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DUCTION

KI JUMPING DEMANDS a high level of skill and intense concen-
tration. Jumpers slide down a track from a hill 70 to 90 meters
high and then leap from a platform, flying through the air for

some 90 meters before landing on the ground and gliding to a stop. The

competitors require a well-designed ski jump, one that maximizes per-
formance and minimizes danger. The design of a ski jump is a complex
task that must address a number of concerns. The goal may be to move
the jumpers from one point to another in the fastest time or to ensure
that they reach the platform with the greatest velocity. To minimize time
or maximize speed may require selecting the appropriate curve for the
shape of different sections of the track. The curve may be the graph
of a function y = f(x). From physical assumptions, we may find a dif-

ferential equation whose solution is the desired function f. However a

differential equation occurs, it usually involves the derivative f' or the

second derivative f” in an explicit or implicit manner. Solving a differen-
tial equation requires recovering functions from their derivatives—that
is, finding indefinite integrals.

In this chapter, we consider additional ways to simplify mtegrals
Foremost among these is integration by parts, which we discuss in Section
7.1. This powerful device allows us to obtain indefinite integrals of
Inx, tan~! x, and other important transcendental functions. In Sections
7.2-7.5, we develop techniques for simplifying integrals that contain
powers of trigonometric functions, radicals, and rational expressions.
In Section 7.6, we examine the use of tables of integrals and computer
algebra systems. Such tables and systems are always incomplete, and we
must frequently use the skills introduced in the preceding sections before
trying these approaches. Finally, we extend the definition of definite
integrals | : f(x)dx in Section 7.7 to handle certain cases where the
function f has an infinite discontinuity on the interval [a, b] or where
the interval becomes infinitely long.

The techniques we investigate in this chapter extend the range of
functions for which we can find antiderivatives explicitly. Sometimes it
is impossible to obtain an antiderivative in the form of an expression
involving a finite number of sums, products, quotients, or compositions
of rational functions, trigonometric functions, or the exponential and
logarithmic functions. In such cases, the trapezoidal rule or Simpson’s
rule can be used to obtain numerical approximations. Then, either a
computer or a programmable calculator is invaluable, since it can usually
arrive at an accurate approximation in a matter of seconds.

Designing a complicated structure
such as a ski jump often involves
differential equations whose solutions
require evaluating indefinite integrals.

Techniques
of Integration
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Integration by Parts Formula 7.1

CHAPTER 7 Techniques of Integration

INTEGRATION BY PARTS

Up to this stage of our work, we have been unable to evaluate integrals
such as the following:

flnxdx, Jxexdx,

The next formula will enable us to evaluate not only these, but also many
other types of integrals.

fxz sin x dx, ftan_lxdx

Ifu = f(x) and v = g(x) and if f’ and g’ are continuous, then

fudv:uv»fvdu.

PROOF By the product rule,

d
= (f(g(x) = f)8'(x) + g(x) f'(x),

or, equivalently,

d
f)g'x) = E(f(X)g(x)) — g(x) f'(x).

Integrating both sides of the preceding equation gives us

d
ff(X)g'(X)dx =fa(f(X)g(X)) dx—jg(X)f’(x) dx.

By Theorem (4.5)(i), the first integral on the right side is f(x)g(x) + C.
Because another constant of integration is obtained from the second inte-
gral, we may omit C in the formula—that is,

Jf(X)g’(X) dx = f(x)g(x) —fg(x)f’(x)dx-

Since dv = g’(x) dx and du = f’'(x) dx, we may write the preceding for-
mula as in (7.1). .
y,

/’Vﬁen applying Formula (7.1) to an integral, we begin by letting one
part of the integrand correspond to dv. The expression we choose for
dv must include the differential dx. After selecting dv, we designate the
remaining part of the integrand by u and then find du. Since this process
involves splitting the integrand into two parts, the use of (7.1) is referred
to as integrating by parts. A proper choice for dv is crucial. We generally
let dv equal the most complicated part of the integrand that can be readily
integrated. The following examples illustrate this method of integration.

7.1

Integration by Parts

EXAMPLE=| Evaluatefxezxdx.

SOLUTION The following list contains all possible choices for dv :

dx, xdx, e dx, xe*dx

=

The most complicated of these expressions that can be readily integrated
is e** dx. Thus, we let

dv = €% dx.

The remaining part of the integrand is u—that is, u = x. To find v, we

integrate dv, obtaining v = %ezx . Note that a constant of integration is not

added at this stage of the solution. (In Exercise 51, you are asked to prove
that if a constant is added to v, the same final result is obtained.) If u = x,
then du = dx. For ease of reference, let us display these expressions as
follows:

dv = ¥ dx u=x
v:%ezx du = dx

Substituting these expressions in Formula (7.1)—that is, integrating by
parts—we obtain

fxezx dx = x(%ezx) - J %ezx dx.
We may find the integral on the right side as in Section 6.4. This gives us

fxezx dx = %xeb‘ - %ezx + C.

It takes considerable practice to become proficient in making a suitable
choice for dv. To illustrate, if we had chosen dv = x dx in Example 1, then
it would have been necessary to let u = ¢%*, giving us

dv = xdx u=e*

V= %xz du = 2% dx.
Integrating by parts, we obtain

fxezx dx = %xzez" - fxzezx dx.

Since the exponent associated with x has increased, the integral on the
right is more complicated than the given integral. This indicates that we
have made an incorrect choice for dv.

EXAMPLE®=2 Evaluate
/3

(a) J xsecxdx  (b) f x sec? x dx
0
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SOLUTION
(a) The possible choices for dv are

dx, xdx, secxdx, xsecxdx, sec® x dx, x sec? x dx.
The most complicated of these expressions that can be readily integrated
is sec? x dx. Thus, we let
dv = sec? x dx u=x

v =tanx du =dx.

Integrating by parts gives us

steczxdx = xtanx —ftanxdx

= xtanx + In |cos x| + C.

(b) The indefinite integral obtained in part (a) is an antiderivative of
x sec® x. Using the fundamental theorem of calculus (and dropping the
constant of integration C), we obtain

/3 ‘ /3
J x sec® x dx = [x tanx + In |cos x| ]
0

= (%tan%+ln‘cos%})—(0+lnl)

T 1
=(§\/§+ln§>—(0+0)

- %«/5—1112 ~1.12.

If, in Example 2, we had chosen dv = xdx and u = sec? x, then the
integration by parts formula (7.1) would have led to a more complicated
integral. (Verify this fact.)

In the next example, we use integration by parts to find an antiderivative
of the natural logarithmic function.

EXAMPLE®=3 Evaluateflnxdx.

SOLUTION Let
dv = dx u=1Inx

1
v=ux du = —dx
X
and integrate by parts as follows:
1
flnx dx = (Inx)x — f(x)—dx
X

=x1nx—fdx
=xlnx—-x+C

7.1

Integration by Parts

Sometimes it is necessary to use integration by parts more than once in
the same problem, as illustrated in the next example.

EXAMPLE=4 Evaluate fxzez" dx.

SOLUTION Let
dv = ¥ dx u=x?
v =%62x du = 2x dx

and integrate by parts as follows:
szezx dx = xz(%ezx) — f(%ezx)Zx dx
= %xzezx — Jerx dx

To evaluate the integral on the right side of the last equation, we must again
integrate by parts. Proceeding exactly as in Example 1 leads to

fxzezxdx = %xzezx — %xezx + 41er +C.

The following example illustrates another device for evaluating an in-
tegral by means of two applications of the integration by parts formula.

EXAMPLE®5 Evaluate fex cosx dx.

SOLUTION We could either let dv = cosx dx or let dv = e* dx,
since each of these expressions is readily integrable. Let us choose

dv =cosx dx u=e"
v =sinx du = e* dx

and integrate by parts as follows:

fex cosxdx = e*sinx — j(sinx)ex dx

) Jex cosxdx = e’ sinx —fex sinx dx

We next apply integration by parts to the integral on the right side of equa-
tion (1). Since we chose a trigonometric form for dv in the first integration
by parts, we shall also choose a trigonometric form for the second. Letting

dv = sinx dx u=-e"
V= —Cosx du = e* dx

and integrating by parts, we have

fe" sinx dx = e*(—cosx) — f(— cos x)e* dx

Q) fex sinx dx = —e* cos x +fex cos x dx.
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If we now use equation (2) to substitute on the right side of equation (1),
we obtain

fex cosxdx = e’ sinx — [—e" cosx + J e’ cosxdx] ,
or je"cosxdx=exsinx—|-excosx—fexcosxdx.
Adding [ e* cos x dx to both sides of the last equation gives us ]
ZJex cosx dx = e*(sinx + cos x).

Finally, dividing both sides by 2 and adding the constant of integration
yields

fex cosx dx = %e"(sinx +cosx) + C.

We could have evaluated the given integral by using dv = ¢”* dx for
both the first and second applications of the integration by parts formula.

We must choose substitutions carefully when evaluating an integral of
the type given in Example 5. To illustrate, suppose that in the evaluation of
the integral on the right in equation (1) of the solution we had used

dv = e* dx u =sinx
v=e¢e" du = cos x dx.

Integration by parts then leads to
fe" sinx dx = (sinx)e® — fex coS x dx
=¢e"sinx — fex cosx dx.
If we now substitute in equation (1), we obtain
fex cosxdx = e*sinx — l:ex sinx — fex COS X dx:I ,
which reduces to

fex cos x dx =fex cos x dx.

Although this is a true statement, it is not an evaluation of the given
integral.

EXAMPLE®=6 Evaluatefsec3xdx.

SOLUTION The possible choices for dv are

dx, secxdx, seczxdx, sec> x dx.

7.1

Integration by Parts

The most complicated of these expressions that can be readily integrated
is sec’ x dx . Thus, we let

dv = sec” x dx u=-secx
v =tanx du = sec x tan x dx

and integrate by parts as follows:

{ fsec3xdx =secxtanx — fsecxtanzx dx
Instead of applying another integration by parts, let us change the form
of the integral on the right by using the identity 1 + tan® x = sec” x. This

gives us

f sec’ x dx = secx tanx — f sec x(sec? x — 1) dx,
or fsec3xdx=secxtanx—jsec3xdx+Jsecxdx.
Adding [ sec® x dx to both sides of the last equation gives us

2fse03xdx = secxtanx+fsecxdx.

If we now evaluate [ sec x dx and divide both sides of the resulting equa-
tion by 2 (and then add the constant of integration), we obtain

jsec3xdx = fsecxtanx + 3 In|secx + tanx| + C.

Integration by parts may sometimes be employed to obtain reduction
formulas for integrals. We can use such formulas to write an integral
involving powers of an expression in terms of integrals that involve lower
powers of the expression.

EXAMPLE®=7 Find a reduction formula for J’ sin” x dx.

SOLUTION Let

dv =sinx dx u=sin"""x
V= —CoSXx du = (n — 1) sin" 2 x cos x dx
and integrate by parts as follows:
f sin” xdx = —cosxsin” x4+ (n — 1) f sin" 2 x cos? x dx
Since cos® x = 1 — sin” x, we may write
f sin” x dx

= —cosxsin” 'x + (n — l)fsin"‘zxdx —(n— 1)fsin”xdx.
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Consequently,
J'sin"_xdx—i— (n — l)fsin"xdx
= —cosxsin" 'x+ (n— l)fsin”‘zxdx.

The left side of the last equation reduces to n [ sin” x dx. Dividing both
sides by n, we obtain

) 1 - n—1( ,_
J'sm"xdx = ——cosxsin” lx + sin” 2 x dx.
n n

EXAMPLE®=S8 Use the reduction formula in Example 7 to evaluate
f sin* x dx.

SOLUTION Using the formula with n = 4 gives us
J'sin“xdx = —%cosx sin® x + %fsinzxdx.

Applying the reduction formula, with n = 2, to the integral on the‘:"‘ right,
we have

Jsin2xdx = —%cosx sinx + %jdx = —%cosx sinx + %x + C.
Consequently,
Jsin“xdx = —%cosx sin® x — %cosx sinx + %x +D

with D = 3C.

It should be evident that by repeated applications of the formula in
Example 7 we can find [ sin” x dx for any positive integer n, because
these reductions end with either f sin x dx or J dx, and each of these can
be evaluated easily.

Exer. 1-38: Evaluate the integral.

i fxe_x dx

3 fx2e3" dx

5 fxcosSxdx

2 fxsinxdx 7 fxsecxtanxdx 8 fxcsc23xdx
4 fxzsin4xdx 9 Jx2cosxdx 10 fx3e’xdx
6 fxe_zxdx 11 Jtan_lxdx 12 jsin_lxdx

Exercises 7.1

13 fﬁlnxdx

15 fxcsczxdx
17 fe_xsinxdx
19 fsinxlncosxdx

21 fcsc3xdx

1 x3

23 f —dx
0vx2+1
/2

25-[ x sin2x dx
0

27 fx(2x+3)99dx

29 f e™ sin 5x dx

31 J (Inx)? dx

33 fx3sinhxdx

35 fcos Jxdx

37 J'cos_1 xdx

2 Inxdx

xtan™ " xdx

&3* cos 2x dx

®©

N

N
=)
< —
=
w
®
&

»
&

sec> x dx

N
(3]

[
-

sinln x dx

x sec? 5x dx

[ad
o

5
X
—dx

1-x°

30 fx3 cos(x?) dx

N
-}

32 jx2xdx
34 f(x+4) cosh4x dx

36 J'tan_1 3x dx

38 f(x + D% +2)dx

Exer. 39-42: Use integration by parts to derive the

reduction formula.

39 fxmex dx = x"Me* — mfxm_lex.dx

40 jxm sinxdx = —~x™ cos x —ka‘xm_1 cos x dx

41 J(lnx)’” dx = x(Inx)" — mf(lnx)'”—1 dx

sec”
42 j sec” xdx = ——

form # 1.

-2
xtanx m—2
— fsecm_zxdx

m—1

43 Use Exercise 39 to evaluate [x°¢” dx.

44 Use Exercise 41 to evaluate f (In x)4 dx.

45 If f(x) = sin/x, find the area of the region under the

graphof f fromx =0tox = x~.

2
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46 The region between the graph of y = x./sinx and the
x-axis from x = 0 to x = /2 is revolved about the x-
axis. Find the volume of the resulting solid.

47 The region bounded by the graphs of y =1Inx, y =0,
and x = e is revolved about the y-axis. Find the volume
of the resulting solid.

48 Suppose that the force f(x) acting at the point with
coordinate x on a coordinate line / is given by f(x) =
x°v/x3 + 1. Find the work done in moving an object
fromx =0tox = 1.

49 Find the centroid of the region bounded by the graphs of
the equations y = ¢*, y =0, x =0, and x = In3.

50 The velocity (at time f) of a point moving along a
coordinate line is 7/e% ft/sec. If the point is at the origin
at¢ = 0, find its position at time .

5

When applying the integration by parts formula (7.1),
show that if, after choosing dv, we use v + C in place
of v, the same result is obtained.

52 In Section 5.3, the discussion of finding volumes by
means of cylindrical shells was incomplete because we
did not show that the same result is obtained if the disk
method is also applicable. Use integration by parts to
prove that if f is differentiable and either f'(x) > 0 on
[a,b] or f'(x) <0 on [a,b], and if V is the volume
of the solid obtained by revolving the region bounded
by the graphs of f, x = a, and x = b about the x-axis,
then the same value of V is obtained using either the
disk method or the shell method. (Hint: Let g be the
inverse function of f, and use integration by parts on

SPrlf 0P dx.)

53 Discuss the following use of Formula (7.1): Given
J(1/x)dx, let dv = dx and u = 1/x so that v = x and

du = (—1/x%) dx. Hence
Jldx= (l>x—fx (—%)dx,
x X x

1 1
or f—dx:l-l—f—dx.
X X

Consequently, 0 = 1.

54 If u = f(x) and v = g(x), prove that the analogue of
Formula (7.1) for definite integrals is

b P
fudv:[uv]a—j vdu

a a

for values a and b of x.
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Mathematicians and Their Times
JOSEPH-LOUIS LAGRANGE

HAILED BY NAPOLEON as “the lofty pyramid of the mathematical sci-
ences,” Joseph-Louis Lagrange (1736~ 1813) was the greatest mathe-
matician of his time. He made fundamental contributions in mechanics,
sound, astronomy, and almost every branch of pure mathematics: anal-
ysis, calculus of variations, probability, number theory, algebra, differen-
tial equations, analytical geometry, and, of
course, calculus.

Lagrange was of mixed French and Ital-
ian background. His grandfather and father
both served in the government of Sardinia.
In an era of high infant mortality, only one
of Lagrange’s ten siblings survived with him
beyond early childhood. As a schoolboy,
Lagrange was originally attracted to the
classics. An essay by Edmund Halley ex-
tolling the virtues of calculus captivated Lagrange. He thus turned his
attention to mathematics, where he made rapid progress. At the age of
sixteen, Lagrange became professor of geometry at the Royal Artillery
School in Turin.

In 1764, Lagrange won the Grand Prize of the French Academy of
Sciences for his solution to the problem of the “libration” of the moon:

Why does the moon always present the same face toward the earth!?
Soon afterward, Lagrange accepted appointment as court mathematician
to Frederick the Great and as director of the physics and mathematics
division of the Berlin Academy, serving there for twenty years.

King Louis XVI of France invited Lagrange to return to Paris to con-
tinue his work in mathematics as a member of the French Academy,
where he remained during the French Revolution. Although he was the
beneficiary of royal support for most of his career, he was not sympa-
thetic to the royalists. However, he did not support the revolutionists
either because he was indignant at the excesses of terror in the move-
ment, particularly the guillotining of his friend, the chemist Lavosier.

When the Ecole Normale opened in 1795, Lagrange accepted the
post of professor of mathematics and turned his considerable talents to
teaching. In an effort to lead his students more clearly through calculus,
Lagrange wrote two books developing the subject: Theory of Analytic

7.2 Trigonometric Integrals

1.2
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Functions (1797) and Lessons on the Calculus of Functions (1801). These
works had a great influence on the evolution of calculus in the first third
of the nineteenth century.

In appearance, Lagrange was of medium height and slightly formed,
with pale blue eyes and a colorless complexion. His character, in the
words of mathematician W. W. Rouse Ball, was “nervous and timid; he
detested controversy, and to avoid it willingly allowed others to take the
credit for what he had himself done””

TRIGONOMETRIC INTEGRALS

In this section, we examine integrals of functions that are products of
powers of the trigonometric functions. In particular, we consider integrals
of the form

f sin” x cos” x dx,
where m and n are integers. In Example'7 of Section 7.1, we obtained a
reduction formula for [ sin” x dx. Integrals of this type may also be found
without using integration by parts. If n is an odd positive integer, we begin
by writing
fsin" xdx = f sin ! x sinx dx.
Since the integer n — 1 is even, we may then use the trigonometric identity

sin x = 1 — cos” x to obtain a form that is easy to integrate, as illustrated
in the next example.

EXAMPLE=| Evaluatefsinsxdx.
SOLUTION Asin the preceding discussion, we write
f sin® x dx = f sin* x sin x dx
= f(sin2 x)? sin x dx
= f(l — cos? x)? sinx dx

= J(l —2cos’x + cos4x) sin x dx.
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If we substitute
U = CoSXx, du = —sinx dx,

we obtain

fsinsxdx = —f(l —2cos’ x + cos4x)(— sin x) dx

=—f(1—2u2+u4)du

=—u+%u3—%u5+c

3

=—cosx+%cos x—%COSSX-I-C.

Similarly, for odd powers of cos x, we write

fcos"xdx = fcos"_lxcosxdx

1
-

and use the fact that cos? x = 1 — sin” x to obtain an integrable form.

If the integrand is sin” x or cos” x and n is even, then the half:angle
formula #
2 1 —cos2x 2 14 cos2x

sin“x = ——— or cos‘x =
2 2

may be used to simplify the integrand.

EXAMPLE®=2 EvduateJCOSZxdx.

SOLUTION Using a half-angle formula, we have
fcos%cdx = %f(l + cos 2x) dx

= %x+%sin2x+C.

EXAMPLE®=3 Evaluatefsin“xdx.

SOLUTION
fsin“xdx = J‘(sinzx)2 dx

1 — cos 2x )
NP
= %J‘(l — 2cos 2x + cos? 2x) dx

We apply a half-angle formula again and write

cos?2x = %(1 + cos4x) = % + %cos4x.

7.2 Trigonometric Integrals m

Substituting in the last integral and simplifying gives us
- fsin“xdx: j(%—20052x+%cos4x)dx

X — %sin2x + %sin4x + C.

Integrals involving only products of sinx and cos x may be evaluated
using the following guidelines.

Guidelines for Evaluating
[sin" xcos" xdx 1.2 1 I mis an odd integer: Write the integral as

J sin” x cos” x dx = j sin” ! x cos”™ x sin x dx

and express sin™ ! x in terms of cos x by using the trigonometric
identity sin® x = 1 — cos? x. Make the substitution
u =cosx, du=—sinxdx
and evaluate the resulting integral.
2 If nis an odd integer: Write the integral as

j sin™ x cos” x dx = f sin™ x cos™ ! x cos x dx

and express cos” ! x in terms of sin x by using the trigonometric
p y g £

identity cos® x = 1 — sin® x. Make the substitution
u = sinx, du = cosx dx
and evaluate the resulting integral.

3 If m and n are even: Use half-angle formulas for sin
cos” x to reduce the exponents by one-half.

2x and

EXAMPLE=4 EvaluateJcos3xsin4xdx.

SOLUTION By guideline (2) of (7.2),
f cos® x sin* x dx = fcos2 x sin* x cos x dx
= f(l — sin® x) sin* x cos x dx.
If we let u = sinx, then du = cos x dx, and the integral may be written

fcos3x sin® x dx = f(l - uz)u4 du = f(u4 - u6) du

sin® x — %sin7x + C.
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The following guidelines are analogous to those in (7.2) for integrands

of the form tan” x sec” x. EXAMPLE®= 6 Evaluate f tan? x sec* x dx.

Guidelines for Evaluating SOLUTION By guideline (2) of (7.3),

ftan™ xsec" xdx 7.3 I If mis an odd integer: Write the integral as 5 . 5 5 5
tan“ x sec” x dx = | tan” x sec” x sec” x dx

f tan™ x sec” x dx = ]tan’"‘1 x sec” ! x secx tan x dx

= ftanzx(tanzx +1) sec? x dx.

and express tan™ ! x in terms of sec x by using the trigonometric s
identity tan® = sec? x — 1. Make the substitution If we let u = tanx, then du = sec” x dx, and

u = secx, du = sec x tan x dx ftanzx sect x dx = fuz(uz—k 1) du

and evaluate the resulting integral. 4. 2
. : . : = | +u)du
2 If n is an even integer: Write the integral as
= %us + %u3 +C

tan™ x sec” x dx = | tan™ x sec" % x sec? x dx
f =%tan2x+%tan3x+c.

and express sec” % x in terms of tan x by using the trigonometric

identity sec’ x = 1 + tan® x. Make the substitution

U =tanx, iR e ‘[ Iptegrals of the form [ cot” x csc” x dx may be evaluated in similar
' fashion.
and evaluate the resulting integral. _Finally, if an integrand has one of the forms cosmx cosnx,

sinmx sinnx, or sinmxcosnx, we use a product-to-sum formula to

3 Ifmis even and n is odd: There is no standard method of evalu- . . .
help evaluate the integral, as illustrated in the next example.

ation. Possibly use integration by parts.

EXAMPLE=7 EvaluateJCOSchos3xdx.

EXAMPLE®5 Evaluate Jtan3x sec® x dx.
SOLUTION Using the product-to-sum formula for cosu cosv, we

btai
SOLUTION By guideline (1) of (7.3), ovtam
f cosSxcos3xdx = J %(cos 8x + cos2x)dx
3 5 _ 2 4
ftan xsec’ xdx = ftan x sec” x(sec x tanx) dx _ T%sinSx +%sin2x )
= f(sec2 x—1) sect x(secxtanx)dx. i
Substituting # = sec x and du = sec x tan x dx, we obtain -
EXERCISES 7.2
ftan3 xsec’ x dx = J(Hz — Du*du e ————— S W= o]
= J (w® —u*du Exer. 1-30: Evaluate the integral.
=%u7—%u5+C i fcos3xdx 2 fsin22xdx 5 fsin3xcoszxdx 6 fsinsxcos3xdx

— LsecTx — Lsect | |
= 7sec x —ssec’x + C. I 3 Jsinzxcoszxdx 4 fcos7xdx 7 fsmﬁxdx 8 fs1n4xcos2xdx




9 f tan® x sec* x dx 10 | sec® xdx

5

11 ftan3xsec3xdx [2 | tan’ x secx dx

3

J
Ji
i3 jtan6xdx 14 jcot“xdx
J
J

—_— 3 cos” x
15 f sinx cos”x dx 16 Jsinx dx 35 (a) Prove thatif m and n are positive integers,
17 f(tanx + cotx)2 dx 18 | cot® x csc® x dx f sinmx sinnx dx
/4 1 sinfm —n)x  sin(m + n)x .
19 f sin® x dx 20 f tanz(%rrx)dx _ | 2m—n) T 2m+n) +C ifm#n
0 x  sin2mx .
n/4 - — +C ifm=n
f sin Sx sin 3x dx 22 f o8 x cos 5x dx 2 4m
0 (b) Obtain formulas similar to that in part (a) for
23 J sin 3x cos 2x dx 24 j sin4x cos 3x dx .
0 f sinmx cos nx dx
2 -
25 fcsc xcot* x dx 26 f(l 4+ 4/cos x)“ sin x dx and fcosmx cosnax dx.
2
t -1
27 f cosx 28 f an+ X 36 (a) Use part (a) of Exercise 35 to prove that
- s1nx sec” x
T .
9 Jﬂdx 30 fSCCX dx j sinmx sinax dx = {?T EZiZ
(1 + tan x)? cot® x -
. : . (b) Find
31 The region bounded by the x-axis and the graph of
= cos? x from x = 0 to x = 27 is revolved about the I
x-axis. Find the volume of the resulting solid. U o Sinmx Cos nx dx
32 The region between the graphs of y = tan? x and y=20 N
from x =0 to x = n/4 is revolved about the x-axis. (i) — cos mx cos nx dx
Find the volume of the resulting solid.
7.3 TRIGONOMETRIC SUBSTITUTIONS
ol B VAN W Rl T ¥ In Example 4 on p. 42, we saw how to change an expression of the form
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33 The velocity (at time f) of a point moving on a
coordinate line is cos® 7 ft/sec. How far does the point
travel in 5 sec?

34 The acceleration (at time t) of a point moving on a
coordinate line is sin® 7 cos ¢ ft/sec®. At ¢ = 0, the point
is at the origin and its velocity is 10 ft/sec. Find its
position at time .

Va? — 52 , with a > 0, into a trigonometric expression without radicals,

by using the trigonometric substitution x = a sinf. We can use a similar

procedure for va® + x% and V/x* — a2. This technique is useful for elimi-
nating radicals from certain types of integrands. The substitutions are listed

in the following table.

Trigonometric Substitutions 7.4 | Expression in integrand

Trigonometric substitution
\/— x =asinf
m x =atané
\/— x =asech

=5

7.3 Trigonometric Substitutions

Figure 7.1
sinf = ad
4

When making a trigonometric substitution, we shall assume that 6 is
in the range of the corresponding inverse trigonometric function. Thus,
for the substitution x = a sinf, we have —7/2 < 6 < 7/2. In this case,
cosf > 0 and

\/az—x2 = \/a2 —a?sin%6
e e
= vVa*(1 —sin?9)
=+va%cos? 9
=acosf.

If va>—x? occurs in a denominator, we add the restriction |x| #
a, or, equivalently, — /2 < 0 < /2.

EXAMPLE=| Evaluatef-

1
——— dx
x2ﬁ6 — x2

SOLUTION  The integrand contains v 16 — x2, which is of the form
va* — x* with a = 4. Hence, by (7.4), we let
x=4sinf for —n/2<8 <mn/2
It follows that
V16 — x* = V16 — 16sin26
—a4/1 - sin? @ = 4v/cos? 6 = 4cos .

Since x = 4sin 6, we have dx = 4 cos 8 df. Substituting in the given inte-
gral yields

1 1
———dx = dcos 6 do
fxz,!16f_x2 (16 sin? 0) 4 cos 6
1 f 1 20
"~ 16 J sin®6
= 16 csc? 0 do
= —Lcotd + C.

We must now return to the original variable of integration, x. Since
8 = arcsin(x/4), we could write ——Tlg cotf as — ¢ L cotarcsin(x/4), but

this is a cumbersome expression. Since the integrand contains /16 — x2,
it is preferable that the evaluated form also contain this radical.
There is a simple geometric method for ensuring that it does. If
0 <6 <m/2and sinf = x/4, we may interpret 6 as an acute angle
of a right triangle having opposite side and hypotenuse of lengths x and 4,
respectively (see Figure 7.1). By the Pythagorean theorem, the length of

the adjacent side is v/ 16 — x2. Referring to the triangle, we find

V16 — x?

X

cotd =




Figure 7.2
X
tanf = —
a

Va? + x2

Figure 7.3

tan49=f
2

4 + x?
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It can be shown that the last formula is also true if -1/2 < < 0. Thus,
Figure 7.1 may be used if 6 is either positive or negative.

o P . . . .
Substituting v/16 — x2/x for cot in our integral evaluation gives us

f 1 1 V16 —x?

fy=-——Y2"% ¢
x2V/16 — x2 * 16 X
V16 — x?

— 4

16x

If an integrand contains va? + x2 forg > 0, then, by (7.4), we use the
substitution x = a tan to eliminate the radical. When using this substitu-
tion, we assume that 6 is in the range of the inverse tangent function—that
is, —m/2 < @ < 7/2. In this case, secd > 0 and

\/a2+x2 = \/a2+a2tan29
— VA + o)
= Va*sec? 6
=asech.

After substituting and evaluating the resulting trigonometric integral, it is
necessary to return to the variable x. We can do so by using the formula
tan® = x/a and referring to. the right triangle shown in Figure 7.2.

EXAMPLE=2 Evaluatef;dx.

Va+ x?

SOLUTION The denominator of the integrand has the form
Va? + x? witha = 2. Hence, by (7.4), we make the substitution
x=2tanf,  dx =2sec’6dd.

Consequently,

\/4+x2=\/4+4tan29
=2V1+tan®0 = 2V sec? = 2sect
1

1
- dx =
f,/4+x2 * f2sec@

=fse00d9

2sec’ 0 db

and

=Insect + tanf| + C.

Using tan® = x/2, we sketch the triangle in Figure 7.3, from which we

obtain
V4 + x?

6=
S€C 5

7.3 Trigonometric Substitutions

Figure 7.4

X
secld = —
a
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Hence,

The expression on the right may be written

\‘4+x2+x

In >

+C=1n|\/4+x2+x|—1n2+ C.

Since v4 + x> + x > 0 for every x, the absolute value sign is unnecessary.
If we alsolet D = —In2 + C, then

. 1 _ 2
fmdx—ln(v4+x +x)+D.

If an integrand contains v/x? — a2, then using (7.4) we substitute x =
a secB, where 6 is chosen in the range of the inverse secant function—that
is, either 0 < @ < w/2ormw <@ < 37/2. In this case, tan6 > 0 and

Va2 —a? = Va?sec? 6 —
=V az(secze -1
=Va’tan®6
=atanf.
Since

x
secl = —,
a

we may refer to the triangle in Figure 7.4 when changing from the variable
0 to the variable x.

EXAMPLE®=3 Evaluate

J\/xz -9
—— dx.
X

SOLUTION The integrand contains v/ x2 — 9, which is of the form
Vx? —a® witha = 3. Referring to (7.4), we substitute as follows:

x =3sech, dx = 3secHtan b db

Consequently,

\/x2—9=\/9sec29—9
=3vsec?6 — 1 = 3v/tan?6 = 3tand
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Figure 7.5

G_x
sec —3

x> — 9

Figure 7.6
sinf = x
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and
2
V£ — tan @
fx—gdx = Sian 3secdtanf db
X J 3secO
=3ftan20d9

=3f(sec29—1)d9=3Jsec20d9—3Jd9

=3tanf — 36 + C.

Since sec§ = x_/ 3, we may refer to the right triangle in Figure 7.5. Using
tan® = v'x%> — 9/3 and 6 = sec” ' (x/3), we obtain

f\/x2—9dx_3\/x2—9
x N 3.

—3sec”! (%) +C

=vVx2—9—3sec” (§>+C.

As shown in the next example, we can use trigonometric substitu-

tions to evaluate certain integrals that involve (a2 — xz)’ , (a2 + xz)’, or

(x2 — az)’, in cases other than r = %

(1 x)3/2
EXAMPLE®=4 Evaluatef dx.

SOLUTION The integrand contains the expression 1 — x2, which is

of the form a®> — x* witha = 1. Using (7.4), we substitute
X =sinf, dx =cos@do.

Thus, 1 — x2=1-sin%9 = cos29, and

1 — x2)3/2 2 Y32
f-(-——xﬁ)—dxzf%cosede
X

cos* 9 cos* 1
=5, 0= 47—
sin” 6 sin @ sin“ 6

e f cot* 6 csc? 6 do

—% cot’ 6 + C.

To return to the variable x, we note that sin® = x = x/1 and refer to the
right triangle in Figure 7.6, obtaining coté = +/1 — x2/x. Hence,

3/2 3\ _.25/2
j(l x?) 1(_\/196) +C=_%+C,

5

X

T

7.3 Trigonometric Substitutions

Trigonometric substitutions may also be used with trigonometric iden-
tities in the evaluation of definite integrals. In the next example, we use the
substitution x = a sin @ and the identity 2 cos>6 = 1 + cos 28 to find the
area bounded by an ellipse.

EXAM P LE=5 Find the area of the region bounded by an ellipse
whose major and minor axes have lengths 2a and 2b, respectively.

SOLUTION By Theorem 34 (page 70), we see that an equation for
the ellipse is (x%/a® + */b*) = 1. Solving for y gives us

b ">
y=+—vVa®-x%
a
The graph of the ellipse has the general shape shown in Figure 64

(page 69) and hence, by symmetry, it is sufficient to find the area of the
region in the first quadrant and multiply the result by 4. By Theorem (4.19),

a b (¢ ——
A=4f ydx:4—f Va? — x%dx
0 a Jo

If we make the trigonometric substitution x = a sin @, then

[ 2 _ _
va*—x“=acosf and dx =acosfdo.

Since the values of 8 that corféspond tox =0and x =gared =0 and
6 = 7/2, respectively, we obtain

b /2 /2 1 26
A=42 f a?cos® 6 df = 4abf THC0SI
a Jo 0 2

= 2ab [0 + § sin26]}
= 2ab [%] = mab.

Thus, the area of an ellipse with axes of lengths 2a and 2b is wab. As a

special case, if b = a, the ellipse is a circle and A = wal.

Although we now have additional integration techniques available, it
is a good idea to keep earlier methods in mind. For example, the integral
T (x/v/9 + x?) dx could be evaluated by means of the trigonometric substi-
tution x = 3 tanf. However, it is simpler to use the algebraic substitution
u =9+ x? and du = 2x dx, for in this event the integral takes on the form
% S u=? du, which is readily integrated by means of the power rule. The
following exercises include integrals that can be evaluated using simpler
techniques than trigonometric substitutions.
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Exer. 1-22: Evaluate the integral.

1
e
V4 — x?

1
e L Y
1 1
° fxzmdx % x2——25dx
7 f\/ﬁdx 8 fxzigdx
9dex 10 \/4—);_75dx
| f 7(36:);2)2 dx 2 | (76_—1)6—2)% dx

1
s [
9 _ x2
X
15 | ———dx
f(16-—x2)2

3
17 fxidx
Vox2 449

16 jx\/xz—9dx

xv25x2 + 16

2
X
0 [-—Lipds
(1 - 9x%)%?

1
By P
Vi =3

4+ x%)? 3x -5
21 f——dx 22 dx
x? Vv 1—x%

23 The region bounded by the graphs of y =0, x =5, and
y= x(x% + 25)4/ 2 is revolved about the y-axis. Find
the volume of the resulting solid.

24 Find the area of the region bounded by the graph of
y= x3(10 — x2)_1/2, the x-axis, and the line x = 1.

25 The shape of the earth’s surface can be approximated by
revolving the ellipse (x2/a?) + (y?/b?) = 1, witha =
6378 km and b = 6356 km, about the x-axis. Approx-

imate the surface area of the earth to the nearest 10°

. 3 3 2

km?. (Hint: Use (5.19) with f(x) = v'b* — (b*/a*)x?,
and make the substitution u = (b/a)x.)

26 Let R be the region bounded by the right branch of the

hyperbola x% — y* = 8 and the vertical line through the

focus. Find the area of the curved surface of the solid
obtained by revolving R about the x-axis.

Exer. 27 - 28: Solve the differential equation subject to the
given initial condition.

27 xdy =vx* —16dx; y=0ifx =4
28 V1—x*dy=x3dx; y=0ifx=0
Exer. 29-34: Use a trigonometric substitution to derive

the formula. (See Formulas 21, 27, 31, 36, 41, and 44 in
Appendix IL.)

29 J'\/az—i—uzdu
2
:% a2+u2+%ln‘u+\/a2+u2’+C

1
=——1In
a

a*+ut+a
P

+C

1
0 [
u a2 + u2
3 fuz\/ a* —utdu
u

a’ . _ U
—(2u2—a2) a2—u2+§sm lg—i-C

1
32 J—il du=-—va* -’ +C
u>va* —u? au

/72 u
33 J—M—iduzv 2o —asec' =+ C
u a

2
34 j_u_du
[ — a2
2
=%VM2—a2+%ln‘u+Vu2—azl+C

7.4  INTEGRALS OF RATIONAL FUNCTIONS

Recall that if g is a rational function, then g(x) = f(x)/g(x), wher &f(x)

and g(x) are polynomials. In this section, we examine the rules for evalu-.
ating [ q(x) dx.

7.4 -Integrals of Rational Functions

Let us consider the specific case g(x) = 2/(x% — 1). It is easy to verify
that

1 N -1 2
x—1 x+1 x2_1

The expression on the left side of the equation is called the partial fraction
decomposition of 2/ (x2 —1). To find [ q(x) dx, we integrate each of the
fractions that make up the decomposition, obtaining

f 2 4 f ! d+f -1y
X = X
x2 -1 x—1 41

=lnjx—1—-Injx+1]+C

=1In

e

It is theoretically possible to write any rational expression f(x)/g(x)
as a sum of rational expressions whose denominators involve powers of
polynomials of degree not greater than two. Specifically, if f(x) and g(x)
are polynomials and the degree of f(x) is less than the degree of g(x),
then it can be proved that

such that each term F,, of the sum has one of the forms

A Ax+ B
(ax + b)" (ax*>+ bx +¢)

for real numbers A and B and a nonnegative integer n, where ax” + bx + ¢
is irreducible in the sense that this quadratic polynomial has no real zeros
(that is, b> — dac < 0). In this case, ax® + bx + ¢ cannot be expressed as
a product of two first-degree polynomials with real coefficients.

The sum F, + F, +---+ F, is the partial fraction decomposition
of f(x)/g(x), and each F, is a partial fraction. We shall not prove this
algebraic result but shall, instead, state guidelines for obtaining the decom-
position..

The guidelines for finding the partial fraction decomposition of
f(x)/g(x) should be used only if f(x) has lower degree than g(x). If this
is not the case, then we may use long division to arrive at the proper form.
For example, given

X —6x2+5x—3

x2—1 ’
we obtain, by long division,
3 2
—6x"+5x—3 6x — 9
X x2 X S .
x“ =1 x“—1

We then find the partial fraction decomposition for (6x — 9)/(x> — 1).
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Guidelines for Partial Fraction
Decompositions of f(x)/g(x) 7.5
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I If the degree of f(x) is not lower than the degree of g(x), use
long division to obtain the proper form.

2 Express g(x) as a product of linear factors ax + b or irreducible
quadratic factors ax® 4+ bx + ¢, and collect repeated factors so
that g(x) is a product of different factors of the form (ax + b)" or
(ax? + bx + ¢)" for a nonnegative integer n.

3 Apply the following rules.
Rulea For each factor (ax + b)" with n > 1, the partial fraction
decomposition contains a sum of » partial fractions of the form
Ay 4,
+ ditoc o dp oo ters
ax+b  (ax +b)? (ax + b)"
where each numerator A, is a real number.

Rule b For each factor (ax? +bx +¢)" with # > 1 and with
ax? + bx + ¢ irreducible, the partial fraction decomposition con-
tains a sum of »n partial fractions of the form

Ax + B, A,x + B, A, x+ B,
5 2 7 + ada + _____
ax+bx+c (ax*+bx+c)
where each A, and B, is a real number.

4x* +13x - 9
EXAMPLE®| Evaluatej’ﬁgzx—-dx.
x7+2x"—3x

SOLUTION We may factor the denominator of the integrand as
follows:
B2t -3x=x(x*+2x -3 =x(x +3)Hx - 1)

Each factor has the form stated in rule (a) of (7.5), with n = 1. Thus, to
the factor x there corresponds a partial fraction of the form A/x. Sim-
ilarly, to the factors x + 3 and x — 1 there correspond partial fractions
B/(x + 3) and C/(x — 1), respectively. Therefore, the partial fraction de-
composition has the form
42 +13x—-9 A B c
xx+3)x—-1 x x+3 x—1
Multiplying by the lowest common denominator gives us

(*) 4>+ 1B3x—9=Ax+3)(x — 1)+ Bx(x — 1) + Cx(x + 3).

In a case such as this, in which the factors are all linear and nonrepeated,
the values for A, B, and C can be found by substituting values for x that
make the various factors zero. If we let x = 0 in (x), then

—-9=-34, or A=3.

Letting x = 1 in (x) gives us

8=4C, or C=2.

7.4 Integrals of Rational Functions

Finally, if x = —3 in (*), then
—12=12B, or B=-—1.
The partial fraction decomposition is, therefore,
42+ 13x -9 3 -1 2
xGHHE-D x x43 x-1

Integrating and letting K denote the sum of the constants of integration,
we have

4x%4+13x -9 3 —1 2
—dx = | —d d
fx(x+3)(x—l) o Jx x+fx+3 x+fx_1dx

=3In|x|-In|x+3|+2Injx - 1|+ K

=ln|x*|~In|x+3|+In|x — 1]+ K

Py
x+3

=In

+ K.

Another technique for finding A, B, and C is to expand the right-hand
side of (x) and collect like powers of x as follows:

424+ 13x—9=(A+ B+ O)x*+ (2A — B+3C)x — 34

We now use the fact that if two polynomials are equal, then coefficients of
like powers of x are the same. It is convenient to arrange our work in the
following way, which we call comparing coefficients of x:

coefficients of x*: A+B+ C= 4
coefficients of x:  2A— B+3C = 13

constant terms;: —3A =-9

We may show that the solution of this system of equations is A = 3,
B=-1, and C = 2.

3x3 — 18x2 +29x — 4
(x + D(x —2)3

EXAMPLE=2 Evaluatef

SOLUTION Byrule (a) of (7.5), there is a partial fraction of the form
A/(x + 1) corresponding to the factor x + 1 in the denominator of the
integrand. For the factor (x — 2)°, we apply rule (a), with n = 3, obtaining
a sum of three partial fractions B/(x — 2), C/(x — 2)2, and D/(x — 2)°.
Consequently, the partial fraction decomposition has the form

3x% — 18x? +29x — 4 A B C D
— = + + s+ -
x+Dx—-2) x+1 x-2 (x-2) (x—2)

Multiplying both sides by (x + 1)(x — 2)3 gives us

() 3x> —18x24+29x —4 = A(x —2)> + B(x + )(x — 2)?
+Clx+D(x—2)+Dx+1).
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Two of the unknown constants may be determined easily. If we let x = 2
in (x), we obtain
6=3D, or D=2.
Similarly, letting x = —1 in () yields
—54 =-27A, or A=2.
The remaining constants may be found by comparing coefficients. Exam-
ining the right-hand side of (x), we see that the coefficient of x}is A+ B.
This must equal the coefficient of x> on the left. Thus, by comparison,
coefficients of x>: 3= A+ B.

Since A = 2, it follows that B = 1.
Finally, we compare the constant terms in (%) by letting x = 0. This
gives us the following:

constant terms. —4=-—-8A+4B—-2C+ D

Substituting the values we have found for A, B, and D into the preceding
equation yields
—4=-16+4-2C+2,

which has the solution C = —3. The partial fraction decompositién is,

f

therefore,
3x —18x2 +29x — 4 2 1 -3 2

= + + + :
(x + (x —2)° x+1 x-2 x-22 @x-2)°
To find the given integral, we integrate each of the partial fractions on the

right side of the last equation, obtaining

3 1
2In|x+ 1| +In|x - 2| + - 5 +K
x=2 (x-2)

with K the sum of the four constants of integration. This may be written in
the form

3 1

— +K
x=2  (x—2)?

In[(x+ D |x —2|] +

x2—x—=21
EXAMPLE®=3 Evaluatef = 5 dx.
2x7 —x“+8x —4

SOLUTION The denominator may be factored by grouping as
follows:

203 =2+ 8x —4=x22x - 1) +4Qx - D = (x> +4H2x — 1)
Applying rule (b) of (7.5) to the irreducible quadratic factor x> + 4, we see
that one of the partial fractions has the form (Ax + B)/ (x% +4). By rule
(a), there is also a partial fraction C/(2x — 1) corresponding to the factor
2x — 1. Consequently,

-x-21  _Ax+B  C
2% — x> +8x—4 xP+4 2x—1

7.4 Integrals of Rational Functions

As in previous examples, this result leads to

*) x2—x—21=(Ax+ B)2x — 1) + C(x2 + 4).

We can find one constant easily. Substituting x = % in (%) gives us
__21_5 = %C, or C=-5.

The remaining constants may be found by comparing coefficients of x
in (%):
coefficients of x*: 1=2A4+C
coefficients of x: —1=—A+2B
constant terms: —21 = —B+4C

Since C =—5, it follows from 1 =2A + C that A = 3. Similarly, us-
ing the‘coefficients of x with A =3 givesus —1 = -3+ 2B, or B = 1.
Thus, the partial fraction decomposition of the integrand is

x*—x-21 _ 34l S
203 —x2 4 8x—4 xX44 2x-—1
3x 1 5

= + - .
2+4 X244 2x-1

The given integral may now be found by integrating the right side of the
last equation. This gives us

3 1 x 5
“In(x*4+4) 4+ -tan1 = — 2] - :
2n(x—|—)+2an‘ 5 2n]2x 1|+ K

3 _ 2 _
EXAMPLE=4 Evaluatefsx SRl Sk N
x"+1

SOLUTION Applying rule (b) of (7.5), with n = 2, yields

5x2*—3x*+7x-3 Ax+B  Cx+D
) SR SIS T GRS o

Multiplying by the lowest common denominator (x? + 1)? gives us
5x¢ —3x*+7x -3 = (Ax + B)@* + D)+ Cx + D
5x3 —3x2 +7x —3 = Ax*+ Bx* + (A+ O)x + (B + D).
We next compare coefficients as follows:
coefficients of 2 5=4
coefficients ofx2: -3 =8
T=A+C
constant terms: —3 = B+ D

coefficients of x :
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We now have A=5,B=-3,C=7—A=2, andD=-3—-—B=0;
therefore,
5x3—3x2+7x—3_5x—3+ 2x
(x? +1)2 S oxr41 (P4 1)?

_ S5x 3 + 2x
41 4l (DY

Integrating yields

5x3 —3x2+7x -3 5
Jx xS e = 22+ 1) = 3tan~ x —

+ K.
> +1)? 2 X241

Many of the steps in the partial fraction decomposition of f(x)/g(x)
are straightforward algebraic manipulations that may be tedious to perform
if the degree of g is large. Computer algebra systems provide a useful
tool for automating some of these steps in such cases. The next example
illustrates a few of the capabilities of these systems. /

EXAMPLE®5 Useacomputer algebra system to evaluate

f 264x3 — 553x2 — 310x — 543
X
24x* — 142x3 — 59x2 + 267x + 90

SOLUTION  We first use a CAS to help factor the denominator. The
exact commands and the rules for using them depend on the particular CAS
being used. In this example, we illustrate some commands available in
Theorist®. We enter the rational function and then select the denominator.
The command to factor yields

264x> — 553x% — 310x — 543,
24x* — 1423 — 59x2 + 267x + 90

_264x° — 553x% — 310x — 543
8Gx -G+ Pa - N+

We see that the denominator is the product of distinct linear factors. Next,
we select the entire expression on the right side of the equation and give
the command to expand. The CAS responds with the decomposition:

264x> — 553x% — 310x — 543
24(x —6)(x + D(x — N (x + 1)

7.4
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We may now integrate the original fraction by integrating each of the four
terms on the right:

J 26453 — 553x% — 310x — 543
X
24x* — 142x3 — 59x2% + 267x + 90

dx 7 dx 5 dx dx
=17 + - + - 5 —2
x—6 2 x+% 2) x-3 x—|—%

> 21
x—=|—2In
2 ‘

5 5
x+-|+=In

—70n| 6[+71 ‘
= n — n
* 4|72

1
|+ K
x+3‘+

The next example is an application in which a partial fraction decom-
position is used to solve a differential equation.

7

EXAMPLE®= 6 If x represents the number of people in a population
of constant size N who have certain information, then a model of social
diffusion for the rate by which x changes is

dx

2 — kx(N —

T x(N —x)
for some positive constant k (see Section 3.8).
(a) Find the number of people x(¢) who have the information at time ¢ as
an explicit function of ¢.

(b) Find lim x(¢) and interpret the result.

t— 00

SOLUTION

(a) Beginning with the differential equation
d_x = kx(N — x),
dt

we separate the variables and integrate to obtain

f"—f/?xw_*x)

To integrate the expression on the right side of this equation, we make the
partial fraction decomposition

1 _1/N+1/kN
kx(N —x)  kx N—x’

so that

Jth J ——dx
kx(N—x)
1 1/k
:f(—+N_x)dx

1/k
—dx dx.
f + N —x
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Integrating, we have

1 1
=Eln|x|—Eln|N—x|+D,

or kNt =1n|x| —In|N — x| + kD

for some constant D. Since x and N — x represent numbers of people, they
are positive, so In |x| = Inx and In |N — x| = In(N — x). Thus,

kNt =Inx — In(N — x) + kD.
Using properties of the logarithm,
InA+InB=In(AB) and InA—InB =In(A/B),
we have

Cx
+Ine? =1n ,
- X ¢ N—x

kNt =1n

where the constant C represents P, Since y = Inx is equivalent to x =
e”, we can write
Cx Cx
n as kNt
N —x N—x
We now solve this equation for x:
Cx = V(N —x)
Cx +&Nix = NN

x(C+eth) — NekNI
NekNl‘

kNt =

= C —+ ekN t
Thus, the solution of the differential equation gives x(¢), the number of
people x who have the information at time ¢, as
N ekN t
C+ N
If the number of people who have the information at time 1 = 0 is x,, then
we can determine the value of C since
Neé° N
Xy = = .
07 ct+ed T CH1

x(t) =

Thus,
N N —x
C=—-1= 0
X0 X0
and we can write x(¢) as
KNz
(1) = Nxgye =
N — xq+ xge
(b) To determine
kNt

hm x(t) = 1_1>rg1o ETW,

Exercises 7.4

we first divide the numerator and the denominator of the fraction by eV’

to obtain
_ N
¥ Gy
so that
hm x(t) = tl_l)rgo m.
Since k and N are positive,

lim eV =0
=00

and hence

hm x(t) = lim — = N =
t—oo Ce th+1 C-0+1

We conclude that the model predicts that eventually everyone in the popu-
lation will have the information.

The differential equation dx/dt = kx(N — x) in Example 6 is called the
logistic model. It occurs in many applications in which the growth of a
population is under consideration.

- EXERCISES 7.4

Exer. 1-28: Evaluate the integral. 13 f 9x* +17x% + 3x* — 8x + 3 d
X
Ifo—lZd zf 1434 X 4324
n _ R
xx -4 x—6)x+2 4 f5x2+30x+43dx s fx +6x +3x416
3
___37—11x ) x+3) x4 4x
GrDa-2a-3 % I6j 2x% + 7x '7f 5x% 4+ 11x + 17 .
2 3 2
x“4+6x+9 5 4
4x? + 54x + 134 * Y0
G —1D(x+5x+3) X I8 4x3—3x2+6x—27d
x4+9x2 *
6x — 11 19x“ + 50x — 25
X — —
*(3x =3) 4552 44 o2+ 1)
+ 16 11 2
7f 12 g 3"'%‘3 21 J2x3+10x 22 fx4+2x2+4x+1d
)C X — - —_ P T
X7 =X (x? +1)? @+ 13
— _ 2 _ 5y
9fS)c 10x de 10 J4x 5x 15dx 2 x3+3x_2d 24 x4+2x2+3d
x® —4x x> —4x? —5x X2 _x x x> —4x o
222 _ 255 2_ 6_ .3 5
||j’C 23 |2J2x312x2+4dx 25fx * tl o 26f Y i
(x4 D%(x = 5) x> —4x x* +9x? (x? + 4)?




