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CHAPTER 7 Techniques of Integration

37 If f(x) = x/(x% — 2x — 3), find the area of the region
under the graph of f fromx =0tox =2.

38 The region bounded by the graphs of y =0,x = 2,

A4 a3 a2
28 f 2x 3); 32 3+ 321 dx x =3, and y = 1/(x — 1)(4 — x) is revolved about the
: x“(x+ 1 y-axis. Find the volume of the resulting solid.
| Exer. 29—32: Using a computer algebra system, deter- 39 If the region described in Exercise 38 is revolved about
mine the partial fraction decomposition of the integrand the x-axis, find the volume of the resulting solid.

and then evaluate the integral.

40 Suppose g(x) = (x—c)(x — cy) e (x— c,) for a posi-

| 282x> + 1021x% — 509x — 398 tive integer n and distinct real numbers ¢;, ¢;, ..., ¢,
f 36x4 +96x3 — 131x% — 71x + 70 x If f(x) is a polynomial of degree less than n, show that
f ~13024° +4075x% + 17420 — 13, fo AL A A
- =
1980x* — 1641x° — 2684x* — 849x — 70 gx)  x—¢ x—06 x =,
—329x% — 440x + 4570 with A, = f(ck)/g’(ck) fork =1, %, ce., N (This- i-s a
30x3 + 187x2 — 555x — 250 % ¥nethod for ﬁnding the partial fractl.on dgcqmpos.ltlon
if the denominator can be factored into distinct linear
f 3244x2 + 437x — 57 n factor&)
3 2
6188x” + 1574x” —420x + 18 41 Use Exercise 40 to find the partial fraction decomposi-
Exer. 33—36: Use partial fractions to evaluate the in- tion of
tegral (see Formulas 19, 49, 50, and 52 of the table of ot 3 —3x2 4 5x 47
integrals in Appendix II). ;
€ PP ) x° — 5x° 4 4x
1 1
33 d 3 | ———d
faz—uz . ju(a—i—bu) N
1
5 Jz——du 36 f——— — du
u“(a + bu) u(a + bu)
|

1.5

QUADRATIC EXPRESSIONS AND
MISCELLANEOUS SUBSTITUTIONS

In this section, we study some additional techniques for finding antideriva-
tives. We first examine integrands that involve quadratic expressions, and
then we consider a variety-of integrals that can be handled by substitutions.

INTEGRALS INVOLYING QUADRATIC EXPRESSIONS

Partial fraction decompositions may lead to integrands containing an ir-
reducible quadratic expression ax +bx+c Ifb # 0, it is sometimes
necessary to complete the square as follows:

b
ax2+bx+c_=a(x2+—x>+c

a
b\ b’
=a(x+5> +,C—E

The substitution ¥ = x + b/(2a) may then lead to an integrable form.

7.5 Quadratic Expressions and Miscellaneous Substitutions

EXAMPLE® | Evaluatef—zzx;l— x
x“—6x+13

SOLUTION Note that the quadratic expression x> — 6x + 13 is irre-
ducible, since b? —dac = —16 < 0. We complete the square as follows:

—6x+13=(x2—6x )+13
=2 —6x+9)+13-9=(x—3)244

f 2x —1 d J 2x —1 4
— —dx = —ees
x?—6x + 13 x—37+4 "

We now make the substitution

Thus,

u=x-3, x=u+3, dx=du.
Thus,

2x—1 2 +3)—1
- dx=| —————du
x“—6x+13 u’+4

2u+5
=szt du
u +4

2u 1
= 5 du—l-SJ 3 du
u-+4 u-+4

5
:1n(u2+4)+§tan_lg+C

= In(x? — 6x + 13) + %tan_1 x_;_ +C.

We may also use the technique of completing the square if a quadratic
expression appears under a radical sign. In the next example, we make a
trigonometric substitution after completing the square.

EXAMPLE®=2 Evaluatef—l———dx.

Vx%+8x +25
SOLUTION We complete the square for the quadratic expression as
follows:
x> +8x+25=x*+8  )+25
= (x% +8x + 16) + 25 — 16
=@x+H*+9

Thus, J’ ——1 dx = f ———1 dx.
x? + 8x + 25 x+4%+9

If we make the trigonometric substitution

x+4=23tan6, dx = 3sec’0 do,

_



Figure 7.7

tan0=x+4

Viix + 42+ 9
x + 4

CHAPTER 7 Techniques of Integration

then

Vi +42+9=v9tn20 +9 = 3Vtan?6 + 1 = 3sech

1 1
SR R N
x2 +8x +25 3sect

= fsec@d@

3sec? 0 do

=In|sect + tan6| + C.

To return to the variable x, we use the triangle in Figure 7.7, obtaining

Vx?+8x+25 x+4

1
-T———___:dxzn +
j\/x2+8‘x+25 3 3
=ln’\/x2+8x+25+x+4|—1n|3|—+—C

—in Va2 4 8x+25+x+4l+ K

+C

with K = C —In3.

MISCELLANEQUS SUBSTITUTIONS

We now consider substitutions that are useful for evaluating certain
types of integrals. The first example illustrates that if an integral con-
tains an expression of the form /f(x), then one of the substitutions
u =/ f{x)oru= f(x) may simplify the evaluation.

3
Vx2 44

SOLUTION | The substitution u =+/x* +4 leads to the fol-
lowing equivalent equations:

u=vx*+4, w=x*+4, 2=ut-1
Taking the differential of each side of the last equation, we obtain

2x dx = 3u® du, or xdx = %uz du.

dx.

EXAMPLE=3 EvaluateJ

We now substitute as follows:

x3 J¢ )C2
———dx = | ———-xdx
fxs/x2+4 Vit 44

=22+ dBar -6 +C

7.5 Quadratic Expressions and Miscellaneous Substitutions

SOLUTION 2 If we substitute u for the expression underneath
the radical, then

u=x2+4, or x’=u—4
and 2xdx =du, or xdx=}du.

In this case, we may write

3 2
x x
—dxzf—"x‘ix
Jﬁ/x2+4 /x? + 4
IR SR U W YAy
_f—ul/?ﬁ 'Edu—zj(u —4u )du
=1 —6u?) + €= ZuPw—-10)+C

=2+ 972 -6+ C.

1
EXAMPLE=4 Evaluatej———dx.
Vx4 x

SOLUTION To obtain a substitution that will eliminate the two rad-
icals \/x = x1/2 and J/x = x1/3 weuseu = x"/", where n is the least
common denominator of % and % Thus, we let
u=x" 6, or, equivalently, x = ub.
Hence,
dx =6’du, 2 =wH? =43 P =W =42

and, therefore,

J ! dx—J L 6ia —6J w’ d
Jx 4% - u3+u2u "= u+1 "

By long division,

w’ =ut—u+1
u+1 u+1

Consequently,

1 1
——  _dx=6 LI 1— d
fﬁu/;x f(“ r u+1> “
=6(lu® L ru—-Infu+1p+cC

=2/x — 3% +6x —6In(x + 1) -+ C.

If an integrand is a rational expression in sinx and cosx, then the
substitution

X
u=tan§ for - m<x<m




Theorem 7.6
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will transform the integrand into a rational (algebraic) expression in u. To
prove this, first note that

X 1 1 1

COS — = = - =
2 sectr/D) 14an’(x/2)  V1+d?
X ‘ X X 1
— =tan — cos — = U———.
sin 7 5 3 —
Consequently,
. 24 X X 2u
=2sin —cos — =
sin x S > AR
oo 2 Llow
CosSx = 5 = I A
Moreover, since x/2 = tan~! u, we have x = 2 tan~! u, and, therefore,
2
dx = 5 du.
14 u

The following theorem summarizes this discussion.

If an integrand is a rational expression in sinx and cos x, the follow-
ing substitutions will produce a rational expression in u:

i 2

inx = 2 COS X == ——s dx = du
) T e 1+u?

X
whereu:tanifor——n <x <X

1

——dx.
4sinx — 3cosx

EXAMPLE®=S Evaluatef

SOLUTION Applying Theorem (7.6) and simplifying the integrand
yields

1 1 2
f—_——dx:j : 5 du
4dsinx — 3cosx 4( 2 ) 3<1—u2> 1+u

1+ u? 1+ u?

By
8u —3(1 —u”)

1
=2J‘———72 du.
3u“+ 8u — 3

Using partial fractions, we have

1 1 3 1 )
32 +8u—3 10\3u—1 u+3

7.5 Quadratic Expressions and Miscellaneous Substitutions

Figure 7.8

P()

=Y

P

and hence

f 1 d_1J 3 Ly,
4sinx —3cosx  5)\3u—1 wux3)™

1
=§(ln|3u—1|—ln|u+3|)+C

_ lln 3u—1 +C
5 u—+3
1 3t 2)—1
5 tan(x/2) + 3

Theorem (7.6) may be used for any integrand that is a rational expres-
sion in sin x and cos x. However, it is also important to consider simpler
substitutions, as illustrated in the next example.

EXAMPLE=6 EvaluateJ—COde.
1+sin2x

SOLUTION We could use the formulas in Theorem (7.6) to change
the integrand into a rational expression in u. The following substitution is
simpler:

u = sinx, du = cos x dx

Ccos X 1
Jli_zdxzf 5 du
14+ sin“x 1+u

—arctanuy + C

Thus,

= arctansinx + C.

The evaluation of an integral may well involve the application of
several techniques in succession. John Bernoulli’s solution of the brachis-
tochrone problem, for example, requires an algebraic substitution, a
trigonometric substitution, and the use of several trigonometric identities.
In 1696, Bernoulli published this problem as a challenge to other math-
ematicians: Find among all smooth curves lying in a vertical plane and
connecting a given higher point P, to a given lower point P, the curve
along which a particle will slide in the shortest possible time.

In Figure 7.8, we have set up a coordinate system with the higher point
P, at the origin and with the positive direction of the y-axis downward.
Figure 7.8 also shows a curve joining the points. Such a curve occurs
in planning the design of a ski jump, for example. Bernoulli wished to
find explicitly an expression for the function y = f(x) whose graph is the
curve of fastest descent from P, to P,. Assuming that gravity is the only
force acting on the particle, Bernoulli used ideas from optics, mechanics,
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and calculus to discover that the function f must satisfy the differential

equation
dy\?
1+ =c
for some constant c.
We may rewrite this equation as

[ (2)]-

<o

or, equivalently,

so that
dy c—y
dx y

where we have chosen the positive square root, since in our coordinate
system y increases as x increases, making dy/dx > 0. Since the right side
of this differential equation is a function only of the variable y, we separate

the variables and obtain
J.dx = f / 4 dy,
c—Yy
so that sz' / Y dy.
c—Yy

To carry out the integration of the right side, we first make the algebraic

substitution # = /y/(c — y), so that ut = y/(c — y), which gives y =
cu?/(1 + u?) and, with differentiation, dy = [2cu/(1 + u*)*] du. Thus,

[y 2 2cu’
xzf Y dy:fu-%du:flz—zdu
c—Yy 1+4+u”) a4+ u”)

To evaluate the last integral, we make the trigonometric substitution u =
tang, du = sec? ¢ d¢. Thus, the integrand becomes

2cu? 2¢ tan® ¢ 2¢ tan® ¢
A+u2?  (+anle)’  (sec’p)

so that
2cu’ 2¢ tan® ¢
=| —— —du= d 2 d
X J(l—i—uz)z U f(sec ¢) sec ¢odp = f ¢ sin? ¢ do.

Our final substitution is to use a variation of the double-angle formula for
the cosine, 2 sin’ ¢ = 1 — cos 2¢, obtaining

X = cf(l — cos2¢) do.

Exercises 7.5

- EXERCISES 7.5

Integration yields
x= %(245 —§in2¢) + D

for some constant D. Substituting ¢ = 0 into this equation, we see that D
is equal to the value of x when ¢ = 0. At ¢ =0, u = tan0 = 0 and hence
y = cu?/(1 + u?) = 0. But when y = 0, we also have x = 0 because the
point Fy(0, 0) lies on the curve. Thus, D = 0.

Using u = tan ¢ gives us a formula for y:

2
t tan?
y = cu ctan’ ¢ I ¢ csin2¢=£(1—cos2¢)
1+ u? 1 +tan’¢  sec’ ¢ 2
As a final simplification, we let a = ¢/2 and 6 = 2¢. The curve of
fastest descent is then described by the set of points P(x, y), where x and

y are given by a pair of equations:

x =a(@ —sinb), y=a(l —cosf)

Here we have described the curve by giving separate equations for the x-
and y-coordinates in terms of a third variable, 8. This description is called
a parametric representation of a curve; we will study such representations
in more detail in Chapter 9. In this case, we may regard 6 as representing
time. At =0, x = 0 and y = 0, and the particle is at the point F,. As 6
increases, the particle moves down the curve toward the point P,.

Exer. 1-18: Evaluate the integral.

1
(R
x+1D)“+4
1
o N
x“—4x + 8

1
[

4x — x?

2x 43

f\/—9—8x—x

dx

1
——dx
f(xz +4x + 5)2

dx
(x + 6x + 13)3/2

15 dx

I3f 3 dx
2x —3x+9

e* +3e +2

-]

-— . dx
— 6x +34)%?

—4x +6 ! -1
|7f- O |sf2x -~ dx
1 dx 2 x% —4x 45 0x +x+1
— (x - 3)? 19 Find the area of the region bounded by the graphs of
» y=1/x*+4x+29),y=0,x=—2, andx = 3.
- 2)16 +2 20 The region bounded by the graph of

—_—d
iter -2 y=1/G3 +2x +10),
xS X the coordinate axes, and the line x = 2 is revolved about
9x% + 6x + 17 the x-axis. Find the volume of the resulting solid.

1
Exer. 21 - 46: Evaluate the integral.

o
—_—— e S e e e

— , ,
\a’fx(6—x) dx 21 fx\/X+9dx 22 fx V2x + ldx
S5x
2x 3 f—x—dx 24 J Y
14 [———— > dx 5 573
(x2 +2x +5)2 V3x 42 (x +3)
"2 0. o 1 5
16 |+vx°+ 10xdx 25 f dx 26 o
' 4 Jx+4 0 \/4_’_—\/;
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Jx 1 J sin 2x
27 dx d 45 —dx
J.1+3/§ +Jx * sinx — 2sinx — 8
1 4 sin x
S R Y = O et
(x+ D/x =2 o 1+ 2x Scosx +cos” x
x+1 A Exer. 47 —52: Use Theorem (7.6) to evaluate the integral.
i — 71/3 dx 32 J 1/3 dx 1 1
| @+4) w 47 f2+ —dx 48 Jé_fi_c‘_ dx
x sinx 08 X
33 JeSX\/1+exdx 34 J'%dx 1 1
vite 49 J — —dx 50 J —— e —dx
o2 sin 2x -+ sinx + cosx tanx + sinx
35 < dx 36 pr—— et dx sec x 1
e +4 V1+sinx 51 f_ dx 52 j_u_,_,._. dx
s 4 —3tanx sinx — +/3cos x
. / X
37 J’ sin/x + 4dx 38 J’ Ve dx Exer. 53 - 54: Use Theorem (7.6) to derive the formula.
3 2 1
X x 1 4+tan 5x
39 J dx 40 J ————dx 53 Jsecxdx =In|l——25|4+C
2 (x—1° Bx+4H" 1—tanix
sinx cos x
41 | —— d 42[-—-7 ———d _ 1 (l—cosx
jcosx(cosx—l) * sin? x — sinx — 2 * 54 fcscxdx—iln(l_*_cosx +C
43 f A 44 f L4
x x
-1 e +e”

" TABLES OF INTEGRALS AND

COMPUTER ALGEBRA SYSTEMS

Mathematicians and scientists who use integrals in their work may refer to
a table of integrals or make use of a computer algebra system. We explore
these approaches in this section. Many of the formulas contained in tables
of integrals can be obtained by the methods that we have studied. A CAS
can correctly apply the techniques that we have learned and also use more
advanced methods. You should use a table of integrals or a CAS only after
gaining some experience with the standard methods of integration.

A CAS may not always be able to perform an integration. However,
making a substitution or implementing one of the other techniques may

transform the original integral into a new integral that can be found in a

table or can be successfully integrated by the CAS. To guard against errors,
including data entry errors, when working with a CAS, always check the
proposed answers by differentiation. Bear in mind that two answers can

ook quite different when found-using different methods, even though they

may be the same (or differ by only a constant).

TABLES OF INTEGRALS

Appendix II contains a brief table of integrals. We shall examine several
examples illustrating the use of some of the formulas in this table.

7.6 Tables of Integrals and Computer Algebra Systems

EXAMPLE=| Evaluatefx%osxdx.

SOLUTION  We first use reduction Formula 85 in the table of inte-
grals with n = 3 and u = x, obtaining

fx3 cosx dx = x> sinx — 3Jx2 sinx dx.
Next we apply Formula 84 with n = 2, and then Formula 83, obtaining
sz sinx dx = —x?cosx + 2fx cos x dx
= —x2cosx + 2(cos x + x sinx) + C.

Substitution in the first expression gives us

3 .
J’x cosxdx = x> sinx + 3x2cosx — 6¢cosx — 6x sinx + C.

EXAMPLE=2 Evaluatef dx forx > 0.

1
x%y/3 + 5x2
SOLUTION The integrand suggests that we use that part of the table
dealing with the form v/a® + u?. Specifically, Formula 28 states that

J’ du va*+u? c
— = — + C.
uzx/ a4+ u? a’u
(In tables, the differential du is placed in the numerator instead of to the

_right of the integrand.) To use this formula, we must adjust the given
integral so that it matches exactly with the formula. If we let

a*=3 and u?= 5x2,

then the expression underneath the radical is taken care of; however, we
also need

@ u? to the left of the radical
(ii) du in the numerator

We can obtain (i) by writing the integral as

1
5 j ——dx.
5x2v/3 + 5x2
For (ii), we note that
u=+/5x and du=+~5dx

and write the preceding integral as

1 1
5. ——ji«/gdx.
NE] 5x2/3 + 5x2
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The last integral matches exactly with that in Formula 28, and hence
1 V3 4 5x2
—dx =5 ——— | +C
szv'fi + 5x2 [ 3(v/5x) }

V3 + 5x2
== .
3x

As illustrated in the next example, it may be necessary to make a
substitution of some type before a table can be used to help evaluate an
integral.

sin 2x

————dx
V3 —5cosx
SOLUTION Letus begin by rewriting the integral:

EXAMPLE=3 Evaluatef

sin 2x 2sinx cos x

——dx = | ——dx
v3—5cosx V3 —5cosx

Since no formulas in the table have this form, we consider making the

substitution # = cos x. In this case, du = —sin x dx and the integral may
be written
sin x cos x 5 cosx (—sinx)d
——————dx = -2 | ———(—sinx)dx
V3 —5cosx V3 —5cosx
u
Y T
3—5u

Referring to the table of integrals, we see that Formula 55 is

di 2
J% = W(bu——Za)va—Fbu-i—C.
a U

Using this result with @ = 3 and b = —5 gives us

u 2
2| ——=du=-2{—)(—5u—6)v3 - .
jm “ (75)( u—OVI=Su+C

Finally, since # = cos x, we obtain

sin 2x 4
———————dx = —(5cosx +6)v/3 —5S5cosx + C.
V3 —5cosx 75( )

COMPUTER ALGEBRA SYSTEMS

The next examples illustrate what can be expected from a computer algebra
system. In using a CAS to find an antiderivative, the user typically specifies
a command to do an indefinite integration, then enters the integrand, and
finally gives the variable of integration.

671

7.6 Tables of Integrals and Computer Algebra Systems

% EXAMPLE=4 Evaluatef

1
dx using a CAS.
34+ 4/x :
SOLUTION  We use the CAS called Maple, which is available for

many computer systems. Maple displays the symbol - as a prompt to the
user that it is ready for a command. The user then types

int (1/(3+sqrt(x)),x);

where int indicates a request for the indefinite integral of the func-
tion, which will appear within the parentheses. The term ,x specifies the
variable, and the semicolon at the end of the line denotes the end of the
request. The user then presses the key, and Maple responds with
an antiderivative, which is displayed on the screen as follows. Note that
Maple does not include a constant of integration in its answer.

* int(1l/(3+sqrt(x)),x);

1/2 -9 - x+ 6 x
- 3 1In(- 9 + x) +2 x + 3 In(-——————--————-—-- )

Note that Maple and some other computer algebra systems give In u as
the antiderivative of 1/u rather than the more precise result

1
j—du =1In|u| + C.
u
Thus, we may write the answer as

9—x+64/x +c

1 —_

+x

EXAMPLE®5 Evaluate | xe ¥¥dx using a CAS.

SOLUTION We use the CAS called Mathematica, which is also
available for many computer systems. Note that Mathematica also does
not include a constant of integration. The bold-faced characters on the
screen display show what the user enters; Mathematica prints the rest:

In[6]:=
Integrate[x*Exp[-1*Sqrt[x]], x]
Output/6]=

-12 - 12 Sqrt[x] - 6x - 2x
E Sqrtlx]

3/2
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Mathematica’s prompt to the user in this case has the form In/6]:=. Math-
ematica uses Sqrt[x] to denote the function /x and Exp or E for the ex-

ponential function. Thus, Mathematica writes the function e¥* as ESat[x],
We may write the answer as

12 — 12/x — 6x — 2x7/?

xe Vidx = — T + C.
MPLE®é Eval tf ! dx using a CAS
by .
EXA vauate 34 2sinx +cosx £

SOLUTION We now use a CAS for MS-DOS machines called De-
rive. Derive also does not include a constant of integration.

1
3+ 2 SIN(x)+ COS(x)

| ! dx
3+2 SIN(x)+ COS(x)

COS(x) + SIN(x) + 1}_ ATAN[_S‘L(X)_] %

3: ATAN
[ COS(x)+1 COS(x)+1

With Derive, the user selects commands from a set of on-screen menus
by either typing in the first letter of the command or using a “mouse” or
“trackball.” The screen then shows the result of executing the command.
In this example, the user selects an Author command before entering the
function on line 1 and then selects Calculus to request a new menu from
which Integrate is chosen. There are also commands for selecting x as the
variable of integration and for requesting a simplification of the resulting
antiderivative.

Derive uses ATAN to represent the inverse tangent function that we
have written as tan~!. We may write the answer as

1
J3+2sinx+c0sx *

1 {cosx +sinx +1 ) ( sin x > x
= ) -t — )+ =+ C.
tan ( cosx + 1 an cosx +1 2

Each CAS uses its own set of rules for simplification. Thus, the same
integrand may give different-looking antiderivatives for different computer
algebra systems. It may take some effort to see that these results are either

7.6  Tables of Integrals and Computer Algebra Systems

the same or differ only by a constant. For example, the three computer
algebra systems discussed so far give the following results for [ sec x dx:

Maple: In(sec(x) + tan(x))
X X X X
Mathematica: — Log[Cos [~ | — Sin |~ x '_]
athematica 0g[Cos [2] 1n[2] 14 Log[Cos [2]+ Sln[2 ]
Derive: N M
COS(x)

Note that each of these three computer algebra systems uses a different
notation for the natural logarithm: In in Maple, Log in Mathematica, and
LN in Derive. Although these may appear to be three different functions,
they are all equivalent. For example,

sinx + 1 _ sin x 1

= =tanx + secx.
Cos X COS X CcCoSx

As an exercise in trigonometric identities and elementary properties of
logarithms, you may want to show that

N l: SIN(X)+1j|
COS(x)

— — Log[Cos [g] — Sin [%] ]+ Log[Cos [g] + Sin B]]

As in Example 2, we observe that computer algebra systems often
display solutions to integration problems in the form Inx when the more
precise answer should be In ]u j The results for [ sec x dx should be written
as

1+ sinx
Inj———+C, Infsecx +tanx|+ C,
cOS X
and lnlcosx i x'—i—l l X in > C
— — —sin — — —
3 5 ncos2+s1n2‘+ .

We have discussed various methods for evaluating indefinite integrals;
however, the types of integrals we have considered constitute only a small

‘percentage of those that occur in applications. The following are examples

of indefinite integrals for which antiderivatives of the integrands cannot
be expressed in terms of a finite number of algebraic or transcendental
functions:

fv3x2+4x—ldx, fv3coszx+ldx, je‘xzdx

In Chapter 8, we shall consider methods involving infinite sums that are
sometimes useful in evaluating such integrals.
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- EXERCISES 7.6

Exer. 1-30: Use the table of integrals in Appendix II to 23 sin 2x d 24 tan x »
evaluate the integral. 41 9sinx /A7 3secx
V4 +9x? Vo .
1 J’—i—{— dx —_—— 25 o+ 2x dx 26 fvf8x3 —3x%dx
X xv2 + 3x? x
T 1 1
3 j(16—x2)3/2dx 4 fx Vax? — 16dx 27 fidx 28 f’——dx
x(4+ %) 2x3/2 4 5x2
sfo2_3de 6fx2~5‘+2xdx 29 f\/16—sec xtan x dx 30] (i)t_x_dx
J4 — cse? x
i 6 5¢,2
! f sin” 3x dx 8 J- x cos”(x7) dx E| Exer. 31-40: Use a CAS to evaluate the integral, if
possible.
9 J csct x dx 10 J sinS5x cos 3x dx 30 J’ dx 32 [ dx
3+2cosx +3sinx 2+ 2sinx +cosx
-1 2. —1 ,
H Jx s x dx 12 fx tan™" x dx 33 fx3e4x sin(2x) dx 34 fx e ¥ sin(5x) dx
13 fe_3xsin2xdx 14 fxslnxdx 35 W b 36 f sin x
3+x+f sinx + cos x
/ 2
Vv5x —9x 1 |
5 | ———dx 16 | —; s dx f cscx dx 38 |+/tanxdx
x xv/3x — 2x° ]
X dx '
17 dx 18 | cosx ’s1n x—-dx 40 f“
f5x4 -3 f V1+dx .

3

19 J Y cosl e dx 20 fsm x cos® x dx

21 fx3\/2+xdx 22 JZ—

7.7  IMPROPER INTEGRALS

Mg T e 8 M Inour work with definite integrals of the form fab f(x) dx, we have consid-
- ' o - ered almost exclusively proper integrals—that is, situations in which the
function f is continuous on a closed interval [a, b] of finite length. In this |
section, we extend the definite integral to cases where the interval may be |
of infinite length or where the function f has isolated discontinuities on
the interval. ‘

INTEGERS WITH INFINITE LIMITS OF INTEGRATION

Suppose that a function f is continuous and nonnegative on an infinite
interval [a, 0o) and lim, |  f(x) = 0.If ¢ > a, then the area A(¢) under

Improper Integrals

the graph of f from a to ¢, as illustrated in Figure 7.9, is

t
A() =f f(x)dx.

If lim,_  A(t) exists, then the limit may be interpreted as the area of
the region that lies under the graph of f, over the x-axis, and to the right
of x = a, as illustrated in Figure 7.10. The symbol [ aoo f(x)dx is used to
denote this number. If lim A(t) = oo, we cannot assign an area to this

(unbounded) region.

—>00

t 00
Figure 7.9 f f(x)dx Figure 7.10 f fx)dx
a a

oY

y = flx)
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-
X

X

Part (i) of the next definition generalizes the preceding remarks to the
case where f(x) may be negative for some x in [a, 00).

(i) I f is continuous on [a, 00}, then

fo'e} 4
f fyds = lim f F)dx,

provided the limit exists.
i) If f is continuous on {—o0, al, then

[ rewas=im [ reoan

=ARE)

provided the limit exists,

If f(x) > 0 for every x, then the limit in Definition (7.7)(ii) may be
regarded as the area under the graph of f, over the x-axis, and to the left
of x = a (see Figure 7.11).

The expressions in Definition (7.7) are improper integrals. They differ
from definite integrals in that one of the limits of integration is not a real
number. An improper integral is said to converge if the limit exists, and
the limit is the value of the improper integral. If the limit does not exist,
the improper integral diverges.

Definition (7.7) is useful in many applications. In Example 4, we shall
use an improper integral to calculate the work required to project an object
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from the surface of the earth to a point outside of the earth’s gravitational
field. Another important application occurs in the investigation of infinite
series.

EXAMPLE=1 Determine whether the integral converges or di-
verges, and if it converges, find its value.

o0 1 1
(@) X (x—1)2dx (b)f2 x—ldx

SOLUTION
(a) By Definition (7.7)(i),

(o] 1 t 1 _1 t
f 5 dx = lim 2dx:limli ]
2 (x—=1) =00 Jh (x — 1) tsoo | x — 1 2

) -1 1 ‘
=lm|{—+-—)=0+1=1.

oo\t -1 2-—1

Thus, the integral converges and has the value 1.
(b) By Definition (7.7)(i),

RS | |
f dx = lim dx

7 x—1 =00 Jy x — 1

tl_i)nolo[ln(x - 1)]t2
= tl_ig) [In(t — 1) — In(2 — )]

= lim In(z — 1) = cc.
t—00

Since the limit does not exist, the improper integral diverges.

The graphs of the two functions given by the integrands in Example 1,
together with the (unbounded) regions that lie under the graphs for x > 2,
are sketched in Figures 7.12 and 7.13. Note that although the graphs have
the same general shape for x > 2, we may assign an area to the region
under the graph shown in Figure 7.12, but not to that shown in Figure 7.13.

The graph in Figure 7.13 has an interesting property. If we revolve the
region under the graph of y = 1/(x — 1) about the x-axis, we obtain an
unbounded solid of revolution. We may regard the improper integral

o0 1
[“r
2 (x=1)

as the volume of this solid. By Example 1(a), the value of this improper
integral is 7. This gives us the curious fact that although we cannot assign
an area to the region in Figure 7.13, the volume of the solid of revolution
generated by the region is finite.

1.7 Improper Integrals

Figure 7.14

Ay

Definition 7.8

677

EXAMPLE®=2 Assign an area to the region that lies under the graph
of y = %, over the x-axis, and to the left of x = 1.

SOLUTION The region bounded by the graphs of y =¢*,y = 0,
x =1, and x =1, for t < 1, is sketched in Figure 7.14. The area of the
unbounded region to the left of x = 1 is

1 1
f e*dx = lim e*dx = lim [e"]t1
-0

——00 ¢ {——00

= lim (e—e')=e—0=c.
f——00

An improper integral may have two infinite limits of integration, as in
the following definition.

Let f be continuous for every x. If @ is any real number, then

= fx)dx =f

-0

a

fx)dx +f fx)dx,

—00 a

provided both of the improper integrals on the right converge.

If either of the integrals on the right in Definition (7.8) diverges, then
1) fooo f(x) dx is said to diverge. It can be shown that (7.8) does not depend

on the choice of the real number a. It can also be shown that [ _OOOO f(x)dx
is not necessarily the same as lim, | __ fi ; J(x) dx (consider f(x) = x).

EXAMPLE=3

o0

dx.

(a) Evaluate f :

—ool—l—x

(b) Sketch the graph of f(x) =1/(1 + x?) and interpret the integral in
part (a) as an area.

SOLUTION
(a) Using Definition (7.8), with a = 0, yields

© ] 0 1 ©
f 2dx:f 2dx—i—f 2d)c.
—oo 1 +x 0 1+ x o 1+x

Next, applying Definition (7.7)(i), we have

[oe] t 1
f 5 dx = lim 5 dx = lim [arctan x]g
0 1 +x =00 jj 1 +x t— 00
= lim (arctant — arctanQ) = T_ 0=
f—>00 2

2
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Similarly, we may show, by using Definition (7.7)(ii), that

f 0 1 T
——dx = .
—00 1 +x 2
Consequently, the given improper integral converges and has the value
(T/2)+ (7/2) = 7.
(b) The graph of y = 1/(1 4+ x2) is sketched in Figure 7.15. As in our

previous discussion, the unbounded region that lies under the graph and
above the x-axis may be assigned an area of 7 square units.

We now consider a physical application of an improper integral. If a
and b are the coordinates of two points A and B on a coordinate line / (see
Figure 7.16) and if f(x) is the force acting at the point P with coordinate
x, then, by Definition (5.21), the work done as P moves from A to B is
given by

b
sz f(x)dx.

In similar fashion, the improper integral faoo Jf(x) dx may be used to define
the work done as P moves indefinitely to the right (in applications, we use
the terminology P moves to infinity). For example, if f(x) is the force of
attraction between a particle fixed at point A and a (movable) particle at
P and if ¢ > a, then fcoo S (x) dx represents the work required to move P
from the point with coordinate ¢ to infinity.

EXAMPLE®=4 TLet/ beacoordinate line with origin O at the center
of the earth, as shown in Figure 7.17. The gravitational force exerted at a
point on / that is a distance x from O is given by f(x) = k/x>, for some
constant k. Using 4000 mi as the radius of the earth, find the work required
to project an object weighing 100 1b along /, from the surface to a point
outside of the earth’s gravitational field.

SOLUTION Theoretically, there is always a gravitational force f(x)
acting on the object; however, we may think of projecting the object from
the surface to infinity. From the preceding discussion, we wish to find

X0
W=1 - f(x)dx.
4000

By definition, f(x) = k/x? is the weight of an object that is a distance x
from O, and hence

100 = £(4000) = ——,
J(4000) (4000)?

or, equivalently,

k = 100(4000)> = 10 - 16 - 10° = 16 - 108,

7.7 Improper Integrals

Figure 7.18 ,
fax)y=e"

TR T

Thus,
/@) = (16 10—
X

and the required work is

o 1 t 1
W=| (16-10—dx=16-10° lim | —dx
4000 X =00 J4000 X
17 11
=16-10® lim [——] =16-10® lim (—— + —)
=00 X 14000 t—>00 t 4000
8
_ 10 10T 165 midib.
4000

In terms of foot-pounds,
W =5280-4-10° ~ (2.1)10° ft-Ib,

or approximately 2 billion ft-1b.

In applications, we frequently encounter integrals for which there exist
no antiderivatives that can be expressed in simple terms involving standard
functions we have studied. The indefinite integral e~ dx isan example.
If one of these integrals occurs as a definite integral, then we must use nu-
merical integration techniques for evaluation. The next example illustrates
how we may use such techniques for an improper integral.

F—!l EXAMPLE®5 The improper integral | _oooo e dx occurs frequently
ﬁ in the study of probability and statistics. Estimate the value of this integral
using Simpson’s rule.

SOLUTION The function f(x)= e has the property that
f(=x) = f(x). Hence, the graph of y = f(x) is symmetric about
the y-axis (see Figure 7.18). Thus,

o0 2 o0 2
f e ¥ dx =2J e ™ dx.

—00 0

Since

o0 N t 2
f e ¥ dx=1im | e dx,

0 {—>00 0

we estimate the improper integral by numerical integration of fot e dx
for successively larger values of ¢. Using Simpson’s rule with Ax = 0.01,
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we obtain the values listed in the following table:

t fot e dx
1| 0746824132818
0.882081390760
0.886207348259
0.886226911790
0.886226925451
0.886226925453

‘ 0.886226925453

~N N AW

The numerical values in the table appear to converge rather rapidly
for relatively small values of 7. This result is consistent with Figure 7.18,
which shows the graph of f(x) = e~ quickly approaching 0 as x moves
away from O.

It appears then that fooo e~ dx ~ (.886226925453. Thus, our final

estimate is f_oooo e dx ~ 2(0.886226925453) = 1.772453850906. In
Chapter 9, we shall determine that the exact value of the improper integral
is /7 =~ 1.772453850906.

. x? . N
In Example 5, we estimated f0°° e~ dx by a numerical approximation
A . . . . . .

of fo e * dx. With this approach, we ignored the contribution to the im-

. —_ 2 . .
proper integral due to f7°° e * dx.By comparing our integral to one whose
antiderivative we can find, we can estimate the error made by using this
approach.

EXAMPLE®=6 Obtain an upper bound for [, e dx by comparing
this improper integral to [, xe ™ dx.

SOLUTION Forx >1,wehave0 < e* < xe ™. Hence,

o0 > o0 2 5 )
e dx <f xe ¥ dx = lim | xe™ dx
t t

§—>00 t
. =2
= lim (—%e x)
§—>00

Thus, the error made by ignoring f7°° e dx is less than %6_49’ or about
2.621E-22,

s 2

t

1.7
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L i

In economics, improper integrals often occur when considering the
entire furure amount of a quantity whose rate of flow is known as a func-
tion of time. For example, if the revenue flow from sales of a particular
item is estimated to be R(¢) dollars per time unit at time ¢, with t =0
corresponding to the present, then the entire future revenue from sales is
given by fooo R(r) dt. Since ¢ is the variable of integration, we can modify
Definition (7.7) as follows: f;° R(t) dt = lim,_, . [y R(z) dt. In the next
example, we consider another application from economics.

EXAMPLE =7 In assessing the potential revenue or profit from a
mineral or energy source, economists must estimate the total amount of the
resource that can be recovered from the site. Mining engineers determine
that ¢ years from now, a newly opened natural gas well will produce gas at
a rate of

W(t) = 750e %1 — 450703

thousand cubic feet per year. Estimate the total amount of gas that this well
could produce.

SOLUTION  We wish to estimate the entire future production of the
well if it continues to pump indefinitely. This amount is given by

f ” W(t)dt
0

xXd
= f (750e %1 — 450e0-3) dt
0

N
(750e~01 — 450¢7931) gy

= lim
N—oo Jg
=N
= lim r7_50_e—0-1r_ 450 e 03 '
N—oo _—0.1 —0.3 =0
— tim | 750 —oaw _ 450 _osw (750 o 450 ,
N—oo _—O.l —0.3 —0.1 —03
T 750 450
= lim - — (—7500 + 1500
N—>oo _(“0.1)e0‘1N (—0.3)60'3N ( ):I

=0 — 0 — (—6000) = 6000.

Thus, we estimate that this well will produce (6000)(1000) = 6 million
cubic feet of natural gas.

INTEGRALS WITH DISCONTINUOUS INTEGRANDS

If a function f is continuous on a closed interval [a, b], then, by Theorem

(4.20), the definite integral J ab S (x)dx exists. If f has an infinite discon-
tinuity at some number in the interval, it may still be possible to assign
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are called the values of the improper integrals. If the limits do not exist,
the improper integrals diverge.
Another type of improper integral is defined as follows.

t b
Figure 7.19 f fx)dx Figure 7.20 J f)dx
a L

AY AY

Definition 7.10 . Bl .
g If f has a discontinuity at a number ¢ in the open interval (a, b) but

is continuous elsewhere on [a, &], then
y = flx)

b H b
y = f) f oy d = f ) dx + f ) dx,

QY ———————————

=Y

Figure 7.21 provided both of the improper integrals on the right converge. If both

Ay converge, then the value of the improper integral [ ab f(x)dx is the
sum of the two values.

=Y

Nf—_—_——_—_———_————— — — — —

a value to the integral. Suppose, for example, that f is continuous and

|

|

|

: The graph of a function satisfying the conditions of Definition (7.10) is
nonnegative on the half-open interval [a, b) and lim,_,- f(x) = oo. If I 1

c

| > sketched in Figure 7.21.
a <t < b, then the area A(r) under the graph of f from a to  (see Figure a b * A definition similar to (7.10) is used if f has any finite number of
7.19)1is discontinuities in (a, b). For example, suppose f has discontinuities at (o
; Figure 7.22 and ¢,, with ¢; < c,, but is continuous elsewhere on [a, b]. One possibility
At = J fx)dx. y is illustrated in Figure 7.22. In this case, we choose a number k between
a | 4 | I ¢, and ¢, and express fab f(x) dx as a sum of four improper integrals over
If lim, ,,~ A(r) exists, then the limit may be interpreted as the area of l { : tl;)e intervals [a, ¢ ], [y, k], [k, ¢,], and [c,, b], respectively. By definition,
the unbounded region that lies under the graph of f, over the x-axis, and | | J, f(x)dx converges if and only if each of the four improper integrals in
between x = a and x = b. We shall denote this number by [ ab fx)dx. |' : the sum converges. We can show that this definition is independent of the
For the situation illustrated in Figure 7.20, lim, _, ,+ f (x) = oo, and we | | nun;:ber 11; ,
1mi | i | | - 1 1 3 H - . . . ..
define fa” f(x) dx as the limit of ft b fx)dxast — a’. 7 : (!l . ].c . 1; > | bln:«_il y, if fis f:OI(lthf;uoufsbon (a, b) but has infinite discontinuities at a
These remarks are the motivation for the following definition. 1 2 and b, then we again define J,; f (x) dx by means of (7.10).
. |
iti 5 . 2 ' EXAMPLE=S8 Evaluatef dx.
Definition G52 @) If f is continuous on [a, b) and discontinuous at b, then o V3 —x
! b t
dx = lim x)dx, . . e .
: L Fe t—l»b'}; 7@ SOLUTION Since the integrand has an infinite discontinuity at the
| provided the limit exists. number x = 3, we apply Definition (7.9)(1) as follows:
| (i) If f is continuous on (a, b} and discontinuous at a, then 3 ) . )
b b f N dx = lim A dx
[ fxydx = lim+f fx)dx, 0 —x =3 Jo —x
[—>a ¢
, N ’ = lim [—2@]
provided the limit exists. ' P 0
" = lim (—2v3 — 1 +2v/3)
| . t—3
As in the preceding section, the integrals defined in (7.9) are referred —042/3=2V3
"\ to as improper integrals and they converge if the limits exist. The limits !




CHAPTER 7 Techniques of Integration

1
EXAMPLE®=9 Determine whether the improper integral f —dx
0o X

converges or diverges.

SOLUTION The integrand is undefined at x = 0. Applying (7.9)(ii)
gives us

! | .
f —dx = lim | —dx = lim [Inx]! = lim (0 —In?) = oo.
0o X =0t Jp X t—0* t—0* :

Since the limit does not exist, the improper integral diverges.

EXAMPLE®= [0 Determine whether the improper integral

4
d
Jo(x—3)2 *

converges or diverges.

SOLUTION The integrand is undefined at x = 3. Since this nurélber
is in the interval (0, 4), we use Definition (7.10) with ¢ = 3:

A 3o A
f —zdx:f 2dx+j ——dx
0 (x—3) 0o (x—3) 3 (x—3)
For the integral on the left to converge, both integrals on the right must
converge. Equivalently, the integral on the left diverges if either of the

integrals on the right diverges. Applying Definition (7.9)(i) to the first
integral on the right gives us

31 | -17
f———zdleimj 2dx:lirn[ ]
0 (x—3) t—37 Jo (x—3) -3 [x—3 0
. (—1 1
=lim|— - )=
>3-\t —3 3

Thus, the given improper integral diverges.

It is important to note that the fundamental theorem of calculus cannot
be applied to the integral in Example 10, since the function given by the
integrand is not continuous on [0, 4]. If we had (incorrectly) applied the
fundamental theorem, we would have obtained

-1 7" L_r_ 4
x—3]y 33

This result is obviously incorrect, since the integrand is never negative.
An improper integral may have both a discontinuity in the integrand
and an infinite limit of integration. Integrals of this type may be investi-

7.7
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gated by expressing them as sums of improper integrals, each of which has
one of the forms previously defined. As an illustration, since the integrand
of fooo(l /+/X) dx is discontinuous at x = 0, we choose any number greater
than O—say, 1-—and write

©1 SR A
[ e A
We can show that the first integral on the right side of the equation con-
verges and the second diverges. Hence (by definition) the given integral
diverges.

Improper integrals of the types considered in this section occur in phys-
ical applications. Figure 7.23 is a schematic drawing of a spring with an
attached weight that is oscillating between points with coordinates —c¢ and
¢ on a coordinate line y (the y-axis has been positioned at the right for clar-
ity). The period T is the time required for one complete oscillation—that
is, twice the time required for the weight to cover the interval [—c, ¢]. The
next example illustrates how an improper integral results when we derive
a formula for 7'.

Figure 7.23
J ¥ \
y
\ / ¢
< ~
— —
—~ =~ Ay = Yi = Vi1
\ / _______ L ¢
— \ A1
= > |-
~— \ — 4 —_
gy e / w .
Egslilg;brfmm “\"““Tk":o T
-
-

EXAMPLE= 11 Letv(y)denote the velocity of the weight in Figure
7.23 when it is at the point with coordinate y in [—c, c]. Show that the
period T is given by

S|
T=2f —dy.
—cv(y) Y

SOLUTION Letus partition [—c, c] in the usual way, and let Ay, =
¥; — Yr_; denote the distance that the weight travels during the time in-
terval At,. If w, is any number in the subinterval [y,_;, ], then v(w,)
is the velocity of the weight when it is at the point with coordinate w,.
If the norm of the partition is small and if we assume that v is a continu-
ous function, then the distance Ay, may be approximated by the product
v(w,)At,; that is,

Ay, =~ v(w,) Afy.
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Hence, the time required for the weight to cover the distance Ay, may be

approximated by

and, therefore,

At ~ Ay,

v(w,)

_ZZAtkNZZ (wk) Y-

By considering the limit of the sums on the right and using the definition

of definite integral, we conclude that

Note that v(c)

A\

T=2| —d
Lv(y) y:

= 0 and v(—c) = 0, so the integral is improper.

- EXERCISES 7.7

Exer. 1-20: Determine whether the integral converges or
diverges, and if it converges, find its value.

| 0 1
| —dx zf —  _dx
fl x43 o (x =13

o
4f xzdx
o 1+x

o0

0 1 00
It 12 f dx
f—oo (x 8)2/3 1 2)2
o0 2
13 f O —d 14 J
0 1+4sin“x X
o0 2 x
15 J xe ¥ dx 16 f cos? x dx
-0 o0
001 o0
17 f il ¥ I8 f
1 X 3 x? ~1
/2 00
19 j sin2x dx 20 xe Y dx
—00 0

Exer. 21-24: If f and g are continuous functions and
0 < f(x) < g(x) for every x in [a, c0), then the following
comparison tests for improper integrals are true:

(i) Iff a°° g(x) dx converges, then | a°° f(x) dx converges.
(i) If [°f(x) dx diverges, then [ *g(x) dx diverges.

Determine whether the first integral converges by com-
paring it with the second integral.

®© 1 %1
21 f 4dx; J —4dx
1 1+x 1 x

© 1
22J X, j
2 Jx2 -1 2
1 1
s [ la [Ta
2 Inx 2 X

o0
f e *dx
1

Exer. 25-26: Assign, if possible, a value to (a) the area of
the region R and (b) the volume of the solid obtained by
revolving R about the x-axis.

25 R={(x, y):x>1,0<y<1/x}
26 R={(x, »):x>=1,0<y<1/J/x}

27 The unbounded region to the right of the y-axis and

between the graphs of y = ¢™ and y = 0 is revolved
about the y-axis. Show that a volume can be assigned to
the resulting unbounded solid, and find the volume.

e 2
24 j e dx;
1

Exercises 7.7

28 The graph of y = ¢™* for x > 0 is revolved about the x-
axis. Show that an area can be assigned to the resulting
unbounded surface, and find the area.

29 The solid of revolution known as Gabriel’s horn is
generated by rotating the region under the graph of
y = 1/x for x > 1 about the x-axis (see figure).
(a) Show that Gabriel’s horn has a finite volume of 7
cubic units.
(b) Is a finite volume obtained if the graph is rotated
about the y-axis?

(c) Show that the surface area of Gabriel’s horn is given
by J7°2m(1/x)V 1 + (1/x*) dx. Use a comparison
test (see Exercises 21-24) with f(x) =2n/x to
establish that this integral diverges.

(d) Comment on the following: “If Gabriel’s Horn has
finite volume but infinite surface area, then we can
fill it with a finite amount of paint but we would
never be able to paint its surface. On the other hand,
if we fill it with paint, then the entire inside surface
area is also covered with paint. Thus, we can paint
the inside surface area. But the outside and inside
surface areas are equal, so we can paint it with only
finitely much paint!”

Exercise 29

30 A spacecraft carries a fuel supply of mass m. As a
conservation measure, the captain decides to burn fuel
at a rate of R(t) = mke ¥ g/sec, for some positive
coustant k.

(a) What does the improper integral f0°° R(t) dt repre-
sent?

(b) When will the spacecraft run out of fuel?

31 The force (in joules) with which two electrons repel one
another is inversely proportional to the square of the
distance (in meters) between them. If, in Figure 7.16,
one electron is fixed at A, find the work done if another
electron is repelled along / from a point B, which is 1
meter from A, to infinity.

32 An electric dipole consists of opposite charges separated
by a small distance d. Suppose that charges of +¢ and
—q units are located on a coordinate line / at %d and

33

34

35

687

—ld respectively (see figure). By Coulomb’s law, the

net force acting on a unit charge of —1 unit at x > 1d is
given by

—kq kq
(x — 1ay? e 1ay?

fx) =

for some positive constant k. If a > %d, find the work
done in moving the unit charge along / from 4 to infinity.

Exercise 32

—q . ta 1
- t - ® -
1 1

—3d 0 >d x|

The reliability R(¢) of a product is the probability that it

will not require repair for at least ¢ years. To design

a warranty guarantee, a manufacturer must know the

average time of service before first repair of a product.

This is given by the improper integral fooo(—t)R’(t) dt.

(a) For many high-quality products, R(f) has the
form e ¥ for some positive constant k. Find an
expression in terms of k for the average time of
service before repair.

(b) Is it possible to manufacture a product for which
R =1/¢+1)?

A sum of money is deposited into an account that
pays interest at 8% per year, compounded continuously.
Starting T years from now, money will be withdrawn at
the capital flow rate of f(t) dollars per year, continuing
indefinitely. For future income to be generated at this
rate, the minimum amount A that must be deposited,
or the present value of the capital flow, is given by the
improper integral A = [° f(1)e "% dr. Find A if the
income desired 20 years from now is

(a) 12,000 dollars per year

(b) 12,000¢%% dollars per year

(a) Use integration by parts to establish the formula

o 1 [ e]
f x2e™ gx = j e du.
) 2a%? Jo

It can be shown that the value of this integral is
JT/2.

(b) The relative number of gas molecules in a container
that travel at a speed of v cm/sec can be found by
using the Maxwell-Boltzmann speed distribution F:

F(v) = CU26~mv2/(2kT)’

where T is the temperature (in °K), m is the mass of
a molecule, and ¢ and k are positive constants. The
constant ¢ must be selected so that fooo F(w)dv=1.
Use part (a) to express ¢ in terms of k, T, and m.




36 The Fourier transform is useful for solving certain
differential equations. The Fourier cosine transform of a
function f is defined by

Flf(x)]= Joo F(x)cossx dx
o

for every real number s for which the improper integral
converges. Find F, [e**]fora > 0.

Exer. 37—-42: In the theory of differential equations, if
f is a function, then the Laplace transform L of f(x) is
defined by

LIf@)] = L () dx

for every real number s for which the improper integral
converges. Find L [ f(x)] if f(x) is the given expression.

37 1 38 x 39 cosx
40 sinx 4] &% 42 sinax
43 The gamma function T is defined by I'(n) =

fooo 1"~ 1e™* dx for every positive real number n.

(a) Find T' (1), I'(2), and I"(3).

(b) Prove that T'(n + 1) = nI'(n).

(c) Use mathematical induction to prove that if n is any
positive integer, then I'(n 4 1) = n!. (This shows
that factorials are special values of the gamma
“function.)

44 Refer to Exercise 43. Functions given by f(x) =
cxFe™® with x > O are called gamma distributions
and play an important role in probablhty theory. The
constant ¢ must be selected so that fo fx)dx =1.
Express ¢ in terms of the positive constants k and a
and the gamma function I'.

Exer. 45—46: Approximate the improper integral by
making the substitution # = 1/x and then using Simp-

son’s rule withn = 2

oc 1 10 /
Sj ———dx 46J’

2 Vx4+x o +1

Exer. 47 —-70: Determine whether the integral converges
or diverges, and if it converges, find its value.

8 1 9
47 | —dx 48 f —=dx
J:) Ux 0 VX
1 1 -1 1
49 f — dx 50 J i
3 %2 2 (x4 2)5/4
/2 1e~/37
51 f sec? x dx 52 f dx
0 0 Vx
4 1 -1 1
53 j ——dx 54 f . dx
o (4 — x)3/? o Jx+1
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4 2
56 f dx
fo 4- 2/3 1 x2 -1
2 1
7f S d 58 J x4 dx
2(x+1) -1
0 0
59 J 60 f ——dx
244 — —2\/4—x2 -
2 1 4 1
6IJ 62 | ————dx
1X 0x°—x'—2
1 /2 3
63 fxlnxdx 64 f tan” x dx
0 0
/2 1
65f tan x dx 66f —dx
0 o 1—cosx
4 e 1
j dx 68 J —— dx
X2—5x+4 /e x(Inx)
1 1 r
69 —5 C0S — dx 70 sec x dx
—1x X 0

Exer 71-74: Suppose that f and g are continuous and
0 < f(x) < g(x) for every x in (a, b]. If f.and g are
discontinuous at x = a, then the following comparison
tests can be proved:
(i If [ ab g(x)dx converges, then | ab f(x)dx converges.
(i) If J ab f(x)dx diverges, then J ab g(x)dx diverges.
Analogous tests may be stated for continuity on [a,b)
with a discontinuity at x = b. Determine whether the first
integral converges or diverges by comparing it with the
second integral.

sinx 71
71 — dx; J —dx
J:) «/J—C 0 ﬁ

n/4 /4 q
7 J’ sec3x dx: J L
0

X 0 X

2 h 2 1
ﬁmzdx; J  d

0 (x —2) o (x —2)

1 ,—x 1 1

[

[ Gae [ L

o 223 o x2/3

Exer. 75-76: Find all values of n for which the integral
converges.

1
75 f x" dx
0

Exer. 77 —78: Assign, if possible, a value to(a) the area of
the region R and (b) the volume of the solid obtained by
revolving R about the x-axis.

77 R={(x,):0=<x<1,0<y<1/J/x}
78 R={(x,y):0<x<1,0<y<1/Jx}

t

1
76 j x"Inxdx
0

1
cosx

79 Approximate f
EI o ﬁ
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dx by making the substitution

u = /x and then using the trapezoidal rule with n = 4.
1 .

. sin
|E| 80 Approximate f Y x by removing the discontinuity
0 X

at x = 0 and then using Simpson’s rule, with n = 2,

81 Refer to Example 11. If the weight in Figure 7.23 has
mass m and if the spring obeys Hooke’s law (with
spring constant £ > 0), then, in the absence of frictional
forces, the velocity v of the weight is a solution of the
differential equation

dv
mv— +ky =0
dy

(a) Use separation of variables (see Section 6.6) to
show that v> = (k/m)(c? — y?). (Hint: Recall from
Example 11 that v(c) = v(—c¢) =0.)

(b) Find the period T of the oscillation.

82 A simple pendulum consists of a bob of mass m attached
to a string of length L (see figure). If we assume that the
string is weightless and that no other frictional forces
are present, then the angular velocity v = d/dt is a
solution of the differential equation

4

v+ 0 =0,
v—+ =
7 sin

where g is a grav1tat10na1 constant.

(a) If v =0 at & = +6,,, use separation of variables to
show that

2
v = fg(cos 0 — cosf).

(b) The period T of the pendulum is twice the amount
of time needed for  to change from —; to 6,. Show
that T is given by the improper integral

2L [t
g Jo Jfcosf —cost,
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o
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Exer. 1-100: Evaluate the integral.

| fx sin"!x dx 2 f sec’ (Bx)dx

1 1
3 f In(1 + x) dx 4 j eV dx
0 0

689

Exercise 82

83 When a dose of y, milligrams of a drug is injected
directly into the bloodstream, the average length of time
T that a molecule remains in the bloodstream is given by
the formula T = (1/y,) foy" t dy for the time ¢ at which
exactly y milligrams is still present.

(alfy= yoe_k’ for some positive constant k, explain
why the integral for T is improper.

(b) If t is the half-life of the drug in the bloodstream,
show that T = 7/In2.

84 In fishery science, the collection of fish that results from
one annual reproduction is referred to as a cohort. The
number N of fish still alive after ¢ years is usually given
by an exponential function. For North Sea haddock with
initial size” of a cohort Ny, N = Noe_O'Z’. The average
life expectancy 7 (in years) of a fish in a cohort is given
by T = (1/Ny) J ° t dN for the time ¢ when precisely
N fish are still alive.

(a) Find the value of T for North Sea haddock.

(b) Is it possible to have a species such that N =
No/ (1 + kNyt) for some positive constant £? If so,
compute T for such a species.

5 fcos3 2x sin? 2x dx [ j cos* x dx

7 ftanxsecsxdx 8 ftanx sec® x dx
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9 j ! ——dx
(x2+25)3/2

_ .2
||f4xdx
X

3
1 .
x(x =1

15
x* -8l

-1
6Jx de
x+2)

Va4 4x — x?

Jx+8
dx
x
21 f ¥ 5in 3x dx

23 fsm x cos® x dx

25f X dx
V4 —x?

5 3
— 1
7 fx——3 ad —z dx
x° +2x

1
2 [
31 Je" sece” dx
33 ij sin S5x dx
35 fsin3xcosl/2xdx

37 fex«/l +e*dx

2
9 j_xidx
Vax? 425
41 Jseczxtan%cdx
43 fxcotxcscxdx
5 fx2(8—x3)1/3dx
47 fﬁsinﬁdx

3x
e
49 dx
Jl +e*

x —20x% — 63x — 198

— dx

X
ST
x°“+6x+13

0 J’ sin x d
2005x+3

22 fcos(lnx) dx

24 | cot? 3x dx

——dx
xv 9x +4

3

26

28

fx3—3x +9x — 27
2x + 1

0 f 100
(x+5)

32 Jx tan x? dx

34 fsm 2x cosx dx

36 f sin 3x cot 3x dx

38 Jx(4x +25)7 12 gx

4oj X2
x2+8x +25

42 Jsm x cos® x dx
44 J(l —|—c502x)2 dx
6 fx(lnx)zdx

48 Jxﬂdx

e2x
44"

dx
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53 f——x dx
v 16 — x2
55 J—l—_zx dx
x2 +12x +35
57 ftan_ISxdx

tan x
e
59 J' 5 dx

Cos™ x

1
61 fidx
\/7—+-5x2

63 fcot6xdx

65 Jx3\/x2——25dx

67 f (x? — sech? 4x) dx

69 fx e~ dx

71 Jn,__:;—idx
V11 = 10x — x2

73 f tan 7x cos 7x dx

s j 4x? —12x%2 - 10

cos® %

52 | ———dx
V1 +sinx

o .
x“—6x+18

58 Jsin 3x dx

60 f al 2dx
cscS5x

2% +3
62f)2‘+dx

x“+4

64 fcot5 xcscxdx
66 J(sin x)10°%%% dx

68 fx cosh x dx

70 foVx3+1dx

) [0,

X

74 fe”‘m dx

(x — (% —4x +3) *

1
76 fidx
V16 — %2

77 J’(x3 4+ ) cosxdx

VO — 452
79[——92xdx
x

J’4x3 —15x% — 6x + 81
0 d

x* — 18x% + 81
8l f(s — cot3x)?dx

1
83 | ———dx
fx(ﬁ+€/f)
85 f&dx
1+ cosx

2
7 Jix 22dx
(25 + x°)

89 J’tan3 xsecxdx

78 f(x —3)2x + Ddx

X

2 fx(x2 + 5)3/4 dx

84f S dx
cos” 4x

2
—6x +4
6 1—4; i6x dx
x“+dHx—-2)

88 f sin® x cos® x dx

90 f————x dx
vad+ 9x2
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ol f2x3—|—4x2+ 10x + 13

x4+9x2+20
92] sin x d
——dx
(1 + cosx)® -
2 2
-2
93 J’udx 94 fcotzxcscxdx
x
95 fx3/2lnxdx 96[ al dx
Jxi-1

1—si
8f smxdx
cotx

100 f(x +2)%(x + 1)'%dx

x
! [
J2x+3
99 Jx3e(x2) dx

Exer. 101-112: Determine whether the integral con-
verges or diverges, and if it converges, ﬁnd its value.

x> 1 o0
101 J —dx IOZJ ——dx
4 Jx xa/x
0 1 00
103 J- dx 104 f sinx dx
—ooX+2 0
L | 0 1
105 —d 106 d
Lsf/f * f_4x+4 *

2
108 f ——dx
lx\/xz—l

2
|o7f———2x S dx
0 (x“—1)

00 1 0

I09f - dx IIOI xe* dx
—_c€ +e —0
11 /2

TN = nzf cscx dx
0 X 0

E Exer. 113-114: Approximate the improper integral

by making the substitution u =1/x and then using
Simpson’s rule, with n = 2.

o0 2 [e.0]
113 f e ¥ dx 114 f e " sin /x dx
1 1

Exer. 115-118: Assign, if possible, a value to (a) the area
of the region R and (b) the volume of the solid obtained
by revolving R about the x-axis.

15 R={(x,y):x>40<y<x%?

116 R = {(x, y):xZS,()fny‘zB}

H7 R={(x, y): —4<x<4,0<y<1/(x+4)
H8 R={(x, »):1<x<20<y=<1/(x-1)}

- EXTENDED PROBLEMS AND GROUP PROJECTS

I (a) As an alternative to partial fractions, show that an
integral of the form

1
f >
ax® + bx
may be evaluated by writing it as
1/x2
f e
a+ (b/x)

and using the substitution u = a + (b/x).
(b) Generalize part (a) to integrals of the form

fa
ax" + bx *

2 (a) Use integration by parts on [ f(x) dx withu = f(x)
and dv = dx to find

0) f Inx dx. (i) j tan™! x dx
(i) f sin~! x dx (iv) f cos ™! x dx

© [VFas

(b) Use integration by parts on [ f~!(x)dx with u =
f -1 (x) and dv = dx to show that

f Flydr = xf ') = FOFL ),

where F is any antiderivative of f.
(c) Verify that the formula for | 7~ (x) dx given in part
(b) is valid for the functions appearing in part (a).
(d) In what sense is the statement “If we can integrate
£, then we can integrate £~ true?

3 If f(x) and g(x) are polynomials with f having a
smaller degree than g, then we claimed that the rational
function f(x)/g(x) can be decomposed as a finite sum,
where each term has the form

A Ax+ B
(ax + b)" (ax* 4+ bx + )"’

where A and B are real numbers, n is a nonnegative
integer, and (ax2 + bx + ¢) is an irreducible quadratic.
Prove this claim. Are the terms in the partial fraction
decomposition unique? (For a set of exercises outlining
an approach to this problem, see Nathan Jacobson, Basic
Algebra I, New York: Freeman, 1985, p. 150.)




