 5=5 22 lim5 3=3 fo) = { 1 if x is irrational N . YR\ *“ . and the other conic sections— corresponded to algebraic equations.
: Sl L v v \! . . . . *
g Prove that for ; Vil Pyl AW 3 Geometric questions could be translated into algebraic equations and
23 lim ¢ = ¢ fi every real number a, lim d it : Vs
3y € = ¢ for all real numbers a and ¢ not exist. yq J(x) does I T : ¥\ algebraic operations could be represented in the language of geometry.

NN e i/l . Thus two of the main branches of mathematics, which had previously |

24 lin(lix-m (mx +b) = ma + b for all real numbers m, b,
and a /
0 *Philip J. Davis and Reuben Hersh, Descartes’ Dream: The World According to Mathematics.

New York: Harcourt Brace Jovanovich, 1986.
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The facts demonstrated by these examples are given for reference in
the following theorem.

been treated as distinct and independent fields, were now seen to be
unified. If the classic geometric techniques failed to solve a problem in
geometry, there was now hope of recasting it into algebra where a new Theorem 1.7 s
set of tools was available. Similarly, one could often gain great insight 0 }E—r}}z ¥
into difficult algebra problems by interpreting them geometrically.

At age 8, Descartes went to a Jesuit ”school, where he spent the
mornings in bed because of his delicate health. He used these periods
productively for study and contemplation, following the custom of re-

i) im x = ¢
()x_m

maining in bed until late morning for the rest of his life. In 1649, Sweden’s LLLUSTRATION

Queen Christina invited him to become her tutor. Perhaps tempted by lim 8§ = § lim3=3
the glamour of royalty, Descartes accepted, but the cruel winter proved ENE ¥8

too much for him; he died of pneumonia in 1650. XE% X = ﬁ XEH_E; x=—4

The preceding illustration gives simple examples of the limits in The-
orem (1.7), but as we shall see, the limits in (1.7) can be used as building
blocks for finding limits of very complicated expressions.

Many functions can be expressed as sums, differences, products, and
quotients of other functions, Suppose f and g are functions and L and M

are real numbers. If
TECHNIQUES FOR FINDING LIMITS | @ oL and gw) > M as x—a,
- o ] . i ] we would expect that
AR VBT It would be an excruciating task to verify every limit by means of Defini- |
i | tion (1.4) or (1.5). The purpose of this section is to introduce theorems that f)+gx) > L+M as x—a.
| Figure 1.21 f(x) = ¢ may be used to simplify problems involving limits. Before stating the first
i .

i e X & The next theorem states that this expectation is true and gives analogous
3 AY theorem, let us consider the limits of two very simple functions:

‘ results for products and quotients.

. y=c (i) the constant function f given by f(x) =c¢ ~
' : ,’ (if) the linear function g given by g(x) = x Theorem 1.8 It 3% A ,}’_{1}1 2(x) both exist, then
| l . . . -
1 ll fx) "c " I;ISZ %rzf}(l)'o;i I{C;s the horizontal line y = ¢ shown in Figure 1.21 for - }E}}z () + g(x)] = ;H}}l Fo) + }?}; )
' ’I‘ ‘I’ 5 |[f(x)—c|=]c—c|=0 for every x | @i }gl}z[f(x) 8@ = }E}b F &) }3_1};11 ()
Figure 1.22 g(x) =x and since 0 ig Igss than any € > 0, it follows from Definition (1.4) that (i) lim [ f (x)] - }gﬁ S . provided lim g(x) % 0
iy S (x) has the limit ¢ as x approaches a. Thus, x->a | g(x) }gr(ll g(x) x—a

}1—% S = ;}531 c=c @(iv) limfcf(x)] =c [ lim f(x)] ,  for any number ¢
X~—>q X
This limit is often described by the phrase the limit of a constant is the ) )}I}}}Z[f () —gx)] = }1}}; AGIES }2}}1 8(x)
constant. '
The graph of the linear function & given in (ii) is shown in Figure 1.22,
and the limit can also be established by means of Definition (1.4). As x

tate th ties in Th 1.8) as follows:
approaches a, g(x) approaches a; that is, We may state the properties in Theorem (1.8) as follo

() The limit of a sum is the sum of the limits.

Nim g(0) = lim x = a. (ii) The limit of a product is the product of the limits.
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(i) The limit of a quotient is the quotient of the limits, provided the
denominator has a nonzero limit.

(iv) The limit of a constant times a function is the constant times the
limit of the function.

(v) The limit of a difference is the difference of the limits.

Proofs for (i) - (iii), based on Definition (1.4), are given in Appenaix L
Part (iv) of the theorem follows readily from part (ii) and from Theorem
(1.1

fimief (9] = [Jim, ] 1m0
- <[y s
To prove (v), we may write
fx)—g(x) = fx)+ (=Dgx)

and then use parts (i) and (iv) (with ¢ = —1).
We now use the preceding theorems to establish the following.

Theorem 1.9
If m, b, and a are real numbers, then

lim (mx + b) = ma + b.
xX—>qa

PROOF By Theorem (1.7),

limx=a and lim b = b.
X—a xX—>a

We next use (i) and (iv) of Theorem (1.8) to obtain

lim (mx 4+ b) = lim (mx) + lim b
x—a x—a

X—a
=m (limx) +b
X—>a
=ma-+b. mm

This result can also be proved directly from Definition (1 4).

ILLUSTRATION

lim 5x+2)=5(-2)4+2=-10+2=—8§
x—>—2

lin%(4x —11)=4(6)-11=24—-11=13
x—

It is easy to find the limit in the next two examples by means of Theo-
rems (1.8) and (1.9). To obtain a better appreciation of the power of these
theorems, you could try to verify the limits in each by using only Definition
(1.4).

1.3 Techniques for Finding Limits

~

EXAMPLE® | Find lim 272
x—=2 5x +17

SOLUTION From Theorem (1.9), we know that the limits of the nu-
merator and the denominator exist. Moreover, the limit of the denominator
is not 0. Hence, by Theorem (1.8)(iii) and Theorem (1.9),

g 3xa  JBOTED 50y 44 19
x>25x+7 lir%(5x+7) 5 +7 17
X—

EXAMPLE®2 If Achilles runs at a rate of 600 ft/min while the tor-
toise pokes along at 100 ft/min,

(a) find an expression for the distance between them as a function of time
x if the tortoise is given a head start of 2000 ft

(b) determine the limit of this distance as x — 4

SOLUTION Let A(x) and T(x) denote the position along the race
course (in feet) for Achilles and the tortoise, respectively, where x is the
time (in minutes).

(a) Since each racer runs at a constant speed, we have A(x) = 600x and
T'(x) = 2000 + 100x. The distance between them is given by

T(x) — A(x) = (2000 + 100x) — 600x = 2000 — 500x.
(b) By Theorem (1.9), with m = —500 and b = 2000, we have
lim [T (x) — A(x)] = lim [2000 — 500x] = 0,
x—4 x—4

s0 it appears that Achilles will catch up to the tortoise at time x = 4 min.

Theorem (1.8) can be extended to limits of sums, differences, products,
and quotients that involve any number of functions. In the next example,
we use part (ii) for a product of three (equal) functions.

EXAMPLE®3 Prove that lim x> = a°.

X—=>a

SOLUTION Since lim x = q,

X—~>a

lim x = lim (x - x - x)
X—a X-->a

- (lim x) : <1im x) : (nm x)
X—>a X—a X—=a
=a-a-a =a3.

The method used in Example 3 can be extended to x” for any positive
integer n. We merely write x” as a product x - x - x - --- - x of n factors
and then take the limit of each factor. Thus, we obtain (i) of the next
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theorem. Part (ii) may be proved in similar fashion by using Theorem
(1.8)(ii). Another method of proof is to use mathematical induction.

Theorem 1.10 p "
If n is a positive integer, then

@) lim x" = 4"
X—+a
A
4

@ lim{Fr = [lim ()]

provided 3{13}1 fx) exists

EXAMPLE®4 Find lir%(3x+4)5.
X—
SOLUTION Applying Theorems (1.10)(ii) and (1.9), we have
5
lim (3x + 4)° = [lim (Bx + 4):|
x—2 x—>2

=[3(2) + 4P
= 10° = 100,000.

EXAMPLE®S5 Find 1im2(5x3 +3x2 - 6).
X—>—

SOLUTION We may proceed as follows, with the reasons justifying
each step as indicated:

lim2(5x3 +3x2 - 6)

x>~

1 3 . . .
= xl_l)nlz(Sx ) + xgrr_12(3x2) + xl_l)lr_lz(—6) Theorem (1.8)(i)

= xl_i}n;12(5x3) + xl_i)n_12(3x2) -6 Theorem (1.7)(i)
=51 3 . 2y .
i _1>n_12(x )+ 3xgrgz(x )—6 Theorem (1.8)(iv)
=5(=2)°+3(-2%* -6 Theorem (1.10)(i)
=5(—8)+3(4) —6=—34 simplify

The limit in Example 5 is the number obtained by substituting —2 for
x in 5x® 4 3x? — 6. The next theorem states that the same is true for the
limit of every polynomial.

Theorem 1.11 1
If f is a polynomial function and a is a real number, then

lim f(x) = f(a).

PROOF Since f is a polynomial function,
f@ =byx"+b,_x" " +... 4 b

1.3 Techniques for Finding Limits

for real numbers b, , bn_lk,\\f. ., by. As in Example 5,

lim f(x) = lim(b,x") + lim (b,_;x"~") +--- + lim b,
xX—>a xX—>a x—>a

X—>a

=b, lim(x") +b,_; im (")) + - + lim b,

Xx—a

:bnan+bn_1an—l+...+b0:f(a)_ .

Corollary 1.12 - ] ; e :
If g is a rational function and a is in the domain of ¢, then

lim ¢(x) = ¢(@).

PROOF Since g is a rational function, g(x) = f(x)/h(x), where f
and A are polynomial functions. If a is in the domain of g, then h(a) # 0.
Using Theorems (1.8)(iii) and (1.11) gives us

sm SO fa)
Tim A(x) ~ h@)

}gf}l q(x) = =q(a). ™=

Corollary (1.12) also remains true if g is a ,‘trigonometric, exponential, or
logarithmic function. We will examine proofs and examples for limits of
such transcendental functions in Chapters 2 and 6.

5x2—2x + 1
EXAMPLE®6 Find lim 22— 3_x+
=3 Ax” =7

SOLUTION Applying Corollary (1.12) yields

g 215320+ 145641 40
o3 4’ —7  4@yP—7  108—7 _ 101

The next theorem states that for positive integral roots of x, we may
determine a limit by substitution. A proof, using Definition (1.4), may be
found in Appendix 1.

Theorem I.13 . L . )
If a > 0 and n is a positive integer, or if 2 <0 and n is an odd

positive integer, then
lim /x = </a.

x>

If m and n are positive integers and a > 0, then using Theorems
(1.10)(ii) and (1.13) gives us

lim (" = (lim %) = Wa)".
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In terms of rational exponents,

lim x™" = g™/n,
X—>a

This limit formula may be extended to negative exponents by writing
x~" =1/x" and then using Theorem (1.8)(iii).

2/3
EXAMPLE®7  Find lim >+ oY%
x—8 4 — (16/x)
SOLUTION  We may proceed as follows (supply reasons):

R : 2/3
- L
-8 4 —(16/x) lirré[4——(16/x)]

x—

lim x%3 + lim 3%
x—>8 x—8

"~ lim 4 — lim(16/x)
x—>8 x—>8

8P 4+3/8 4+6V2
T 4-(16/8) ° 4-2

=2+3v2

If a function f has a limit as x approaches a, then
lim J f(x) = j}g}}zf(x),

provided either n is an odd positive integer or # is an even positive
integer and lim f(x) > 0.
X—=>a

The preceding theorem will be proved in Section 1.5. In the meantime,
we shall use it whenever applicable to gain experience in finding limits
that involve roots of algebraic expressions.

EXAMPLE®8 Find ling\/33x2—‘4x+9‘

SOLUTION Using Theorems (1.14) and (1.11), we obtain
lim v3x% — 4x + 9 = 5/1im 3x2 — 4x 4 9)
x—5 x—5
=75-20+9 =64 = 4.

The next theorem concerns three functions f, 4, and g such that h(x)
1s “sandwiched” between f(x) and g(x). If f and g have a common limit
L as x approaches a, then, as stated in the theorem, /# must have the same
limit.

1.3 Techniques for Finding Limits

Sandwich Theorem 1.15

Figure 1.23
AY

Figure 1.24

Suppose f(x) < h(x) < g(xj for every x in an open interval con-
taining a, except possibly at a.

If lim f(x)=L=lim g(x), then lim h(x)= L.
X—>a X—>d X—>a

If f(x) < h(x) < g(x) for every x in an open interval containing x,
then the graph of 4 lies between the graphs of f and g in that interval, as
illustrated in Figure 1.23.If f and g have the same limit L as x approaches
a, then it appears from the graphs that 4 also has the limit L. A proof of
the sandwich theorem based on the definition of limit may be found in
Appendix 1.

EXAMPLE®=9  Use the sandwich theorem (1.15) to prove that

1
lim x2sin — = 0.

x—0 X
SOLUTION Since —1 < sint < 1 for every real number ¢,

—1 < sin <1
.

x
for every x # 0. Multiplying by x? (which is positive if x # 0), we obtain

2

—x? < x?

\

1 |
sin — < x2 ‘
X

This inequality implies that the graph of y = x? sin(1/ x2) lies between the
parabolas y = —x? and y = x? (see Figure 1.24). Since

lim(—x?) =0 and lim x*=0,
x—0 x—0

it follows from the sandwich theorem, with f(x) = —x? and glx) = x2,
that
I |
lim x“ sin — = 0.
x—0 X

Theorems similar to the limit theorems given in this section can be
proved for one-sided limits. For example,

1im+[f(x) +gx)] = l_i>m+ fx)+ linal+ g(x)
and lim / f (x) = \/ lim £ (x)

xX—=a

with the usual restrictions on the existence of limits and »th roots. Analo-
gous results are true for left-hand limits.
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Figure 1.25
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Figure 1.26
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EXAMPLE®= 10 Find lim (14 v —2).
x—>2%

SOLUTION The graph of f(x) = 1 + +/x — 2 is sketched in Figure
1.25. Using (one-sided) limit theorems, we obtain

Iim (14++x—=2)= lim 1+ lim vx —2
x—=2%

x—2" x—2t

=1+ [lim (x —2)

x—2"

=14+0=1.

Note that since +/x — 2 is not a real number if x < 2, there is no leftjhaxld
limit, nor is there a limit of f as x approaches 2. .

EXAMPLE®= Il Let ¢ denote the speed of light (approximately

3.0 x 10® m/sec, or 186,000 mi/sec). In Einstein’s theory of relativity, the
Lorentz contraction formula

/ 2
v
L=L,/1-—
0 2
c

specifies the relationship between (1) the length L of an object that is
moving at a velocity v with respect to an observer and (2) its length L,
at rest (see Figure 1.26). The formula implies that the length of the object
measured by the observer is shorter when it is moving than when it is at

rest. Find and interpret lim,_, - L, and explain why a left-hand limit is
necessary.

SOLUTION Using (one-sided) limit pheorems yields

v2
lim L = lim Lo, /1 -~
v—>co v—>c~ C
2
=L, lim ,/1—- 2
v—=>c C
. v?
= LO lim <1 - —2)
v—>c” C
= Lyv/0=0.

Thus, if the velocity of an object could approach the speed of light, then its
length, as measured by an observer at rest, would approach 0. This result
is sometimes used to help justify the theory that the speed of light is the
ultimate speed in the universe; that is, no object can have a velocity that is
greater than or equal to c.

A left-hand limit is necessary because if v > ¢, then v/1 — w?/c?) is
not a real number.

Exercises 1.3 - |

- EXERCISES 1.3
S —— e e S ——

. . ap e . 2 . _ 2
Exer. 1-48: Use theorems on limits to find the limit, if it 43 lim (\/ x“ =25+ 3) 44 lim xy/9—x

x—5" x—3"
exists.
/ 2
I lim_15 2 lim 2 . &3 w6 1m0
i s x—15 45 11m+4_3— 1_10_ -—2
3 lim x 4 lim x F3 X #1007 (x4 10)
T i 1 14++/2x — 10 Vxt-16
im (3x — 4 6 lim (—3x+1) . — 48 lim
’ )}I_IB‘( ’ ) x_)_22 1 47 x1—1>HSl+ x+3 x4t x+4
_ 5 i x . . . . 0
! lim2 4); +3 8 )}l—lﬂ 3x+1 Exer. 49 -52: Find each limit, if it exists:
xX—— .
9 lim(—2x +5)* 10 lLim (3x — 1)° (a) lim f(x) (b) lim f(x) (c) lim f(x)
x—1 x—>—2 x—a x-—>a
: 100 . _ 1350
(B }1_)1113(3x—9) 12 xl_1)1}>2(4x 1) 49 F)=v5-% a=5
13 1im2(3x3—2x+7) 14 ;inz(5x2—9x—8) 50 fx) = vVB—x3; a=2
- - 3 1. . —
15 lim (>+3)(x—4) 16 1im3(3t+4)(7t—9) 51 f(x)=vx"—1;, a=1
x—2 I>—=3- o _ g
: 52 f(x)=x7"; a=
im (x — 3.1416 18 lim (1x — L) .
v XIEI}T v : x_),,(z 2 ! Exer. 53—-56: Let n denote an arbitrary integer. Sketch
19 Jim 1 20l X —6x+3 the graph of f and find lim_~ f(x)and im,_ . f(x).
im
S iz 1655 8E = 53 fo0) = (—1)" ifn<x<n+l
2 _ 2 .
2t lim Mg 22 lim x3 : 54 f(x)=n ifn<x<n+l
x>1/2 6x2 —Tx +2 2 x3 -8 )
2, Z42x-3 {x ifx=n 0 ifx=n
x“—x-2 .ox 4+ 2x _ 56f(x)={ i
im ———— — 55 f(x)= .
N )}1—1312 (x —2)2 2 xl—1>122x2+5x+6 s 0 ifx#n 1 ifx#n
% +8 . x—16 Exer. 57-60: Let [ 1 denote th.e greatest integer
2 xgn—lz =16 26 xll>nll6 Jx—4 function and n an arbitrary integer. Find
1/x) —(1/2) , x+3 (2) lim f(x) (b) Lim fx
27 lim ————~= 28 111113 m x—n x—n
= a2 T ) 57 f£(x) = [x] 58 f(x) =x — [x]
2 1 s
29 bm [ F— — 1 30 lim (/X + ——) 59 f(x)=—[—x] 60 f(x)=1[xI—-=x
—i\x—1 =x-1 x—1 \/.; .
3/2 16x2/3 Exer. 61—64: Use the sandwich theorem to verify the
31 Iim 2“/3;% 2 lim limit.
e I ’ ,——_x 61 lim(x2+1) =1 (Hint:Use im(|x|+1)=1)
Vx2 4 34 lim yx* —4x+1 x>0 *=0
i —5x — im \x" —
o ; N o 62 1im — L g
24 5x —3x3 . sx-—T x>0 /xt 4 ax? 47
22 1im3 \:f 2_q 36 xll_l;l}t x4 (Hint: Use f(x) = 0and g(x) = |x|.)
X—> x° —
— 1 1 63 lim xsin(1/x) =0
37 lim - 16———+h 38 lim (—) ( — 1) x—>0
) U h=>0 \hJ \V1+h (Hint: Use f(x) = — |x| and g(x) = |x|.)
X x -2 40 lim x* —Tx +10 64 lim x*sin(1//x) =0 (Hint: See Example 9.)
39 m -1 —2  x% 64 A o
65 If 0 < f(x) <c for some real number ¢, prove tha
41 lim v2Gv —4)(9 — ) 42 lim V3 +4 Y3k +2 lim, o x2f (x) = 0.
v—>



66 If lim _,,f(x)=L#0 and lim _,  g(x)=0,
prove that lim _ [f(x)/g(x)] does not exist.
(Hint: Assume there is a number M such that
lim,_, [ f(x)/g(x)] = M and consider lim flx) =
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Exercise 71

Object

1.4 Limits Involving Infinity

1
fx)=——

The graph of f is sketched in Figure 1.27. We can show, as in Example 4
of Section 1.1 and Example 3 of Section 1.2, that

X—>a lim does not exist.
lim,_ [g(x) - f(x)/g(x)]) x—>2 X —
67 Some function values for x near 2, with x > 2, are listed in the following

68 Explain why lim (l +x) # lim ! + lim x.
=0\ x x—=>0x x>0

69 Charles’s law for gases states that if the pressure remains
constant, then the relationship between the volume V
that a gas occupies and its temperature T (in °C) is given
by V = V,(1 + 353 T). The temperature T = —273°C
is absolute zero.
(a) Find lim V.

T—--273*

(b) Why is a right-hand limit necessary?

70 According to the theory of relativity, the length of an
object depends on its velocity v (see Example 11).
Einstein also proved that the mass m of an object is
related to v by the formula

1 1
Explain why lim (x sin —) #* (lim .r) <lim sin —).
x—0 X x—0 x—0 X

(b) What is happening to the imageas p — f19?

72 Shown in the figure is a simple magnifier consisting of
a convex lens. The object to be magnified is positioned
so that its distance p from the lens is less than the focal
length f. The linear magnification M is the ratio of the
image size to the object size. Using similar triangles, we
obtain M = g/p, where g is the distance between the

image and the lens. [
(a) Find limp_>0+ M and explain why a right-hand limit
is necessary.

table.

x | 2.1 2.01 2.001 2.0001 2.00001 _2.000001

f&® | 10 100 1000 10000 100000 1000000 |

As x approaches 2 from the right, f(x) increases without bound in the
sense that we can make f(x) as large as desired by choosing x sufficiently
close to 2 and x > 2. We denote this by writing

1 1

‘lim =00, oOr

—>o00 as x — 2t
x=2tx —2 x—=2

The symbol oo (infinity) does not represent a real number. It is a notation
we use to denote how certain functions behave. Thus, although we may

"o state that as x approaches 2 from the right, 1 /(x — 2) approaches oo (or
m=- RN (b) Investigate lim,,__ .- M and explain what is happen- tends to 00), or that the limit of 1/(x — 2) équals oo, we do not mean that
y1-/c) ing to the image size as p — f~. 1/(x —2) gets closer to some specific real number nor do we mean that
where m, is the mass of the object at rest. lim, _ 5. [1/(x = 2)] ex lS.tS. . o . .
(a) Investigate lim m Exercise 72 The symbol —oo (minus infinity) is used in similar fashion to denote
.g voe T . _ that f(x) decreases without bound (takes on very large negative va}ues)
(b) Why is a left-hand limit necessary? TSR P as x approaches a real number. Thus, for f(x) = 1/(x —2) (see Figure
71 A convex lens has focal length f centimeters. If an Image \\\\\\\\\ N 1.27), we write
object is placed a distance p centimeters from the lens, Object\rﬁ <R i 1
then .the distance g centimeters of the imz.lge from the ] | | lim =—00, or — —00 as x —> 2.
lens is related to p and f by the lens equation = Lo ) x2-x —2 x—2
r 1 1 } ; L_ P~ Figure 1.28 shows typical (partial) graphs of arbitrary functiong Fhat
poa I ' | approach oo or —oo in various ways. We have pictured a as positive;
As shown in the figure, p must be greater than f for the I le—f— however, we can also have a < 0.
rays to converge. L q J’
(a) Investigate limpq f+4- Figure 1.28 .
lim f(x) =00, or lim f(x) = o0, or lim f(x) = —o0, or hm+ fx) = —o0, or
x—>a” x—a* x—a~ x—a N
f(x) > oc0asx —>a” f(x) > coasx - at f(x) > —ococasx — a” fx) > —c0casx —a
A y A y A Y A Y
| | ,
[.4  LIMITS INVOLVING INFINITY | ; |
!
1 I |
| I | |
/i y When investigating lim,_, - £ (x) or lim,_, . f(x), we may find that as x | /N a! = ! a: »>-
approaches a, the function value f(x) either increases without bound or y = f(x) I :/ e i * : B
decreases without bound. To illustrate, let us consider P ! Y ! |
! = | |
1 a x [ |
IW== | . | |




Figure 1.30
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Figure 1.29

lim f(x) = o0, or lim f(x) = —oo0, or
X—>a xX—a

f(x) > ocasx —>a

Jr)’

f(x) > —oc0asx = a
J}Y

N
RN

e

Y

a

|
|
|
|
|
|
4 |
|
|
|
|
|
I

We now consider the two-sided limits illustrated in Figure 1.29. The
line x = a in Figures 1.28 and 1.29 is called a vertical asymptote for the
graph of f.

Note that for f(x) to approach co as x approaches a, both the right-
hand and left-hand limits must be co. For f(x) to approach —oo, both
one-sided limits must be —oo. If the limit of f(x) from one side of a is
oo and from the other side of a is —oo, as in Figure 1.27, we say that
lim,_, f(x) does not exist.

It is possible to investigate many algebraic functions that approach oo
or —oo by reasoning intuitively, as in the following examples. A formal
definition that can be used for rigorous proofs is stated at the end of this
section.

EXAMPLE®]| Find lim

5 if it exists.
x—2 (X — )
SOLUTION Ifxiscloseto?2and x # 2, then (x — 2)% is positive
and close to 0. Hence, the reciprocal of (x — 2)?, 1/(x — 2)2, is positive
and large. There is no real number L that is the limit of 1/(x — 2)2 as x
approaches 0. The limit does not exist, because we can make 1/(x — 2)2

as large as desired by choosing x sufficiently close to 2. Since 1/(x — 2)2
increases without bound, we may write

1
lim 7 =00
=2 (x — 2)

The graph of y = 1/(x — 2)? is sketched in Figure 1.30. The line x = 2
is a vertical asymptote for the graph.

1.4 Limits Involving Infinity

Figure 1.31
AN
Jx) =

AY

(x—4°

Figure 1.32

EXAMPLE=2 Find each limit, if it exists.

(b) lim

(@) lim x—4" (x — 4)3

, c) lim ——
x—4" (x — 4)3 ) =4 (x — 4)3

SOLUTION In all three cases, the limit does not exist, because the
denominator approaches 0 as x approaches 4 and hence the fraction has an
unbounded absolute value.

(a) If x is close to 4 and x < 4, then x — 4 is close to 0 and negative, and
1
lim ———
x4 (X — 4)

(b) If x is close to 4 and x > 4, then x — 4 is close to 0 and positive, and
1

lim 7 =
x=4% (x — 4)

(c) Since the one-sided limits are not both oo or both —oco, we can only
conclude that

. 1 .
lim — does not exist.
x—4 (x — 4)

The graph of y = 1/(x — 4)3 is sketched in Figure 1.31. The line x = 4 is
a vertical asymptote for the graph.

Formulas that represent physical quantities may lead to limits involv-
ing infinity. Obviously, a physical quantity cannot approach infinity, but
an analysis of a hypothetical situation in which that could occur may sug-
gest uses for other related quantities. For example, consider Ohm’s law in
electrical theory, which states that I = V/R, where R is the resistance (in
ohms) of a conductor, V is the potential difference (in volts) across the
conductor, and 7 is the current (in amperes) that flows through the conduc-
tor (see Figure 1.32). The resistance of certain alloys approaches zero as
the temperature approaches absolute zero (approximately —273 °C), and
the alloy becomes a superconductor of electricity. If the voltage V is fixed,
then, for such a superconductor,

lim 7= lim — = o0;

R—0F R—0" R
that is, the current increases without bound. Superconductors allow very
large currents to be used in generating plants or motors. They also have
applications in experimental high-speed ground transportation, where the
strong magnetic fields produced by superconducting magnets enable trains
to levitate so that there is essentially no friction between the wheels and
the track. Perhaps the most important use for superconductors is in circuits
for computers, because such circuits produce very little heat.




120
Figure 1.33

1
f)=2+—

Definition 1.16
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Let us next discuss functions whose values approach some number L
as | x| becomes very large. Consider

Fo) =241,
X

the graph of which is sketched in Figure 1.33. Some values of flx)ifx is
large are listed in the following table.,

x | 100 1000 10,000 100,000
f® | 200 2001 20001 2.00001

1,000,000
2.000001

We can make f(x) as closeto 2 as desired by choosing x sufficiently large.
We denote this fact by

1
lim (2 + —) =2,
X—00 X

which may be read the limit of 2 + (1/x) as x approaches oo is 2.

Once again, remember that co is not a real number, and’ hence oo
should never be substituted for the variable . Note that the terminology
X approaches oo does not mean that x gets close to some real number.
Intuitively, we think of x as increasing without bound or being assigned
arbitrarily large values.

If we let x decrease without bound — that is, if we let x take on very
large negative values — then, as indicated by the second-quadrant portion
of the graph shown in Figure 1.33, 2 + (1/x) again approaches 2, and we
write

1
X—>—00 X

Before considering additional examples, let us state definitions for
such limits involving infinity, using e-tolerances for f(x) at L. When we
considered lim, , _ f(x) = L in Section 1.2, we wanted | f(x) — Ll <e
whenever x was close to ¢ and x # a. In the present situation, we want
[ f(x) — L| < € whenever x is sufficiently large — say, larger than any
given positive number-M. The precise definition for the limit of a function
as x increases without bound follows next.

Let a function f be defined on an infinite interval (c, 0o) for a real
number ¢, and let L be a real number. The statement

lim f(x) =1L
X 0O
means that for every € > 0, there is a number M > 0 such that
if x> M, then [f(x) = L] <e.

1.4 Limits Involving Infinity

Figure 1.34 xlglgo fx)=L

E—
Iflim,_ _ f(x) =L, we say that the limit of f (x) as x approaches oo
is L, or that f(x) approaches L as x approaches oo . We sometimes write

J&x)— L as x— oo.

We may give a graphical interpretation of lim_ _ f(x) =L as fol-
lows. Consider any horizontal lines ¥ = L % ¢, as in Figure 1.34. Accord-
ing to Definition (1.16), if x is larger than some positive number M , the
point P(x, f(x)) on the graph lies between these horizontal lines. Intui-
tively, we know that the graph of f gets closer to the line ¥ =L as x gets
larger. We call the line y = L a horizontal asymptote for the graph of f.
As illustrated in Figure 1.34, a graph may cross a horizontal asymptote.
The line y = 2 in Figure 1.33 is a horizontal asymptote for the graph of

F@)y =2+ (1/x).

Figure .35 lim f(x)=1L
X—>—00

AY AY
y=L+ ¢ /\ /\ y=L+e
L+—F—————= S ——— == ———— —+L
y=L-¢ / P(x, f(x)) P(x, f(x)) \y=L—e
- J N L

w7 T =

Definition 1.17

In Figure 1.34, the graph of f approaches the asymptote y = L from
below —that is, with f(x) < L. A graph can also approach y = L from
above —that is, with f(x) > L —or in other ways, such as with f(x)
alternately greater than and less than L as x — oo0.

The next definition covers the case in which x is a large negative
number.

Let a function f be defined on an infinite interval (—00, ¢) for a real
number ¢, and let L be a real number. The statement

lim f(x)=1L
X—>~00
means that for every € > 0, there is a number N < 0 such that
if x <N, then |f(x)—-L|<e.

Iflim___ f(x) = L, we say ihe limir of f(x) as x approaches —oo
is L, or'that f(x) approaches L as x approaches —oo.

Definition (1.17) is illustrated in Figure 1.35. If we consider any hor-
izontal lines y = L + ¢, then every point P(x, f(x)) on the graph lies
between these lines if x is less than some negative number N. The line
y = L is a horizontal asymptote for the graph of f.
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Limit theorems that are analogous to those in Section 1.3 may be estab-
lished for limits involving infinity. In particular, Theorem (1.8) concerning
limits of sums, products, and quotients is true for x — 00 or x — —00.
Similarly, Theorem (1.14) on the limit of 4/ f(x) holds if x — co or
x — —00. We can also show that

lim ¢ =c¢ and lim ¢ =c.
X—>00 X—=>—00

A proof of the next theorem, using Definition (1.16), is given in Ap-
pendix L

1.18
If k is a positive rational number and c is any real number, then

. ¢ y C
lim - = 0 and lim - = 0,
X050 X X—)—vOOx

provided x* is always defined.

Theorem 1.18 is useful for investigating limits of rational functions.
Specifically, 7o find lim,_,  f(x) or lim _ __ f(x) for a rational func-
tion f, first divide the numerator and the denominator of f(x) by x",
where n is the highest power of x that appears in the denominator, and

then use limit theorems. This technique is illustrated in the next examples.

2%° -5
EXAMPLE®3 Find lim ——— >
F>=00 3y  +x 42

SOLUTION The highest power of x in the denominator is 2. Hence,
by the rule stated in the preceding paragraph, we divide the numerator and
the denominator by x* and then use limit theorems. Thus,

2x% -5 5

. 2x% -5 : x? : x°
lim - TR = lm —— = lim —————
x—=>—00 3yl 4 x4+ 2 X—=>—00 3)62 Lx 42 X—>—00 1 2

x2 X ox

. ) 5
lim 2— lim -
X—>—00 X—>—00 X

1 2
lim 34+ lim — 4+ lim —

xX—>—00 X—=>—00 X X—>—Q X
_2-0 2
T 34040 3

1.4 Limits Involving Infinity

!

It follows that the line y =\% isa horizontal asymptote for the graph of f.

4 Find ki 2x° =5

L] m .

EXAMPLE in x1>oo3x2+x+2

SOLUTION The highest power of x in the denominator is 2, so we
first divide the numerator and the denominator by x2, obtaining

. 203 =5 . X
lim 5 — = lim
x>0 3x° +x + Foe 1

Since each term of the form ¢/x* approaches 0 as x — 0o, we see that

5
1m<m-7)=w
X—00 X

lim |3 1+2)—3
and xLHOIO + X X2 T
It follows that
. 2x3 -5
lim — = 00.
x>003x" 4 x +2
If O0x° 42 Ld lim £
L] —_ — . .
EXAMPLE®=S fx dx £ 3 P

SOLUTION If x is large and positive, then
Vox? +2 ~ v/9x2 = 3x

and 4x +3 7~ 4x

Vor?+2 3x

3
and hence fx)y= Ax 43 x4

. 3 . )
This approximation suggests that lim _ _ f (x) =73 To give a rigorous
proof, we may write

b (o4 2
X 9+——2
i \/9x2+2_ lim y &
xlglgo 4x+3  x—oo 4x +3
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.If x is positive, then v x? = x, and dividing the numerator and the denom-
inator of the last fraction by x gives us

[~ 2
B 94 =
v/9x2_ +2 * x?

1.4 Limits Involving Infinity

We may also consider cases in which both x and f(x) approach oo or
—o0. For example, the limit statement

im0 = o

means that f(x) increases without bound as x decreases without bound, as

lim = lim 2
x—>o00 4x +3 x—>00 4 3 would be the case for f(x) = x".
+ X The preceding types of limits involving co occur in applications. To
illustrate, Newton’s law of universal gravitation may be stated: Every par-
9+0 3 ticle in the universe attracts every other particle with a force that is pro-
= = portional to the product of their masses and inversely proportional to the
{ 440 4 , .
i square of the distance between them. In symbols, this statement may be
‘ represented by
EXAMPLE=6 i ithi ol
Glucose is transported within an enzyme-glucose F=G—5=,
r

complex through the placenta from the mother to the fetus. The en-
zyme acts as a catalyst, accelerating the transportation process. The
Michaelis — Menten law,

where F is the force on each particle, m, and m, are their masses, r is the
distance between them, and G is a gravitational constant. Assuming that
m, and m., are constant, we obtain
P 1 2

mym,

Cx) = -4
| (x) i b’ , lim F = lim G =0,
/ F—>00 r—>00 2

a{’fgg:elfggzs lthe rel(;ltll(l)nshlp betwe(?n the concentration C of the en‘zy'n.le— which tells us that as the distance between the particles increases without
gonstants) plex and the concentration x of glucose (a and b are positive A bound, the force of attraction approaches 0. Theoretically, there is always
' some attraction; however, if r is very large, the attraction cannot be mea-
(a) Determine lim, _,  C(x). sured with conventional laboratory equipment.

(b) Sketch the graph of C fora = 8 and b = 3 We shall conclude this section by stating a formal definition of
o . lim,_, , f(x) = oc. The main difference from our work in Section 1.2
i SOLUTION is that instead of showing that | f(x) — L| < € whenever x is near a,
é, - : . . we consider any (large) positive number M and show that f(x) > M
(a) Since the highest power of x in the denominator is 1, we first divide the whenever x is nc}:]ar( a B

numerator and the denominator by x, obtaining ‘

o] Figure 1.36 a
' . 8 i = 1 A T N Definition 1.19
§ xlggo T13 xlgrolo ) xll>ngo x+b xlggo b 140 a. efinitio Let a function f be defined on an open interval containing a, except
Xil 1+ - possibly at a itself. The statement
?;x ) X .
’4 ! o Jt (b) From C(x) = 8x/(x +3), we have C(0) =0 and C(x) > 0 when i }gg} fx)=00
. 50,755 (100.7.77) x > 0. Writing C(x) as 8/[1 + (3/x)], we see that C(x) increases as x in- Figure 1. means that for every M > 0, there is a § > 0 such that
, 1.55) creases (the numerator is constant and the denominator decreases in value). )}l_rf}l fx) =00 .
6 T In the following table, we show values of C(x) for several values of x. Ay if 0<|x—a|<3d then f(x)>M.
4 |
= e 8 r B - = — I ) .
i e C) - ‘ X 0 1 3 9 21 50 100 200 [ - M For a graphical interpretation of Definition (1.19), consider any hori-
¥ v 5 _.b(x) ' 0 2 4 6 = ————— y — - zontal line y = M, as in Figure 1.37. If lim,___, f(x) = oo, then whenever
| 2 +(1,2) 7 7.55 7.77 7.88 : x is in a suitable interval (@ — 8, a + §) and x # a, the points on the graph
: — | of f lie above the horizontal line.
] L N I To define lim _ , f(x) = —00, we may alter Definition (1.19), rep.1a0—
0) i ZI() . 4.0 . 61) I SI() 1 l(;() > Plotting these p_oints and using the fact that the limit of C(x) as x — oo is l ~3 ing M >0by N <0and f(x) > M by f (x) < N. Then if we consider
a = 8, we obtain the graph shown in Figure 1.36. 4 \ X any horizontal line y = N (with N negative), the graph of f lies below
a— &8 a+ 8 this line whenever x is in a suitable interval (@ — 8, a + 6) and x # a.
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- \ (b) Find a formula for the salt concentration ¢(r) (in from the number § that are presently spawning. For
EXERCISES 1.4 pounds per gallon) after £ minutes. some species (such as North Sea herring), the rela-
s T T el iod of time? finsp becpeen & an S1a ghven By 220 i 2
(c) What happens to c(#) over a long period OT ime: where a and b are positive constants. What happens as
. 42 An important problem in fishery science is predicting the number of spawners increases?
Exer, 1-10: For the given f(x), express each of the fol- |E| Exer. 25-26: Investigate the limit by letting x = 10" for next year’s adult breeding population R (the recruits)
lowing limits as oo, —oo, or DNE (Does Not Exist): n=1,2,3,and 4. ) b
li b) li i 1 1 1
@ lm @ ©) lim f@ () lim 25 lim Lan (g _ ;> 26 Jim VFsin
I fo=_——4 a=4 Exer. 27-36: Find the vertical and horizontal asymp- ' 1.5 CONTINUOUS FUNCTIONS
5 totes for the graph of f.
fx) yy a 27 flx) = 21 28 Fx) = 5x . YL e T , RN In everyday usage, we say that tgne 1S cont1‘nuous, since 1F procc;,eds 1;1(&;3
g 5 x“—4 4—x ' — uninterrupted manner. On any given day, t}me does not jump rom 1:
3 )= 5 37 4=73 2x? , 3x PM. to 1:01 PM., leaving a gap of one minute. If an object is dropped
2x +5) 29 f(x)=— o 30 fx) == 0 from a hot air balloon, we regard its subsequent motion as continuous. If
4 FG) = = —4 P 3 & * 2+ the initial altitude is 500 ft above ground, the object passes through every
Tx +3 7 3 fx) = 13 fy= 22 altitude between 500 and O ft before it hits the ground. The concentration
3x x4 x?—6x 16 — x2 of a chemical at a particular spot along a river may vary cc')ntmuousl.y,
I 5= (x + 8)2; a=-8 x24+3x+2 %2 — 5x increasing at some times and decreasing at others. In th1§ section, we lell
342 9 3 f)= X2 425 —3 3 fo= 2 _25 use our knowledge of limits to define continuous functions and examine
g 6 fx) T a=- Y their behavior. ‘ . v
. il':’ (2x —9)° 2 35 f(x) = x+4 36 f(x) = 16 — x* Intuitively, we regard a continuous functlon_as a function whose graph
0 f i 2,2 x*—16 4-5 has no breaks, holes, or vertical asymptotes. To illustrate, the graph of each
i 7 fx)=————; a=-1 jon in Fi 38 is not continuous at the rumber c.
- f® 2—x=2 Exer. 37-40: A function f satisfies the given conditions. function in Figure 1.3 "o
| Sketch a possible graph for f, assuming that it does not
4x g .
A 8 f)=—5———; a=1 cross a horizontal asymptote. Figure 1.38
& |l x%—4x +3 . @ (b) © ’ O
ol ||| 37 lim f(x)=1; lim f(x)=1; AY
o 9 f)=——3; a=3 x> o0 x>00 AY 4’ Moo L
B =3 lim f() =00 lim /() =00 y = ) = v
. | X—> x— .
- | | y = f) o AN
U 10 fx) = ———; a=-1 . . a
| =y o m so=-h g Je=-1 e - e -
|| Exer. 11-24: Find the limit, if it exists. lim f(x) = o0; lim f(x) = —o0 | > '. > 1 = J -
oA x—2 x—27F :: ¥ ¢ x c X ¢ X
| 0 lim 5x% —3x +1 2 333 —x+1
~ 2 . S R, S 39 lim x) = =2; lim = -2 . i
‘e ¥>00 2x% 4+ 4x — 7 x=>00 6x3 4 2x% — 7 x—>—o0 F&) A, S0 Note that in part (a) of the figure, f (c) is not defined. In part (b), f(e)is
ol o AT  GrMHE -1 g D= T = e defined; however, lim,_, f(x) # f(¢). In part (¢), lim, . f(x) does not
|| x=>200 24 3x L Q@x+7D(x+2) lim f(x) = —o0; lim f(x)=o00 exist. In part (d), f(c) is undefined and, in addition, lim, _, ¢ Flr) = oo
o || 252 _3 2x2 3 x—>=1" xo=tt The graph of a function f is not one of these types if f satisfies the three
3 15 lm — 16 lim —x;—x+ 0 lm foo =3 lm £ = 3 conditions listed in the next definition.
r...‘- X—=—00 4x + 5x X—>00 x° + 1 = — s =t i)
. 3 2 3 — . 3 — .
b R T, P X242 lim f(x) = oc; lim f(x) = —oc; -,
17 1 ; 1- + Definition 1.20 : . s : i iti
Al | i50 2,2 _3 18 lm —— *im F) = —o0; T F) = o0 efinit A function f is continuous at a number ¢ if the following conditions
& y_ 2 TR x—>—2" x—>—2* are satisfied:
b 9 Jm — 20 lim —3 5 41 Salt water of concentration 0.1 1b of salt per gallon flows @) f(c)isdefined
; into a large tank that initially contains 50 gal of pure ; :
A o 847 ) 4x —3 water. H (i) lim f(x) exists
', | 21 lm | ———— 22 lim ——— Cines
E x>0\ x(x + 1) x>—00 /T 4 (a) If the flow rate of salt water into the tank is 5 @) lim f(x) = f(c)
f | 23 lim sinx 24 lim cosx gal/min, find the vplume V(t) of water and the o
X600 x—>00 amount A(¢) of salt in the tank after # minutes.
i




i ILLUSTRATION
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AN

Whenever this definition is used to show that a function f is contin-

uous at ¢, it is sufficient to verify only the third condition, because if
lim, ,  f(x)= f(c), then f(c) must be defined and also lim,_ . f(x)
must exist; that is, the first two conditions are satisfied automatically.

Intuitively, we know that condition (iii) implies that as x gets closer
to ¢, the function value f(x) gets closer to f(c). More precisely, we can
make f(x) as close to f(c) as desired by choosing x sufficiently close
to c.

If one (or more) of the three conditions in Definition (1.20) is not sat-
isfied, we say that f is discontinuous at ¢, or that f has a discontinuity
at c. Certain types of discontinuities are given special names. The discon-
tinuities in parts (a) and (b) of Figure 1.38 are removable discontinuities,
because we could remove each discontinuity by defining the function value
f (¢) appropriately. The discontinuity in part (c) is a jump discontinuity,
so named because of the appearance of the graph. If f(x) approaches co
or —oo as x approaches c from either side, as, for example, in part (d), we
say that f has an infinite discontinuity at c.

In general, if a function f is not continuous at ¢, then it has a Témov-
able discontinuity at c if the right-hand and left-hand limits exist at ¢ and
are equal; a jump discontinuity at ¢ if they are not equal; and an 1nﬁn1te
discontinuity if | f(x)| can be made arbitrarily large near c. ‘

In the following illustration, we reconsider some specific functlons that
were discussed in Sections 1.1 and 1.2.

Discontinuity

None, since for every c,
lim f(x) =c+2 = f(c).
X—>C ‘

=Y

Removable discontinuity
at ¢ =1 since

lim g(x) =3 = lim g(x)
x=>1" x—1%

(continued)

1.5 Continuous Functions

x“+x—
h(x) x—1
2
_1
h(x)—;
p@)ill

Function value

Theorem 1.2

ifx#1

ifx=1

Discontinuity

i Removable discontinuity
. at ¢ =1 since
o lim h(x) =3 = lim h(x)

/- x—>1"
A | | 11 | |

| |
1
5 |

Infinite discontinuity

at ¢ = 0 since

| (x)| can be arbitrarily large
if x is arbitrarily close to O.

x‘}

Jump discontinuity
at ¢ =0 since
lim p(x) = —

x—>0"

lim p(x) =1,but —1# 1.
x—0"

The next theorem states that polynomial functions and rational func-
tions (quotients of polynomial functions) are continuous at every number
in their domains.

@) A polynomial function f is continuous at every real number c.

(i) A rational function g = f/gis contmuous at every number
except the numbers ¢ such that g(¢) =

PROOF
(i) If f is a polynomial function and ¢ is a real number, then, by
Theorem (1.11), lim,_, . f (x) = f(c). Hence, f is continuous at every
real number c.
(i) If g(c) # 0, then c is in the domain of g = f/g and, by Theorem
(1.12), lim, _, . g(x) = q(c); that is, ¢ is continuous at c. W




Figure 1.39
f) = |x|

Definition 1.22

CHAPTER 1 Limits and Continuity

A similar version of this theorem is true for the trigonometric, exponential
and logarithmic functions: If g is one of these functions and a is in the

gomain of g, then g is continuous at a. We will present proofs in Chapters
and 6.

EXAMPLE®I If f(x) = |x|, show that f is continuous at every
real number c.

SOLUTION The graph of f is sketched in Figure 1.39. If x > 0,
thf:n fx)=x.If x <0, then f(x) = —x. Since x and —x are polyno-
mials, it follows from Theorem (1.21)(i) that f is continuous a‘i\‘,every
nonzero real number. It remains to be shown that f is continuous at 0. The
one-sided limits of f(x) at 0 are

lim |x| = lim x =0
x—0" x—0F

and lim |x| = lim (—x) = 0.
x—0" x—0"

Since the right-hand and left-hand limits exist and are equal, it follows
from Theorem (1.3) that

lim £(x) = lim |x| = 0= 0] = /(0).

Hence, f is continuous at.0, and therefore continuous at every real number.

2

%2 —
EXAMPLE®=2 If f(x)= ——5 -, find the discontinuities
of f X 2x

+x°—

SOLUTION Since f is a rational function, it follows from Theorem
(13.21) that the only discontinuities occur at the zeros of the denominator,
x4 x? - 2x. By factoring, we obtain

a2 —2x = x(x2 +x—-2)=x(x+2)(x —1).

Setting each factor equal to zero, we see that the discontinuities of f are at -

0,—2, and 1.

If a function f is continuous at every number in an open interval (a, b),
we say that f is continuous on the interval (g, b). Similarly, a function
is cqntlnuous on an infinite interval of the form (a, o0) or (—oo, b) if it is
continuous at every number in the interval. The next definition covers the
case of a closed interval.

Pet a ﬁ'mction /f be defined on a closed interval [a, b]. The function f
Is continuous on [a, b] if it is continuous on (g, b) and if, in addition,

xljgg fx)= f(a) and ling‘ fx) = f(b).

1.5 Continuous Functions

Figure 1.40

Theorem 1.23

R )

If a function f has either a right-hand or a left-hand limit of the type
indicated in Definition (1.22), we say that f is continuous from the right
at a or that f is continuous from the left at b, respectively.

EXAMPLE®3 If f(x) = v9 — x2, sketch the graph of f and prove
that f is continuous on the closed interval [—3, 3].

SOLUTION The graph of x% + y% = 9 is a circle with center at the
origin and radius 3. Solving for y gives us y = £v9 — x2, and hence the

graphof y = v9 — x? is the upper half of that circle (see Figure 1.40).
If =3 < ¢ < 3, then, using Theorem (1.14), we obtain

lim £(x) =}i_)mcxf9—x2=\/9—c‘2= £(0).

Hence f is continuous at ¢ by Definition (1.20). All that remains is to
check the endpoints of the interval [—3, 3] using one-sided limits as fol-
lows:

lim f(x)= lim vV9-x*=+9-9=0=f(-3)

x——-3" x—>-3

lim f(x) = 1in31_\/9—x2 =V9-9=0=fQ3)

Thus, f is continuous from the right at —3 and from the left at 3. By
Definition (1.22), f is continuous on [—3, 3].

Strictly speaking, the function f in Example 3 is discontinuous at
every number c outside of the interval [—3, 3], because f(c) is not a
real number if x < —3 or x > 3. However, it is not customary to use the
phrase discontinuous at c if ¢ is in an open interval throughout which fis
undefined.

We may also define continuity on other types of intervals. For example,
a function f is continuous on [a, b) or [a, o) if it is continuous at every
number greater than a in the interval and if, in addition, f is continuous
from the right at a. For intervals of the form (a, b] or (—00, b], we require
continuity at every number less than b in the interval and also continuity
from the left at b.

Using facts stated in Theorem (1.8), we can prove the following.

If two functions f and g are continuous at a real number c, then the
following are also continuous at c:
(i) thesum f + g
(i) the difference f — g
(iify the product fg
(iv) the quotient f/g, provided g(c) # 0
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PROOF If f and g are continuous at c, then
lim f(x) = f(¢) and lim g(x) = g(c).
X—>C X—>C

By definition of the sum of two functions,

(f+8)(x) = f(x)+ gx).

Consequently,
lim (f +g)(x) = Im[f(x) +g(x)]
= lim f(x) + lim g(x)
= fe)+g(c)

= (f+8)©).

We have thus proved that f + g is continuous at c. Parts (i1)—(iv) are
proved in similar fashion, ==

If f and g are continuous on an interval, then f + g, f — g, and fg
are continuous on the interval. If, in addition, g(c) # 0 for every ¢ in
the interval, then f/g is continuous on the interval. These results may be
extended to more than two functions; that is, sums, differences, prbducts,
or quotients involving any number of continuous functions are continuous
(provided zero denominators do not occur).

V9 — x?

EXAMPLE®=4 Ifk(x):_ﬁ__
3xT4+5x°+1

on the closed interval [43, 3].

, prove that k is continuous

SOLUTION Let f(x) =+v9—x?and g(x) = 3x* + 5x2 + 1. From
Example 3, f is continuous on [—3, 3], and from Theorem (1.21), g is
continuous at every real number. Moreover, g(c) # 0 for every number ¢ in
[—3, 3]. Hence, by Theorem (1.23)(iv), the quotient k = f/ g is continuous
on [—3, 3].

A proof of the next result on the limit of a composite function f o g is
given in Appendix I.

Klim _  g(x) = b andif f is continuous at b, then

lim f(s(0) = ) = £ (lim gx))

The principal use of Theorem (1.24) is to prove other theorems. To
illustrate, let us use Theorem (1.24) to prove Theorem (1.14) from Section
1.3, in which we assumed that lim,_, g(x) and the indicated nth roots
exist.

1.5 Continuous Functions

Figure 1.41

Conclusion of Theorem 1.14

lim /g(x) = \«/}gnc g(x)

PROOF Let f(x)= /x. Applying Theorem (1.24), which states that
lim f(g(x)) = f (1im gx))

we obtain lim {/g(x) = o lim g(x). mm
x—c Vx—c

The next theorem follows from Theorem (1.24) and the definitions of a
continuous function and of the composite function f o g.

Theorem |[1:23 If g is continuous at ¢ and if f is continuous at g(c), then the com-

posite function f o g is continuous at c; that is,

tim f(g(0) = £( lim g()) = f(g(e))-

EXAMPLE®S5 Ifk(x) = |3x2 — 7x —12|, show that k is continuous

at every real number.

SOLUTION If welet
fGo)=|x| and g(x)=3x*—7x —12,

then k(x) = f(g(x)) = (f o g)(x). Since both f and g are continuous
functions (see Example 1 and (i) of Theorem (1.21)), it follows from The-
orem (1.25) that the composite function k = f o g is continuous at c.

A proof of the following property of continuous functions may be
found in more advanced texts on calculus.

Intermediate Value Theorem [.26

If f is continuous on a closed interval [a, b] and if w is any number
between f(a) and f(b), then there is at least one number ¢ in [a, b}
such that f(c) = w.

The intermediate value theorem states that as x varies from a to b,
the continuous function [ takes on every value between f(a) and ' f (b‘).
If the graph of the continuous function f is regarded as extending in

an unbroken manner from the point (a, f(a)) to the point (b, f(b)), as
illustrated in Figure 1.41, then for any number w between f(a) and f(b),

the horizontal line with y-intercept w intersects the graph in at least one
point P. The x-coordinate ¢ of P is a number such that f(c) = w.
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Figure 1.42
—4<x<2,-50<y<50

,

'l..'

Figure 1.43
—6<x<5-2<y<45
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A consequence of the intermediate value theorem is that if f(a) and
f (b) have opposite signs, then there is a number ¢ between a and b such
that f(c) = 0; that is, f has a zero at c. Thus, if the point (a, f(a)) on
the graph of a continuous function lies below the x-axis and the point
(b, f(D)) lies above the x-axis, or vice versa, then the graph crosses the
x-axis at some point (c, 0) fora < ¢ < b.

We can use this consequence of the intermediate value theorem to help
locate zeros of a function, as in the next example.

EXAMPLE= 6 Let f(x) = x> 4+ 2x* — 6x% + 2x — 3.

(a) Use the intermediate value theorem (1.26) to show that f has three
zeros in the interval [—4, 2].

(b) Use a graphing utility to approximate these zeros to two decimal places.

SOLUTION

(a) We compute the value of f at the integers from —4 to 2, as shown.

x | -4 -3 -2 _i 0 1 2
fe | —139 72 41 2 -3 L4 17

Since f is a polynomial, it is continuous at all values of x. By the inter-
mediate value theorem, f has a zero between —4 and —3 since f(—4) and
f(=3) are of opposite sign. Similarly, f has a zero between —1 and 0 and
another zero between 1 and 2.

(b) With the aid of a graphing utility, we can look for other possible zeros.
Figure 1.42 shows the graph of f, which indicates that only these three
zeros exist on the x-interval [—4, 2]. Using the trace and zoom features,
or a solve feature, we determine that the zeros are approximately —3.60,
—0.88, and 1.63.

Analytic and algebraic techniques can be combined with the effective
use of a graphing utility to locate the discontinuities of a given function, as
demonstrated in the next example.

EXAMPLE®=7  Approximate the discontinuities of the function

VX+6
fe =1+ 4+2x—5
SOLUTION Theterm +/x + 6 restricts the domain of f to those val-
ues for which x + 6 > 0; that is, x > —6. We select the viewing window
—6 < x <5and -2 < y < 4.5 to obtain Figure 1.43. Note that the graph
of f begins at x = —6.
You may obtain a graph slightly different from Figure 1.43, depending
on the size and the resolution of your screen and the graphing utility you
use. In Figure 1.43, the exact behavior of the graph of £ may not be entirely

1.5 Continuous Functions

Figure 1.46
(a) Graphof f
(normal screen view)

1 @

(b) DOT or POINT mode
(magnified screen view)

—

(¢) LINE or CONNECTED mode
(magnified screen view)

/

{
[,

]

Figure 1.45

i .44 v 6

Figure | ; F =1+ x+
gx)=x"+2x-5 x“4+2x -5
—5<x<5-6<y<30 — 348 < x < —3.42, -400 <y <400

.
5 .3.,/ g
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clear, but we can see that something unusual occurs at two different values
of x. In such cases, before zooming in on a segment of the graph, it is
useful to do some preliminary analysis of the function.

Because the quantity x2 4 2x — 5 appears in the denominator of f(x),
we cannot have values of x where x? 4+ 2x — 5 = 0. To find these values,
we either solve this quadratic equation or estimate the values from the
graph of the function g(x) = x? + 2x — 5. Figure 1.44 shows the graph
of g, wh%;re it appears that there is a zero of g between —4 and —3 and
another zero between 1 and 2.

Repeatedly zooming in gives zeros for g at x; ~ —3.449 and x, ~
1.449. By Theorem (1.23)(iv) on the contiruity of the quotient of contin-
uous functions, the function f will be continuous except possibly at the
zeros of g. We can examine the behavior of f near x; by viewing the graph
of f in a window with —3.48 < x < —3.42, as shown in Figure 1.45.

From Figure 1.45, we can easily infer what is occurring near x;: As
X=X, we have f(x) — oo, but as x — x1+, we have f(x) — —o<.
Since neither the right-hand nor the left-hand limit of f exists as x — x,
we have a discontinuity of f at x,. A similar analysis at Xy show§ that
lim, _, N f(x) =—oc and lim_, % f(x) = oo, so there is a discontinuity

at x, as well.

In Example 7, the graph of f near x, has two branches, one for Va.h'les
less than x; and a second for values greater than x,. The graphing utility,
however, shows a nearly vertical line connecting these two branches. Al-
though this line is not really part of the graph of f, it is displayed pecause
the underlying software of the graphing utility assumes that functions are
continuous. '

A graphing utility can evaluate a function only at a ﬁqlte number. of
points. For each of these computed values, it darkens a picture element
(called a pixel) on the screen. Assuming continuity, it draws a line segment
between adjacent plotted pixels to represent the intermediate values that a
continuous function assumes. If sufficiently small segments are used, the
human eye perceives a smooth curve. . .

Some graphing utilities have a DOT or POINT mode which displays
only the pixels for computed function values. In LINE or CQNNECTED
mode, the default mode for graphing utilities, the connecting line segments
are also displayed. Figure 1.46 shows magnified views of the graph of
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a function in both- DOT mode and CONNECTED mode. In generating
Figure 1.46, the graphing utility calculated a large positive value to the left
of x; and a large negative value to the right of X, and then darkened the

corresponding pixels as well as the line segment between them, thereby
producing the unusual view of the function.

- EXERCISES 1.5

Exer. 1-10: The graph of a function f is given. Classify 4
the discontinuities of f as removable, jump, or infinite.
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Exer. 11=18: Classify the discontinuities of f as remov-

able, jump, or infinite.

x2 -1 ifx <1

Hf@=1_y ifx=>1
% ifx <1
12 f@=13_, ifx>1

|x+3] ifx#-2

13 =12 ifx = -2
lx —1] ifx#1
14 f) =11 ifx =1
241 ifx<1
15 fx)=11 ifx=1
x+1 ifx>1
—x2  ifx<l1
16 fx)=12 ifx=1

x—=2 ifx>1

E] 17 f(x)= 13 [cos (% _ xz>]

sin(x> — 1)

Exer. 19 —22: Show that f is continuous at a.
19 f(x) =+2x—5+3x; a=4
20 f@) =Vx +2
2y7--L a=2
21 f(x)=3x"+ =
Jx

2x 41’

a=-5

22 fx) =

Exer. 23 - 30: Explain why f is not continuous ata.

3. a=-2
23 f(x)=m,

1. a=1
24 f(X)zx—:—l’

2_

¥ 9 fx3 _—
25 f(x)=43 x-3

4 ifx =

2 B

¥ =9 ifx#-3 ,_ _3
26 fx)=43 x+3

2 ifx=-3

1 ifx#3 a=3
27 f® =10 ifx=3

lx — 3| ifx #3 2=3
28 f(x)=14 x—3 =

1 if x =




i ifx#£0

29 fay=1 x a=0
0 ifx=0
1 —cosx x40
—— ]

30 fx) = X o a=0
1 ifx=0

Exer. 31-34: Find all numbers at which f is discontinu-
ous.

3 5
31 X)= ———-— 32 =
F& Z4+x—6 Fe) 2 —4x—12
x—1 x—4
33 x)= —— — 34 )= ——
F@ Z+x—2 Fe 2—-x—-12

Exer. 35-38: Show that f is continuous on the given
interval.

35 f)=~x—4; [4,8]
36 f(x) =416 —x; (—o0, 16]

37 fo =

|-

; (0, 00)

()

P

B )= ——  (1,3)

x—1

Exer. 39 - 54: Find all numbers at which f is continuous.

3x -5
S 2x2)f—x—3
2_
40 f(x)=J;_39
41 f(x) = 2x =3 +x2
42 f(x):y%
3 fy= 2t 44 f(x) = —=
x* =1 1—x2
_|x+9 . x
45 ) =g 46 )=
5
47 =
f@ =57
4x — 7
48 =
f&) (x+3)(x? +2x — 8)
2 — 2
o (x)zx/x —x9_\/js x
9_
50ﬂm=ﬁ:%

51 f(x) =tan 2x 52 f(x)=cot%x
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53 f(x) =csc %x 54 f(x) =sec3x
55 Suppose that
2 .
cx- =3 ifx<2
Fo) = [cx+2 if x > 2
Find a value of ¢ such that f is continuous on R.
56 Suppose that
2 .
c°x ifx <1
foy = {3cx-—2 ifx>1
Determine all values of ¢ such that f is continuous on R.
57 Suppose that

c if x =-3
9—x? )
x)={—F—— if|x]| <3
! 4—Vx?+7
d ifx =3

Find values of ¢ and 4 such that f is continuous on
[-3, 3].

58 Suppose that

4x ifx <—1
f)=1cx+d if—-1<x<?2
—5x ifx>2

Find values of ¢ and d such that f is continuous on R.

Exer. 59-62: Verify the intermediate value theorem
(1.26) for f on the stated interval [a, b] by showing that if
J(a) < w < f(b), then f(c) = w for some ¢ in [a, b].

59 f)=x+1; [-1,2]
60 f(x)=—-x3  [0,2]

61 fxy=x*—x; [1,3]
62 f(x)=2x —x% [-2,-1]

63 If f(x)=x>—5x2+7x—09, use the intermediate
value theorem (1.26) to prove that there is a real number
a such that f(a) = 100.

64 Prove that the equation -3t —2P—x+1=0
has a solution between 0 and 1.

65 Use the intermediate value theorem (1.26) to show
that the graphs of the functions f(x) = x* — 5x* and
glx) = 2x3 — 4x + 6 intersect between x = 3 and x =
4. (Hint: Considerh = f — g.)

66 Show that if a function f is continuous and has no zeros
on an interval, then either f(x) > 0 or f(x) <0 for
every x in the interval.
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67 In models for free fall, it is generally assumed that the
gravitational acceleration g is the constant 9.8 m/sec?
(or 32 ft/secz). Actually, g varies with latitude. If 9 is the-
latitude (in degrees), then a formula that approximates
gis
2(6) = 9.78049(1 + 0.005264 sin” 6 + 0.000024 sin* §).
Use the intermediate value theorem (1.26) to show that
g = 9.8 somewhere between latitudes 35° and 40°.

68 The temperature T (in °C) at which water boils may be
approximated by the formula

T(h) = 100.862 — 0.0415/h + 431.03,

where & is the elevation (in meters above sea level). Use
the intermediate value theorem (1.26) to show that water
boils at 98 °C at an elevation somewhere between 4000
and 4500 m.

Exer. 69 —74: Approximate the zeros of f to three decimal
places.

69 fx)=x>—x+3
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Exer. 1-26: Find the limit, if it exists.
5x +11 . 6—7x

I lim 2 lim ———
x—3 x+1 x—-2 (3+2x)4
3 lim <2x—v4x2+x) 4 lim (x - 16—x2)
x—>=2 x—4~
) _ 2 _
5 gm = tX-6 g 3710
x—=3/2 4x“ —4x -3 =2 32 x-—2
4 _
7 him =18 8 lim —
x—>2x2—x—2 x—>3t x =3
1 —
9 lim — 10 fim 2 =U/5
x—»O*'ﬁ x—5 x—5
.83 -1
1 lim & 12 lim 5
x—1/2 2x — 1 x—2
13 fim —% 14 1im YXZY2
x—>3+|3—x| x—2 x—2
4_ 4 ~3_ -3
I5 lim @t+h) ~a 16 lim (_2_+L_2_
h—0 - h h—0 h
[‘x+3.
17 lim 2 18 lim (V5 —2x — x?
x—>—3¢x3+27 x—>5/2‘( ¥ o)

70 f(x) = x} —sinx +0.5

71 FG) = 8 = 142® — 9% 1 120 42
72 f(x) =3x° —10x* + 10x% + 3x +7
73 fx)=In(1+x%) -5

74 f(x) =3 —x*-3x-3

E Exer. 75-77: Approximate the discontinuities of f to
three decimal places.

Vx+4
75 fy =
x° — 14x + 47
x+3
76 L
F) [2cosx — 1]
1
77 f(_x) = —
B—x+2
19 Lm 2x-50Gx+1 20 lim 2x + 11
1=>-00 (x +7){4x - 9) x—=>00 /x4 1
21 lim 6——7)64 22 lim _x_—_ﬂ
x>—00 (3 4 2x) X—00 \/X2 + 100
x2
23 lim ——— 24 lim
x—2/3 4 — 9x2 x—3/5" 5x —3
1 x—1
25 lim - — 26 lim ———
x—0 <\/_ ﬁ) xl—IPl \/(x _ 1)2

Exer. 27-32: Sketch the graph of the piecewise-defined
function f and, for the indicated value of a, find each
limit, if it exists:

CY xl_ile- fx)  (b) xlirzg fe) () lim f(x)

3x ifx <2
2 f(x)z{x2 ifx>2 972
28 f(x) = x3 ifx<2 ,_,
4-2x ifx>2




b=

g

g%

ifx < -3
29 f(x)=
Ix+2 ifx>-3

9
— ifx <=3

30 fx) =1 x a=-3
4+x ifx > =3

X ifx <1
31 f(x) =42 ifx=1 a=1
4—x% ifx>1
4
X +x
2 fo=1"x X0 49
2 ifx=0

33 Use Definition (1.4) to prove that lim,_ (5x —21) =09.
34 Let f be defined as follows:

Flx) = 1 if x is rational
*)=1-1 ifx is irrational

Prove that for every real number a, lim f(x) does

. x—a
not exist.

Exer. 35-38: Find all numbers at which f is discon-
tinuous.

|x2—16|
35 fo)= ———— 36 x) =
f x2—16 f& 2 —16
2
x“—x-2 x+2
37 f(x) = ———— 38 X) =
fx) 2o fx) R

Exer. 39 —42: Find all numbers at which f is continuous.

39 f)=2x"—Yx+1 40 fxX)=V2+x)B —x)

4 fo =3
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/ 2
vo-x 42 f(x) = zﬁ
— 16 x°—1

Exer. 43 -44: Show that f is continuous at the number a.
43 f(x)=+/5x+9,a=28
44 f(x)=Vx2—4a=27

I:E] Exer. 45-48: Lend numerical support for the stated

result (of the form lim,_ , f(x) = L) by (a) creating a
table of function values for x close to a and (b) using a
graphing utility to repeatedly zoom in on the graph of f
near x = a.
3 2
45 Tim x"+2x°—9x — 18 _
x—3 x—3

30

. X
46 lim —— =1
x—0 tan x

47 i cos(mx) .

im ——— =
x—3/2 x — (3/2)
48 lim (sinx)* =1

x—>0" |

Exer. 49-50: Approximate the zeros of f to three de;éimal
places.
49 fy=x*—x3-2x-3
50 f(x)=2sinx — x>+ 1

Exer. 51-52: Approximate the discontinuities of f to
three decimal places.

Vx+3 x+5
51 f) =" 52 fr)= T
¥ 4+x-1 |2sinx — x|

- EXTENDED PROBLEMS AND GROUP PROJECTS

I If f is continuous on the closed interval [0, 1] with

0 < f(x) < 1forall x, then

(a) Show that the graph of f lies inside the square with
vertices at (0, 0), (0, 1), (1, 1), and (1, 0),

(b) Prove that f has a fixed point; that is, there is a
number ¢ in [0, 1] with f(c) = c. (Hint: Apply the
intermediate value theorem (1.26) to the function
g(x) = f(x) — x, examining the signs of g(0) and
g

(c) Part (b) shows that the graph of f must hit the
diagonal that runs from (0, 0) to (1, 1). Must the
graph of f also hit the diagonal between (0, 1) and
1,0)?

(d) Suppose that f is a continuous function on a closed
interval I and that for each x in I, f(x) also belongs
to 1. Does the function f necessarily have at least
one fixed point?

(e) Investigate the question posed in part (d) if the
interval I is not closed.

2 Show that a function f has a removable discontinuity
at g if lim,_, _ f(x) exists but the limit does not equal
f(a). We say that f has an essential discontinuity at a
iflim,__ f(x) does not exist. Investigate the distinction
between these types of discontinuity. Construct an
example of a function that has an essential discontinuity

at every real number. Construct a function that has
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an infinite number of removable discontinuities on an
interval I. Can you construct a function that has a
removable discontinuity at every point of an interval /?
Discuss your attempts to build such an example or to
prove that it cannot be done.

The intermediate value theorem (1.26) suggests a
procedure for obtaining approximate solutions to
equations of the form f(x) =0, where f is a given
continuous function.

Step | Find numbers a and b with a < b so that f(a)
and f(b) have opposite signs (one is positive and the
other is negative). Let I be the closed interval [a, b].
Repeat Step 2 until the length of I is less than 1073

Step 2 Let m be the midpoint of the interval I and
determine the sign of f(m). If f(a) and f(m) have
opposite signs, then let I* be the closed left-hand half of
I; otherwise, let I* be the closed right-hand half of 1.
Let I =1I"

(a) Show-that at each step, there is a solution to f(x) =
0, which lies in 1.

(b) Show that each new interval [ is half the length of
the preceding interval.

(c) If the length of [a, b] is less than 1, then show that
the procedure will stop in 10 or fewer repetitions of
step (2).

(d) Show that if we repeat step (2) 20 times, then we
will have located a solution of f(x) = O inside an
interval of length less than (b — a)/10°,

|_£| (e) Use this procedure with f(x) = x — 2 to approxi-
mate +/2, starting witha = 1 and b = 2.

E (f) Use this procedure to determine the positive cube
root of 100 to three decimal places.

El (g) Use this procedure to determine a positive-number
solution of the equation sinx = x to two decimal
places.




