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UMAN CIVILIZATIONS AROSE in the fertile river valleys of China,
Egypt, Africa, India, and Mesopotamia. As societies grew highly
complex and interdependent, governmental units were created
to provide services. To fund these efforts, people paid taxes that were
often based then, as now, on the amount and value of their land. Since
the annual flooding of the rivers swept away land masses or affected
their agricultural value, there occurred early in human history a need to
measure accurately land regions, a need we continue to have today.

Land masses and their boundaries are highly irregular. They are
subject to significant changes due to such forces as oceans, rivers, and
earthquakes. We require accurate ways to estimate precisely lengths,
areas, and volumes. As technology will increasingly have an impact on
society, there will be an expanding set of situations in which complex
quantities must be determined accurately. Calculus provides a powerful
means of making such measurements.

This chapter begins with the seemingly unrelated problem of re-
versing the procedure for finding derivatives: Given a function f, find
a function F such that F' = f. This problem leads to the definition in
Section 4.1 of the closely related ideas of antiderivatives and indefinite
integrals. We also consider some elementary differential equations, an
important modeling tool for applications. In Section 4.2, we study the
technique of change of variables for finding indefinite integrals.

We then turn to a more careful examination of the problem of finding
the area of an irregular region, beginning with the area under the graph
of a function. In Section 4.3, such an area is defined as a limit of areas
of inscribed or circumscribed rectangles. This approach is generalized in
Section 4.4, where we give a careful definition of the definite integral of
a function as a limit of Riemann sums. We state and show the application
of basic properties of the definite integral in Section 4.5.

The principal result in this chapter is the fundamental theorem of
calculus, proved in Section 4.6. This important theorem enables us to
find exact values of definite integrals by using an antiderivative or indef-
inite integral. In addition to providing an important evaluation process,
the fundamental theorem shows that there ‘is a relationship between
derivatives and integrals—a key result in calculus.

The chapter closes in Section 4.7 with a discussion of methods of
numerical integration, which are used to approximate definite integrals
that we cannot evaluate by the fundamental theorem. These methods
are readily programmable for use with calculators and computers and
are employed in a wide variety of applied fields.

The definite integral provides a
powerful tool for computing lengths of
curves, areas of regions, and volumes
of solids.

Integrals
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Figure 4.1

Definition 4.1
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CHAPTER 4  Integrals

ANTIDERIVATIVES, INDEFINITE INTEGRALS,
AND SIMPLE DIFFERENTIAL EQUATIONS

We begin this section with the problem of reversing the process of dif-
ferentiation and examine two closely related concepts: antiderivative and
indefinite integral. Then we take a first look at using indefinite integrals
to solve simple differential equations where we seek to obtain explicit
information about a function from given information about its derivative.

ANTIDERIVATIVE

In our previous work, we solved problems of the following type: Given
a function f, find the derivative f'. We now consider the reverse pro-
cess: Given a function f, find a function F such that F' = f. In the next
definition, we give F a special name.

A function F is an antiderivative of the function f on an interval I if
F/(x) = f(x) forevery x in 1.

We shall also call F(x) an antiderivative of f(x). The process of find-
ing F, or F(x), is called antidifferentiation.
To illustrate, F(x) = x? is an antiderivative of f(x) = 2x, because

Pm=§v%=n=ﬂn
X

There are many other antiderivatives of 2x, such as X2+ 2, x2 - %, and

x% + /3. In general, if C is any constant, then x% 4+ C is an antiderivative
of 2x, because

d
— (x4 C)=2x+0=2x.
dx

Thus there is a family of antiderivatives of 2x of the form F(x) = x% + C,
where C is any constant. Graphs of several members of this family are
sketched in Figure 4.1.

The next illustration contains other examples of antiderivatives, where
C is a constant.

f(x) Antiderivatives of f(x)

%2 %x3, %x3 + 8, %x3 +C
8x* 2t w1, ut+cC
COS X sinx sinx + %, sinx + C

As in the preceding illustration, if F(x) is an antiderivative of f(x),
then so too is F(x) 4+ C for any constant C. It is a consequence of the

4.1 Antiderivatives, Indefinite Integrals, and Simple Differential Equations m

Theorem 4.2

Definition 4.3

mean value theorem (3.12) that every antiderivative is of this form. In
Corollary (3.14), we proved that two functions with identical derivatives
can differ only by some constant. The next theorem restates this result in
the language of antiderivatives.

Let F be an antiderivative of f on an interval . If G is any anti-
derivative of f on [, then

Gx)y=Fx)+C

for some constant C and every x in 1.

We refer to the constant C in Theorem (4.2) as an arbitrary constant.
If F(x) is an antiderivative of f(x), then all antiderivatives of f(x) can
be obtained from F(x)+ C by letting C range through the set of real
numbers. '

INDEFINITE INTEGRALS

We shall use the following notation for a family of antiderivatives of the
type given in Theorem (4.2).

The notation
ff(x)dx = F(x)+ C,

where F'(x) = f(x) and C is an arbitrary constant, denotes the fam-
ily of all antiderivatives of f(x) on an interval /.

Theorem (4.2) may be false if the interval I is replaced by some other set
of real numbers. For example, if A is the set of nonzero real numbers, then
the function F(x) = 1/x has derivative —1/x? for all x in A, as does the
function G defined by

1/x ifx <0 ‘
Glx) = {(l/x) 1 ifx>0

but there is no constant C such that G(x) = F(x) + C for every x in A.
Thus, in problems involving antiderivatives for a function f, we always
assume, even if not explicitly stated, that the domain of f is an interval.

The symbol | used in Definition (4.3) is an integral sign. We call
J f(x) dx the indefinite integral of f(x). The expression f(x) is the
integrand, and C is the constant of integration. The process of finding
F(x) + C, when given | f(x)dx, is referred to as indefinite integration,
evaluating the integral, or integrating f(x). The adjective indefinite is
used because [ f(x)dx represents a family of antiderivatives, not any
specific function. Later in the chapter, when we discuss definite integrals,
we shall see the reasons for using the integral sign and the differential
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expression dx that appears to the right of the integrand f(x). For now,
we regard dx merely as a symbol that specifies the independent variable
x, which we refer to as the variable of integration. If we use a different
variable of integration, such as ¢, we write i

ff(t) dt = Ft) + C,
where F'(t) = f(¢).

1 d (1
4 5
xtdx==x"+C bec Z (=) =x*
f 3 ause dx(Sx x.
_ 1 _
Jt 3dt=—=1t72+C because d(_L2)_
2 dt 2
J cosudu =sinu + C because di(sin 1) = CoSU.
U
. d .
xcosxdx =xsinx +cosx+ C because E—(xsmx + cosx) = xcosx.
x

Brief Table of
Indefinite Integrals 4.4

i
Note that, in general,

d
Ja(f(x))dx =fx)+C

because f'(x) = (d/dx)(f(x)). This result allows us to use any derivative
formula to obtain a corresponding formula for an indefinite integral, as
illustrated in the next table. As shown in Formula (1), it is customary to
abbreviate [ 1dx by [ dx.

‘ Derivative | Indefinite integral
L e e

- Ee [ gu@a=rw+c

y - -
| -d;(x)=1 | (1)Jldx=fdx=x+c

d xr+1 e . xr+1

w\ =x"(r#-1) (Z)Jx dx=r+1+C(r;é—1)
| a(sinx):cosx | (3)fcosxdx=sinx+c

d

E(—cosx):sinx (4)fsinxdx=—cosx+C

d 2
| d—x(tanx) = sec“x ) fseczx dx =tanx + C
d 2
E(— cotx) = cscx 6) fcsczx dx = —cotx+C

d
d—x(secx)=secxtanx (7)Jsecxtanxdx=secx+c

(8) Jcscx cotxdx =—cscx+ C

d
—(—cscx) =cscxcotx
dx

4.1 Antiderivatives, Indefinite Integrals, and Sirﬁﬁie\piﬁerential Equations ﬂ

Formula (2) is called the-pawer rule for indefinite integration. As in the
following illustration, i'is often necessary to rewrite an integrand before

applying the power rite or one/of the trigonometric formulas.

ILLUSTRATION

8+1 9
3 5, |8, _ _r
Jx x> Jx dx 1—|—C—9—{—C
1 X —3+1
J;dx:Jx dx=_3+1+ ——2——2‘+C
2/3+1

COS X

Tt is a good idea to check indefinite integrations (such as those in the
preceding illustration) by differentiating the final expression to see if either
the integrand or an equivalent form of the integrand is obtained.

The next theorem indicates that differentiation and indefinite integra-
tion are inverse processes, because each, in a sense, undoes the other. In (i),
we assume that f is differentiable, and in (ii), that f has an antiderivative

on some interval.

Theorem 4.5 4
mfauu»ﬂ=fm+c

Q) -5; U f(X)dX) = f(x)

PROOF We have already proved (i). To prove (ii), let F be an anti-
derivative of f and write

d
= (J fx) dx) L FO)+0)=Fx+0=[ (). -
dx dx

EXAMPLE®= |  Verify Theorem (4.5) for the special case f(x) = x2.

SOLUTION

(i) If we first differentiate x2 and then integrate,
J 4 (2 dx = J2xdx =x*+C.
dx

@ii) If we first integrate +2 and then differentiate,

d ) d x3 2
I (Jx dx) dx<3 + ) x
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Theorem 4.6
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The next theorem is useful for evaluating many types of indefinite inte-
grals. In the statements, we assume that f(x) and g(x) have antiderivatives
on an interval I.

0] fc f(x)dx =c f f(x) dx for any nonzero constant ¢
0 f N e Gyl f Fxyde+ f e
(i) j e j Fede— f o

PROOF We shall prove (ii). The proofs of (i) and (iii) are similar. If
F and G are antiderivatives of f and g, respectively,

L FW + 60 = F0) + 6w = )+ (0.
Hence, by Definition (4.3),
f[f(X) +g(x)]dx = F(x) + G(x) + C,
where C is an arbitrary constant. Similarly,
Jf(x)dx—{—fg(x)dx =Fx)+C, +Gx)+C,
for arbitrary constants C; and C,. These give us the same family of an-

tiderivatives, since for any special case, we can choose values of the con-
stants such that C = C, + C,. We thus prove (ii). =8

Theorem (4.6)(1) is sometimes stated as follows: A constant factor in
the integrand may be taken outside the integral sign.

It is not permissible to take expressions involving variables outside the
integral sign in this manner. Note, for example, that

chosxdx =xsinx +cosx + C,

whereas

xfcosx dx = x(sinx + C) = xsinx 4+ Cx.

These two expressions do not differ by a constant. Hence,

fxcosxdx #chosxdx.

4.1 Antiderivatives, Indefinite Integrals, and Simple Differential Equations

EXAMPLE=2 Evaluate J(Sx3 + 2cosx) dx.

SOLUTION We first use (ii) and (i) of Theorem (4.6) and then for-
mulas from (4.4):

f(5x3 +2cosx)dx = f5x3 dx +f200sxdx

=5Jx3dx+2Jcosxdx

4
=5 (% + c1> +2(sinx + C,)

= 3x* +5C, + 2sinx +2C,
= 2x* +2sinx + C,
where C = 5C, +2C,.

In Example 2, we added the two constants 5C, and 2C, to obtain
one arbitrary constant C. We can always manipulate arbitrary constants in
this way, so it is not necessary to introduce a constant for each indefinite
integration as we did in Example 2. Instead, if an integrand is a sum, we
integrate each term of the sum without introducing constants and then add
one arbitrary constant C after the last integration. We also often bypass
the step | ¢f (x) dx = ¢ | f(x) dx, as in the next example.

1
EXAMPLE=3 EvaluateJr<8t3—6«/f+—3)dt.
t

SOLUTION First we find an antiderivative for each of the three
terms in the integrand and then add an arbitrary constant C. We rewrite
V't as "% and 1 /3 as 173 and then use the power rule for integration:

1
f (8t3 — 641+ —3) dr = J(8t3 — 602 417y dr
t

4 3/2 -2
t t t
=8 ——6- 5 +—+C
32
2
1
ut— 42— — 4 C
2t

21y
EXAMPLE=4 EvaluateJr(xgz)—dx.
X

SOLUTION First we change the form of the integrand, because the
degree of the numerator is greater than or equal to the degree of the de-
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nominator. We then find an antiderivative for each term, adding an arbitrary
constant C after the last integration:

2 2 4 2
1 — 2?41
J(xiz)dxzfx "tk
X

x2

=f(x2—2+x—2)dx

3 -1

- x4+l _4c
3 YT
i 13 1
| =—x"=2x—=+C
; 3 X
|
|
EXAMPLE=S Evaluatefédu.
cosucotu

SOLUTION  We use trigonometric identities to change the integrand
and then apply Formula (7) from Table (4.4):

1
cosucotu

du :fsecutanudu
=secu+ C

While most work on computers involves numerical calculations, computer
E algebra systems (CAS) can perform operations on symbolic formulas. Us-
- ing CAS software, you may be able to enter the expression for a function
; and then request the indefinite integral. If an antiderivative can be found
| using the techniques discussed in this text, there is an excellent chance that
the CAS will be successful in finding one. If you have access to a CAS,
you should investigate the rules for entering functions symbolically and
requesting derivatives and antiderivatives.

SIMPLE DIFFERENTIAL EQUATIONS

An applied problem may be stated in terms of a differential equation—
that is, an equation that involves derivatives or differentials of an unknown
function. A function f is a solution of a differential equation if it satis-
fies the equation — that is, if substitution of f for the unknown function
produces a true statement. To solve a differential equation means to find
all solutions. Sometimes, in addition to the differential equation, we may
know certain values of f or f’, called initial conditions.

Indefinite integrals are useful for solving certain differential equations,
because if we are given a derivative f'(x), we can integrate and use Theo-
rem (4.5)(i) to obtain an equation involving the unknown function f:

ff/(x)dx =f(x)+C

If we are also given an initial condition for f, it may be possible to find
S (x) explicitly, as in the next example.

4.1

- U ]
Antiderivatives, Indefinite Integrals, and Simple Differential Equations m
EXAMPLE= 6  Solve the differential equation

fx)y=6x*+x-5
subject to the initial condition f(0) = 2.

SOLUTION We proceed as follows:
flx)=6x>+x-5
Jf’(x)dx = f(6x2 +x —5)dx
fy=22+1x*—5x+C
for some number C. (It is unnecessary to add a constant of integration
to each side of the equation.) Letting x = 0 and using the given initial
condition f(0) = 2 gives us
f(0O)=0+0-0+C, or 2=C.
Hence the solution f of the differential equation with the initial condition
f(O)=2is
fx) =20+ 1x* = 5x + 2.

If we are given a second derivative f”(x), then we must employ two
successive indefinite integrals to find f(x). First we use Theorem (4.5)(i)
as follows:

ff”(x)dx =f%(f’(X))dx =f+C

After finding f’(x), we proceed as in Example 6.

EXAMPLE®=7 Solve the differential equation
f"(x) =5cosx +2sinx
subject to the initial conditions f(0) = 3 and f '(0) = 4.

SOLUTION We proceed as follows:
f"(x) =5cosx +2sinx
f ' (x)dx = J(S cosx +2sinx)dx
f'(x) =5sinx —2cosx + C
Letting x = 0 and using the initial condition f "(0) = 4 gives us

f'(0) =5sin0—2cos0+ C
4=0-2-1+C, or C=6.

Thus,
f'(x) = 5sinx —2cosx + 6.




CHAPTER 4 Integrals

We integrate a.second time:

\ ff’(x)_é:ix = J(S sinx —2cosx + 6) dx
' f@) = ~5cosx — 2sinx + 6x + D
Letting x = 0'and using the initial ct;ndition f(©) = 3, we find that
F(0) = “5¢0s0—2sin0+6-0-+ D
/) 3=-5-040+D, or D=S8.

Therefore, the’ solution of the differential equation with the given initial
condition iy’

[f(x) = —5cosx — 2sinx + 6x + 8.

Suppose that a point P is moving on a coordinate line with an acceler-
ation a(z) at time ¢, and the corresponding velocity is v(¢). By Definition
(3.23), a(t) = v/(¢) and hence

fa(t) dt = fv’(t) d=v@t)+C

for some constant C.

Similarly, if we know v(z), then since v(¢) = s’(¢), where s is the po-
sition function of P, we can find a formula that involves s () by indefinite
integration:

J.v(t) dt = js'(t) dt =st)+ D

for some constant D. In the next example, we shall use this technique
to find the position function for an object that is moving with a given
acceleration function a(t).

EXAMPLE®=S8 A particle moving along a coordinate line at time
t =0 is at a position 3 ¢cm from the origin and traveling at a velocity of
7 cm/sec. If the acceleration of the particle is given by

a(t) =2-2@+1)73,

find the velocity and the position of the particle as functions of ¢.

SOLUTION Since the velocity v(t) = fv'(t)dt = [ a(t)dt, we
have

o(1) = f[z —2(t 4+ D)3 dr

=2+@+1D)24+cC

for some number C. Substituting O for ¢ and using the fact that v(0) = 7
givesus 7= 0+ 1+ C, or C = 6. Consequently,

v(@) =2t+ @+ 1) "2 +6.

4.1
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Since s'(r) = v(t), we obtain
S =2+ +1)72+6
Js’(t) dt = f[zz + @+ D724+ 6ldr
s@)=*—@¢+D'+6:+D

for some number D. Using the fact that s(0) = 3 gives 3=0—-1+0+D,
or D = 4. Thus, the position of the particle from the origin at time ¢ is
given by

s)=t>— @+ 17" +6r+4cm,
and the particle travels at a velocity of

v(t) = 2t + (¢ + 1)72 + 6 cm/sec.

In economics applications, if a marginal function is known (see page
330), then we can use indefinite integration to find the function, as illus-
trated in the next example.

EXAMPLE®=9 A manufacturer finds that the marginal cost (in dol-
lars) associated with the production of x units of a photocopier component
is given by 30 — 0.02x. If the cost of producing one unit is $35, find the
cost function and the cost of producing 100 units.

SOLUTION If C is the cost function, then the marginal cost is the
rate of change of C with respect to x—that is,
C'(x) =30 — 0.02x.

Hence
J C'(x)dx = J(3O —0.02x) dx

and
C(x) = 30x — 0.01x* + K
for some K. Letting x = 1 and using C(1) = 35, we obtain
35=30—-001+K, or K =350l
Consequently,
C(x) = 30x — 0.01x> + 5.01.
In particular, the cost of producing 100 units is

C(100) = 3000 — 100 + 5.01
= $2905.01.




- EXERCISES 4.1

Exer. 1—-40: Evaluate.

i j(4x+-3)dx 2 f(4x2—8x+l)dx

3 f(9t2—4t+3)dt 4 f(2t3-t2+3t—7)dz

Sf(zli—j—z)dz f(%—%%z)dz
7[(3ﬁ+%)du sj(x/;;—%u_Z—i—S)du

9 f Q4 + 64 +3vH v

o

10 f(3v5 — vy

o 1)

1 f(3x—1)2dx

I3 fx(2x+3)dx

_ 8x—5
14 I(Zx 5)(3x + 1)dx ISJ 7 dx
2% —x+3 2 -1
16 | ———dx
Jx jx-—l i
3 2
x? +3x—9x -2 (* +3)?
18 | —— —_—
P dx |9f 6 dt
Wr+2)?
20 det 21 j%cosudu
22 f—%sinudu 23j ! dx
cscx
1
4 4secxdx 25 J’(«/lt—l—cost)dt
26 j(%—z—sint)dt 27 j&dt
cost
1
28 sinztdt 29 f (cscvcotvsecv) dv
30 f (4 + 4 tan*v) dv f e
cos w

CSC C
&9 fﬂdw

sin w 3 cscz dz
tanz d
34 |—d ety By
jcosz ) 52 fdx( . +4)dx

36 f%(axS—S)dx

d o
37 f—(sin Ix) dx
dx

CHAPTER 4 Integrals

d
38 f—(\/tanx)dx
dx
d
40 d—f(x4\/3x2+9)dx
X

41 Showthatfx2dx;éxfxdx.

39 %J'(x%/x —4ydx

42 Showthatf(l-l—x)dx # l—l-fxdx.

Exer. 43-48: Evaluate the integral if a and b are

constants.

43 fazdx 45 f(at—l—b)dt

46 f(%t)dt 47 f(a+b)du 48 f(b—az)du

/

Exer. 49-56: Solve the differential equation subject to
the given conditions.

49 flx)=12x>*—6x+1; f(1)=5

44 J'abdx

50 /(X)) =9x2+x—8  f(-D=1
dy

51 E=4xl/2; y=21ifx =4
dy _

52 — =5x 173, =70if x = 27

53 f'(x)=4x - L; ff@=-2 fH=3

54 f'(x)=6x—4 Q=5 f=4
d2y

55 P=3smx—4cosx; y=7andy =2ifx =0
d2y

56 ? =2cosx — 5sinx;

y=2+6randy =3ifx=m
E)‘(er. 57—5.8: If a point is moving on a coordinate line
with the given acceleration a(f) and initial conditions,
find s(¢).
57 a@y=2—-6t; v(0)=-5  s(0)=4
58 a(t) = 312 v(0) = 20; s(0)=35
59 A projectile is fired vertically upward from ground

level with a velocity of 1600 ft/sec. Disregarding air
resistance, find

(a) its distance s(¢) above the ground at time ¢
(b) its maximum height

Exercises 4.1

60 An object is dropped from a height of 1000 ft.
Disregarding air resistance, find
(a) the distance it falls in ¢ seconds
(b) its velocity at the end of 3 sec
(c) when it strikes the ground
61 A stone is thrown directly downward from a height of
96 ft with an initial velocity of 16 ft/sec. Find
(a) its distance above the ground after ¢ seconds
(b) when it strikes thé ground
(c) the velocity at which it strikes the ground

62 A gravitational constant for objects near the surface of
the moon is 5.3 fi/sec?.

(a) If an astronaut on the moon throws a stone directly
upward with an initial velocity of 60 ft/sec, find the
maximum altitude of the stone.

(b) If, after returning to earth, the astronaut throws the
same stone directly upward with the same initial
velocity, find the maximum altitude of the stone.

63 If a projectile is fired vertically upward from a height
of s, feet above the ground with a velocity of v, ft /sec,
prove that if air resistance is disregarded, its distance
s(1) above the ground after 7 seconds is given by
s@) = —% gt2 + vgt + 59, Where g is a gravitational
constant.

64 A ball rolis down an inclined plane with an acceleration
of 2 ft/sec?.

(a) If the ball is given no initial velocity, how far will it
roll in ¢ seconds?

(b) What initial velocity must be given for the ball to
roll 100 ft in 5 sec?

65 If an automobile starts from rest, what constant
acceleration will enable it to travel 500 ft in 10 sec?

66 If a car is traveling at a speed of 60 mi/hr, what constant
(negative) acceleration will enable it to stop in 9 sec?

67 A small country has natural gas reserves of 100 billion
f3. If A(z) denotes the total amount of natural gas

(<]

m'

consumed after ¢ years, then dA/dt is the rate of
consumption. If the rate of consumption is predicted to
be 5 + 0.01¢ billion f/yr, in approximately how many
years will the country’s natural gas reserves be depleted?

68 Refer to Exercise 67. Based on U.S. Department of

Energy statistics, the rate of consumption of gasoline
in the United States (in billions of gallons per year) is
approximated by dA/dt =274 —0.11t — 0.01£2, with
t =0 corresponding to the year 1980. Estimate the
number of gallons of gasoline consumed in the United
States between 1980 and 1984.

69 A sportswear manufacturer determines that the marginal
cost in dollars of producing x warmup suits is given by
20 — 0.015x. If the cost of producing one suit is $25,
find the cost function and the cost of producing 50 suits.

70 If the marginal cost function of a product is given by
2/ +1/3 and if the cost of producing 8 units is $20, find
the cost function and the cost of producing 64 units.

Exer. 71-76: Use the commands of a computer algebra
system (CAS) to find the derivative and the indefinite
integral of the following functions.

71 ) =225 +x* 903 =5 +4x + 10

72 f(x) =3x* +6x* + 8%
2 3x

73 g(x) = x“e”* cos4dx

74 g(x) = x*e* sin2x

75 s(t) L3
s = —5——5 -
2% +3t2 -5t —6

2

t“+1

76 st)= ———5———

2 +312 -5t -6
77 (a) Show that each of the functions sin® x, —cos” x, and
- %_‘cos 2x are each antiderivatives of 2 sin x cos x.
(b) Reconcile the results of part (a) with the conclusion
of Theorem (4.2).
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Mathematicians and Their Times

GOTTFRIED WILHELM LEIBNIZ

THE THIRTY YEARS® WAR began as a religious struggle between Ger-
man Protestants and Roman Catholics in 1618 and spread to a general
European struggle for territory and political power. At the war’s end,
Germany was in ruins. Thousands of people had been killed and entire
cities and towns had disappeared.

In this unhappy period of European
history were also sown the seeds of mod-
ern rationalist thought. Such profound
thinkers as Galileo, Newton, Descartes,
Pascal, Bacon, Spinoza, Locke, and Leibniz,
“the great teachers of the seventeenth

century,” as one historian called them,
“disciplined the minds of men for impar-
tial inquiry and . . . produced a passionate
love of truth which has revolutionized all departments of knowledge.™
Gottfried Wilhelm Leibniz was. the most versatile genius of all, making
notable contributions to logic, philosophy, law, history, geology, theol-
ogy, physics, and mathematics while carrying out an active diplomatic

career.

Born in Leipzig, Germany, on July I, 1646, Leibniz showed an early
interest in his studies. He mastered Latin and Greek as an essentially
self-taught youth. At age 15, he entered the University of Leipzig, where
he earned a philosophy degree at age 17. By age 20, he had completed a
brilliant doctoral thesis. Leibniz entered the diplomatic service, first for
the Elector of Mainz and later, for 40 years, for the Elector of Hanover.
He died on November 14, 1716.

Leibniz formulated many plans to avoid a recurrence of the blood-
shed prompted by earlier religious and political rivalries, seeking, unsuc-
cessfully, to reconcile Catholicism and Protestantism. Leibniz went to
Paris to try to persuade Louis X1V, the king of France, to turn his atten-
tion from attacks against the German states to seizing Egypt. Although
Louis XIV chose not to attack Egypt, Leibniz spent four fruitful years

*W.E. Lecky, History of the Rise and influence of the Spirit of Rationalism in Europe. London:
Longmans, 1866.

4.2 Change of Variables in Indefinite Integrals
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in Paris, absorbing the latest scientific advances and training himself in
mathematics. During this period, he conceived the principal features of
calculus, developing a general method for the calculation of derivatives
and integrals and discovering the fundamental theorem of calculus.

A bitter controversy arose concerning the “discovery” of calculus.
Newton apparently made his own discoveries in 1666, but did not publish
them until 1692. Leibniz independently reached the same results in 1676,
publishing them in 1686. Some British mathematicians unfairly charged
Leibniz with plagiarizing Newton’s ideas; the resulting furor drove a
wedge between the British and Continental intellectual communities
that hampered the development of calculus.

'i___ =" — e e e ————

CHANGE OF VARIABLES IN INDEFINITE INTEGRALS

The formulas for indefinite integrals in Table (4.4) are limited in scope,
because we cannot use them directly to evaluate integrals such as

f\/5x+7dx or jcos4xdx.

In this section, we shall develop a simple but powerful method for chang-
ing the variable of integration so that these integrals (and many others) can
be evaluated by using the formulas in Table (4.4).

To justify this method, we shall apply Formula (i) of Theorem (4.5) to
a composite function. We intend to consider several functions f, g, and F,
so it will simplify our work if we state the formula in terms of a function £
as follows:

fi(h(x)) dx=hx)+C
dx

Suppose that F is an antiderivative of a function f and that g is a
differentiable function such that g(x) is in the domain of F for every x
in some interval. If we let 2 denote the composite function F o g, then
h(x) = F(g(x)) and hence

d
f—(F(g(X)))dx = F(gx))+C.
dx

Applying the chain rule (2.26) to the integrand (d/dx)(F(g(x))) and using
the fact that F’ = f, we obtain

d
E(F(g(X))) = F'(g(x))g'(x) = f(g(x))g'(x).

(T T |
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Substitution in the preceding indefinite integral gives us-.

(%) ff(g(X))g’(X)dx = F(g(x)) + C.

We can use differential notation to help remember this formula. We for-
mally identify the expression dx with the increment Ax—thatis, dx = Ax.
We then introduce the variable u = g(x) and note that Definition (2.34)
gives us the statement:

If u=g(x), then du=gx)dx

If we formally substitute u and du into (%), we obtain

J-f(u)duzF(u)—i-C.

This equation has the same form as the integral in Definition (4.3); how-
ever, u represents a function, not an independent variable x, as before. The
equation indicates that g'(x) dx in (*) may be regarded as the product of
g’ (x) and dx. Since the variable x has been replaced by a new variable u,
finding indefinite integrals in this way is referred to as a change of vari-
able, or as the method of substitution. We may summarize our discussion
as follows, where we assume that f and g have the properties described
previously.

If F is an antiderivative of f, then
[ reng@ar = Fe@n +c.
If u = g(x) and du = g'(x) dx, then

ff(u)du = F(u)+ C.

After we have made the substitution u = g(x) as indicated in (4.7), it
may be necessary to insert a constant factor k into the integrand in order to
arrive at the proper form [ f(u) du. We must then also multiply by 1/k to
maintain equality, as illustrated in the next examples.

EXAMPLE=| EvaluateJ‘«/5x+7dx.

SOLUTION Weletu = 5x + 7 and calculate du:

u=5x+7, du=>5dx

Since du contains the factor 5, the integral is not in the proper form
I f @) du required by (4.7). However, we can introduce the factor 5 into

the integrand, provided we also multiply by —é— Doing so and using Theo-

4.2 Change of Variables in Indefinite Integrals

rem (4.6)(1) gives us

[vaFia= [V @sas
= [ VEeTsa
We now substitute and use the power rule for integration:
J V5x +1dx = % J Judu

= —;— u1/2 du

sx+ 72+ C

oo
~~

=715

In the future, after inserting a factor k into an integrand, as in Example
1, we shall simply multiply the integral by 1/ k, skipping the intermediate
steps of first writing (1 / k)k and then bringing 1 / k outside —that is, to the
left of — the integral sign.

EXAMPLE®2 Evaluatejcosélxdx.

SOLUTION Wemake the substitution

u=4x, du=4dx.
Since du contains the factor 4, we adjust the integrand by multiplying by 4
and compensate by multiplying the integral by ‘1—1 before substituting:

J cosdxdx = %J'(cos 4x)4 dx

TS N e N

J'cos udu

sinu +C
sindx + C

It is not always easy to decide what substitution u = g(x) is needed to
transform an indefinite integral into a form that can be readily evaluatf:d.
It may be necessary to try several different possibilities before finding
a suitable substitution. In most cases, no substitution will simplify the
integrand properly. The following guidelines may be helpful.
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Decide on a reasonable substitution u# = g(x).
2 Calculate du = g’(x) dx.

3 Using guidelines (1) and (2), try to transform the integral into
a form that involves only the variable u. If necessary, introduce
a constant factor k into the integrand and compensate by multi-
plying the integral by 1/k. If any part of the resulting integrand
contains the variable x, use a different substitution in guideline

1.

4 Evaluate the integral obtained in guideline (3), obtaining an an-
tiderivative involving u.

5 Replace u in the antiderivative obtained in guideline (4) by g(x).
The final result should contain only the variable x.

The next examples illustrate the use of the guidelines.

EXAMPLE®3 Evaluate f(2x3 + 1)x?dx.

SOLUTION Ifanintegrand involves an expression raised to a power,

such as (2x> + 1)7, we substitute « for the expression. Thus we let
u=2x+ 1, du=6xdx.

Comparing du = 6x? dx with x> dx in the integral suggests that we in-
troduce the factor 6 into the integrand. Doing so and compensating by
multiplying the integral by %, we obtain the following:

f @+ 1)'x%dx =} J @2x” 4+ 1)76x> dx
=%fu7du
1 {u®
A AN

=43+ 1D+ C

A substitution in an indefinite integral can sometimes be made in sev-
eral different ways. To illustrate, another method for evaluating the integral
in Example 3 is to consider

u=72x+ 1, du =6x2dx, %du = x%dx.

We then substitute é du for x> dx,

J'(Zx3 + 1)7x2dx = fu%du = éfbﬂdu,

and integrate as before.

4.2 Change of Variables in Indefinite Integrals

EXAMPLE®=4 Evaluate Jx&’7_—_6x2 dx.

SOLUTION Note that the integrand contains the term x dx. Itf) 1the
factor x were missing or if x were raised to a higher power, the pro fem
would be more complicated. For integrands that involve a radical, we often
substitute for the expression under the radical sign. Thus we let

u__7__6x, du=—12xdx.

Next, we introduce the factor —12 into the integrand, compensate by mul-
tiplying the integral by — 12, and proceed as follows:

Jx\j/7—6x2dx————J\/7 6x2(—12)x dx

3 1 1/3
=-%Jﬁdu=—ﬁ u du

_ b ﬂi +C:—iu4/3+c
T 12\ 4/3 16

= —ta-6D)+C

We could also have written

u=7—6x2, du = —12x dx, —ﬁdu:xdx
and substituted directly for x dx. Thus,
2 13
J{/7 —6x’xdx = J}Q/ﬁ(—ﬁ)du = —ﬁfﬁdu.

The remainder of the solution would proceed exactly as before.

__xz———l — dx
EXAMPLE®5 Evaluatej(x3_3x+1)6

SOLUTION Let 2
y=x3—3x+1, du=(3x*—=3)dx =30 —1)dx

and proceed as follows:
x?—1 _ J 3> — 1) s
(% —3x + 1) @ =3x+1)°
J 1 J u=bdu
u6
“ _ L (i) +C
-5 15\

+C
15(x —3x+1)5

1
3
1
3
1
3
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If the variable of integration is different from x, we can make use
of Guidelines (4.8), with an appropriate change of notation. In the next
example, ¢ is the original variable of integration; our substitution takes the
form u = g(t) for an appropriately chosen function g.

EXAMPLE®= 6 Evaluate fcos3 5t sin 5t dt.
SOLUTION The form of the integrand suggests that we use the
power rule (2) in (4.4) with J wdu = %u‘t + C. Thus we let
u = g(t) = cos 5t, du = —5sin5t dt.
The form of du indicates that we should introduce the factor —5 into the

integrand, multiply the integral by — %, and then integrate as follows:

J cos® 5t sin5tdt = —3 f cos® 5¢(—5 sin 5¢) dt

The method of substitution or change of variable is also quite useful in
solving differential equations. The next example illustrates an application
of differential equations in which we make use of a change of variable.

EXAMPLE=7 Studies have shown that the rate at which students
learn new vocabulary words in a foreign language decreases as the size of
the known vocabulary increases. If W(¢) is the number of words known
after ¢ days and the rate of change of W is modeled by the differential
equation

8200

W' (t) = —— for 0 <t <365,

W(t)
(a) find W as an explicit function of ¢, if the student knows 400 words at
time t = 0
(b) find the number of words known after 1 day and 2 days

Exercises 4.2

We make the substitution
u=Wwe), du=W'(@)dt

on the left-hand side of this equation, obtaining

Judu =f8200dt

u?
5= 8200t + C.

so that

Changing back to our original variables, we have

[W()]?

= 82007 4 C.

Evaluating at 1 = 0 (with W(0) = 400) yields
4007
— =82000)+C=0+C=C,

so C = 80,000. Hence,
(W)

= 8200t + 80,000.
This result gives us
[W()]* = 16,400 + 160,000

and

W(t) = /16,400 + 160,000 = 20/41z + 400.
Thus the number of words W () known after ¢ days is 20y/41z + 400.
(b) After 1 day of additional study, the number of words the student knows
is given by

W(1) = 20+/41 4+ 400 = 20+/441 = (20)(21) = 420.

After 2 days, the number of words is

W(2) = 20+/482 ~ 439,

In this model of learning, the student masters an additional 20 words on
the first day, but only 19 more words on the second day.

- EXERCISES 4.2

SOLUTION
L A e T e N e i R SR | ¢ (T

(a) From the differential equation, we have

() = <
W()W'(r) = 8200 for 0 <t <365. Exer. 1-8: Evaluate the integral using the given sub- 3 f V3 Tde; u=3x+7
Since the expressions on each side of the equation are identical on an stitution, and express the answer in terms of x.
interval [0, 365], the indefinite integrals of the functions they represent y S5x ) 5
will be identical. Thus, we have f fx(Zx +3)%dx; u=2x"+3 4 f 2_3 dx; LS e &

f W@ W' (1) dt = J 8200 dt.

X X 1 ﬁ)3
Zf_dx, u=x2+5 J( .
(2 +5)° 5 NG dx; u=1+x




6f—l—l(jdx; u=>5 -4
5x — 4)

7 fﬁcosx/xjdx; u=x"?

8 ftanx secx dx; u=tanx

Exer. 9-48: Evaluate the integral.
9 J«/3x—2dx 10 J«4/2x+5dx
1
Il |~/8t+54dt 12 j———dt
J A4 =5t
14 J(212 - 3)52 dz

16 fv\/9—v2dv

13 j(31+1)4dz
15 vaVU3—1dv
i 433
I7J3———dx I8f(3—x)xdx
\/1—23c2

i9 J(sz-f—l)zds

21 J"(‘\/f\/-;:’*)“ dx 22 J<l+£>_3 (é) dx

t—2 , 24+t
23 — —Bdt 24 ——234dt
@t —4t+3) 4 -3 -2t7)

26 J4 cos %x dx

20 f(3 — )25 ds

25 f3 sin4x dx

28 jsin(l + 6x)dx

3
30 fcosﬁ "

27 fcos(4x —3)dx

29 f v sin(v?) dv

3 v2
sin 2x
31 | cos3x~/sin3x dx 32 | ————dx
f V1 —cos2x

33 J'(sinx + cos x)2 dx (Hint: sin20 = 2sin6 co0sé.)

ind
34 J SINAX ix  (Hint: sin20 = 2sin cos6.)
cos 2x

35 Jsinx(l—{—cosx)?‘dx 36 fsin3xcosxdx

sin x
37 f 7 dx
cos x

cost
39 f %zdt
(1 —sint)

38 f sin 2x sec® 2x dx

40 f(Z + 5cos t)3 sin ¢ dt

f csc2x
42 - dx
sin 2x

41 f sec>(3x — 4) dx

CHAPTER 4 Integrals

44 = d
J tan 4x sin4x *

1 x
sin” 5x cos“(x%)
x
47 fx cot(xz) csc(xz) dx 48 fsec (g) tan (%) dx

Exer. 49— 52: Solve the differential equation subject to the
given conditions.

49 fl(x)=3x+2; f@)=9
d

50 d_y =xVx?+5;
X

51 f"(x) =16cos2x —3sinx; f(0)=-2; f(0O)=4
52 f"(x) = 4sin2x + 16cosdx; f(0)=6; f(0)=1
Exer. 53 - 56: Evaluate the integral by (a) the method of

substitution and (b) expanding the integrand. In what
way do the constants of integration differ?

53 f (x +4) dx 54 f (x2 + 4)2x dx

WE+3 f( 1)"1
SSJ N dx 56 1+x xzdx

57 A charged particle is moving on a coordinate line in

a magnetic field such that its velocity (in centimeters

per second) at time ¢ is given by v(f) = % sin(3t — %n).

Show that the motion is simple harmonic (see page 321).

43 fse:c2 3x tan 3x dx

y=12 ifx =2

58 The acceleration of a particle that is moving on a
coordinate line is given by a(t) = kcos(wt + ¢) for
constants k, w, and ¢ and time ¢ (in seconds). Show
that the motion is simple harmonic (see page 321).

59 A reservoir supplies water to a community. In summer,
the demand A for water (in cubic feet per day) changes
according to the formula

dA/dt = 4000 + 2000 sin(g;7?)

for time ¢ (in days), with t = O corresponding to the
beginning of summer. Estimate the total amount of water
consumption during 90 days of summer.

60 The pumping action of the heart consists of the systolic
phase, in which blood rushes from the left ventricle
into the aorta, and the diastolic phase, during which
the heart muscle relaxes. The graph shown in the figure
on the following page is sometimes used to model
one complete cycle of the process. For a particular
individual, the systolic phase lasts % sec and has a
maximum flow rate dV/dt of 8 L/min, where V is the
volume of blood in the heart at time ¢.

(a) Show that dV/dr = 8sin(240 7t) L/min.

(b) Estimate the total amount of blood pumped into the
aorta during a systolic phase.

4.3 Summation Notation and Area

Exercise 60
A AV
" (liter/min)
62; a sin bt
0"25 I i t (seconds)
| ! |
< L™ Sl *“:

=i 1
Systolic Diastolic Systolic
phase phase  phase

61 The rhythmic process of breathing consists of alternat-
ing periods of inhaling and exhal'ng. For an adult, one
complete cycle normally takes place every 5 sec. If V
denotes the volume of air in the lungs at time z, then
dV/dt is the flow rate.

62

63

(a) If the maximum flow rate is 0.6 L/sec, find a formula
dV/dt = asinbt that fits the given information.

(b) Use part (a) to estimate the amount of air inhaled
during one cycle.

Many animal populations fluctuate over 10-yr cycles.
Suppose that the rate of growth of a rabbit population is
given by dN/dt = 1000 cos(%nt) rabbits/yr, where N
denotes the number in the population at time ¢ (in years)
and ¢t = 0 corresponds to the beginning of a cycle. If
the population after 5 yr is estimated to be 3000 rabbits,
find a formula for N at time ¢ and estimate the maximum
population.

Show, by evaluating in three different ways, that
f sinx cosx dx = %sinzx +C

= —%coszx + D
= —%cost + E.

How can all three answers be correct?

4.3 SUMMATION NOTATION AND AREA

N In this section, we lay the foundation for the definition of the definite
integral. At the outset, it is virtually impossible to see any connection
between definite integrals and indefinite integrals. In Section 4.6, however,
we show that there is a very close relationship: Indefinite integrals can be
used to evaluate definite integrals.

In our development of the definite integral, we shall employ sums of
many numbers. To express such sums compactly, it is convenient to use
summation notation. Given a collection of numbers {a,, a,, ..., a,}, the
symbol Y/ _, a, represents their sum as follows.

Summation Notation 4.9

R
Y 4=a tatazt--+a,
k=1

The Greek capital letter ¥ (sigma) indicates a sum, and a, represents
the kth term of the sum. The letter £ is the index of summation, or the
summation variable, and assumes successive integer values. The integers
1 and » indicate the extreme values of the summation variable.
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4
EXAMPLE® | Evaluate Y &%k — 3).
k=1 .

SOLUTION Comparing the sum with (4.9), we have a, = k2 (k - 3)
and n = 4. To find the sum, we substitute 1, 2, 3, and 4 for k and add the
resulting terms. Thus,

4
Zkz(k —3)=12(1-3)+ 222 —3) +32(3 — 3) + 424 - 3)
k=1

=(=2)+ (=4) + 0+ 16 = 10.

Letters other than k£ can be used for the summation variable. To illus-

trate,
4 4 4
YRk -3)=) % -3)=)Y j*(-3) =10
k=1 i=1 j=1

If a, = c for every k, then

2 2
Zak=a1+a2=c+c=2c=Zc,
k=1 k=1

3 3
Zak=a1+a2+a3;c+c+c=3c=2c.
k=1 k=1

In general, the following result is true for every positive integer n.

The domain of the summation variable does not have to begin at 1. For
example,

8
Zak=a4+a5+a6+a7+a8.

k=4
3 ok
EXAMPLE=2 Evaluate .
;(k+1)
SOLUTION
3 ok 0 71 2 23

;(k+1)=(O+1)+(1+1)+(2+1)+(3+1)

4 16

367

4.3 Summation Notation and Area
The next theorem states some elementary properties of summation.

Theorem 4.11 : T
If n is any positive integer and {a, a,, ..., a,} and {b,, by,....b}
are sets of real numbers, then

0 ) (@ +b)=) a+ f:bk
k=1 k=1

k=1
i Ei4
(ii) Z ca, =c (Z ak), for every real number ¢
k=1 £33
n 13 i3
@) Y @ ~b)=>a,-) b
kel k=1 k=1

PROOF Toprove (i), we begin with
n

Y (@ +b)=(a,+b) +(@ay+by) + (@, +by)+-+(a,+b,).
k=1 \

Rearranging terms on the right, we obtain

n

D g +b)=(a,+ay+taz+---+a)+ b +b,+by+-+b)
k=1 n n
= Zak +Zbk.
k=1 k=1
For (i),

n
Z(cak) =ca,+cay+caz;+---+ca
k=1

n

=c@ +aytaz+---+a,) :C(Zak)‘
k=1
To prove (iit), we write @, — by = a; + (—=1)b, and use (i) and (ii). ==

The formulas in the following theorem will be useful later in this sec-
tion. They may be proved by mathematical induction.

Theorem 4.12

- n(n+1)
D Y k=14+2+. -4+n=—"2
( k}; :

1

n+1@2n+ 1

i) YR =124+22 4?2
(); =

5313 a3 s [n+ DT
it K= +2 4 =
(); [ 5 ]
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100 20
EXAMPLE®=3 EvaluateZkand Zkz.
k=1 1

k=

SOLUTION Using (i) and (ii) of Theorem (4.12), we obtain
100
100(101
}:k:1+2+~-+um=——ﬁ—l=5%0
k=1
and
20 20(21)(41)
Zkzz 124+224...420% = —_— = 2870.
k=1

n
EXAMPLE®=4 Express Z(k2 — 4k 4+ 3) in terms of n.
k=1

SOLUTION
f (K> — 4k +3) = f :k2—4§n k+ f 3
k=1 k=1 k=1 k=1

|31 1 1
_ nn+DCn + )_4n(n+ )+3n
6 2
1.3

-1,3_32,7
=3n” —3n" +gn

We use Theorems (4.11), (4.12), and (4.10):

We will be working quite extensively with sums of the form ) ;_, f (k)
in our examination of areas of planar regions and in our study of the
definite integral in this chapter. The definition of the definite integral (to
be given in Section 4.4) is closely related to the areas of certain regions
in a coordinate plane. We can easily calculate the area if the region is
bounded by lines. For example, the area of a rectangle is the product of
its length and width. The area of a triangle is one-half the product of an
altitude and the corresponding base. The area of any polygon can be found
by subdividing it into triangles.

In order to find areas of regions whose boundaries involve graphs of
functions, however, we utilize a limiting process and then use methods of
calculus. In particular, let us consider a region R in a coordinate plane,
bounded by the vertical lines x = a and x = b, by the x-axis, and by the
graph of a function f that is continuous and nonnegative on the closed
interval [a, b]. A region of this type is illustrated in Figure 4.2. Since
f(x) = 0 for every x in [a, b], no part of the graph lies below the x-axis.
For convenience, we shall refer to R as the region under the graph of f
from a to b. We wish to define the area A of R.

To arrive at a satisfactory definition of A, we shall consider many
rectangles of equal width such that each rectangle lies completely under
the graph of f and intersects the graph in at least one point, as illustrated
in Figure 4.3. The boundary of the region formed by the totality of these

4.3 Summation Notation and Area

Figure 4.2 Region under the graph of f
AY

l
Figure 4.3 An inscribed rectangular polygon
AY

- y

fx)
4:

=¥

X

rectangles is called an inscribed rectangular polygon. We shall use the
following notation:

App = area of an inscribed rectangular polygon
If the width of the rectangles in Figure 4.3 is small, then it appears that
Ap ~ A.

This result suggests that we let the width of the rectangles approach
zero and define A as a limiting value of the areas Ap of the corresponding
inscribed rectangular polygons. The notation discussed next will allow us
to carry out this procedure rigorously.

If n is any positive integer, we divide the interval [a, b] into n subinter-
vals, all having the same length Ax = (b — a)/n. We choose the numbers
Xgs X1 Xos v v s Xy andleta = x5, b = x,, and

. b—a

X, —X_ | =——
kT k-1 -

= Ax
fork =1,2,...,n, as indicated in Figure 4.4 on the following page. Note
that

x3=a+3Ax,...
xn=a—{—nAx=b.

x1=a+Ax, x2:a+2Ax,

xk=a+kAx, e

Xy =a,

The function f is continuous on qach subinterval [x, _;, x;], and hence,
by the extreme value theorem (3.3), f takes on a minimum value at some
number u, in [x,_,, x,]. For each k, let us construct a rectangle of width
Ax = x, — x,_; and height equal to the minimum distance f(u;) from
the x-axis to the graph of f (see Figure 4.4). The area of the kth rectangle
is f(u,)Ax. The area Ay, of the resulting inscribed rectangular polygon is
the sum of the areas of the n rectangles — that is,

Ap = fu)Ax + flup)Dx +---+ fu,)Ax.

Using summation notation, we may write

Ap =) fupAx,
k=1

where f(u,) is the minimum value of fonl[x,_;,x.]
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N

Figure 4.4
AY
/N y = f0)
é’:
it
a=xgX;X3%;5 | 1 /H\ x,=b 63
| ®k-1 X
- b—a
—> <Ax =

If n is very large, or, equivalently, if Ax is very small, then the sum Ap
of the rectangular areas should approximate the area of the region R. Intu-
itively, we know that if there exists a number A such that Y ;_, f(u JAxX
gets closer to A as Ax gets closer to 0 (but Ax # 0), we can call A the
area of R and write

n
A= lim A, = ki Ax.
Jimy A = lim, ) S m)x
The meaning of this limit of sums is not the same as that of the limit of a
function, introduced in Chapter 1. To eliminate the word closer and arrive
at a satisfactory definition of A, let us take a slightly different point of
view. If A denotes the area of the region R, then the difference

A=) fu)Ax
k=1

is the area of the portion in Figure 4.4 that lies under the graph of f
and over the inscribed rectangular polygon. This number may be regarded
as the error in using the area of the inscribed rectangular polygon to ap-
proximate A. We should be able to make this error as small as desired
by choosing the width Ax of the rectangles sufficiently small. This proce-
dure is the motivation for the following definition of the area A of R. The
notation is the same as that used in the preceding discussion.

Let f be continuous and nonnegative on [a, b]. Let A be a real
number, and let f (u,) be the minimum value of f on [x,_,, x,]. The
notation

n
A= 1
5 s

means that for every € > 0, thereisaé > Osuchthatif 0 < Ax < 8,
then

A=) fl)Ax <e.
k=1

4.3 Summation Notation and Area

If A is the indicated limit and we let € = 10~°, then Definition (4.13)
states that by using rectangles of sufficiently small width Ax, we can make
the difference between A and the area of the inscribed polygon less than
one-billionth of a square unit. Similarly, if € = 107!, we can make this
difference less than one-trillionth of a square unit. In general, the difference
can be made less than any preassigned €.

If f is continuous on [a, b], it is shown in more advanced texts that a
number A satisfying Definition (4.13) actually exists. We shall call A the
area under the graph of f from a to b.

The area A may also be obtained by means of circumscribed rectan-
gular polygons of the type illustrated in Figure 4.5. In this case, we select
the number v, in each interval [x,_,, x;] such that S (v,) is the maximum
value of f on[x,_,, x;].

Figure 4.5 A circumscribed rectangular polygon

AY
7 y = fx)
fli
a = xpXi X xk{lvk\Xk I : x,=b x
—| e Ax
Let

Acp = area of a circumscribed rectangular polygon.

Using summation notation, we have

Acp =Y fW)Ax,
k=1

where f(v,) is the maximum value of f on [x,_,, x;]. Note that

Y fupar <A <Y f)AR.
k=1 k=1

The limit of Aqp as Ax — 0 is defined as in (4.13). The only change is
that we use

Zf(vk)Ax — A <€,
k=1

since we want this difference to be nonnegative. It can be proved that
the same number A is obtained using either inscribed or circumscribed
rectangles.

The next example illustrates how close the areas of the inscribed and
circumscribed rectangles become if we use a small value for Ax.
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m EXAMPLE®=5 Let f(x) =+/x, and let R be the region under the SOLUTION
a graph of f from 1 to 5. Approximate the area A of R using (a) We model the farmer’s field by graphing the function f(x) = 16 — x?
AY and considering the area of the region under the graph from O to 3 on the

x-axis, which is the side of the field measured in units of % km. The graph

of f and the inscribed rectangular polygon with Ax = % are sketched
l in Figure 4.7(a) (with different scales on the x- and y-axes). Note that

4.3 Summation Notation and Area

(a) an inscribed rectangular polygon with Ax = 0.1
(b) a circumscribed rectangular polygon with Ax = 0.1 16+ L‘ 16 — x*

iSmO0 IZL(? S'Il'1 1|) igtgrvalzvlstil; Cﬁx :_0.1 1 ;dl / 1(3,_ ;h:v iltl;lter\fl4%1’ 5] ;18 divideil > f is decreasing on [0, 3], and hence the minimum value f(u«,) on the kth
It kAx=14k /1 0 fo = n = no= S wehave o = subinterval occurs at the right-hand endpoint of the subinterval. Since there
r= ’ are six rectangles to consider, the formula for Ay, is
(a) Since f is increasing on the interval [1, 5], we obtain inscribed rect- 6
angles by selecting u, = x,_,, the left-hand endpoint of each subinterval . — Z Fu)Ax
[x,_;, ). Thus, e M
- 1y 1 1 3y .1 1 5y .1 1
k— k=1 - R s > =f3) 3+ fD-3+fF)53+fD-3+fE)-53+f03) 5
we=1+ 10 and f(”k):yl‘L : : 2 230 : 63 1 1,5 1 1,39 1 1
='4—"2‘+15'§+T'§+12-§+7'§+7-§
Using a computational device to sum the 40 terms, we find that the in- AY = % = 36.625.
scribed rectangular polygon has area 16 gy = 16 - 2 Using inscribed rectangles, we find that the area of the field is approxi-
4 /1 mately 36.6 km?.
Ap = 1; \/ L+ 10 (E) ~ 6.72485958283. T (b) The graph of f and the circumscribed rectangular polygon are sketched
B in Figure 4.7(b). Since f is decreasing on [0, 3], the maximum value f(v;)

(b) We obtain circumscribed rectangles over [1, 5] by selecting u, = x,, occurs at the left-hand endpoint of the kth subinterval. Hence,

the right-hand endpoint of each subinterval [x;_,, x, ]. Hence, the area of
the circumscribed rectangular polygon is Acp = Z fv)Ax

Acp = Z J1+ m ( ) ~ 6.84846638058.

Thus, we can conclude that the area A satisfies

=fO- 1+ DI+ rO I+ 3+ @ A+ D)3

=Y

B

39

=16-1+8.14+15- 342 14123+

=32 =41.125.

6.72485958283 < A < 6.84846638058. )
Using circumscribed rectangles, we find that the area of the field is approx-

imately 41.1 km?.
It follows that 36.625 < A < 41.125. In the next example, we prove

For larger values of Ax, there are fewer rectangles, and we may be able Figure 4.8
to compute the areas of the inscribed and circumscribed polygons by hand. Ay that A = 39.
The next example illustrates this approach and also shows that there may 16 v =16 — 22
be a considerable gap between the numbers A;p and Ap. ™~
L EXAMPLE®=7 Referring to Example 6, determine the area of the
EXAMPLE® 6 One side of a farmer’s field is bordered by a straight l (f)a;r)n;:r s field, which is the area of the region under the graph of f from

Figure 4.6 ; R : .
stretch of highway. The opposite side is bordered by a river whose path

- traces a curve that is modeled by the function f(x) = 16 — x2. The farmer SOLUTION The graph of f(x) = 16 — %2 and the inscribed rectan-

l-e——?km—:»l

measures the side of the field along the highway, placing markers at every
% km for a total of 3 km, as shown in Figure 4.6. Approximate the area A
of the field using

(a) an inscribed rectangular polygon with Ax = %

(b) a circumscribed rectangular polygon with Ax = %

=Y

gular polygon in Figure 4.7(a) is resketched in Figure 4.8. If the interval
[0, 3] is divided into n equal subintervals, then the length Ax of each
subinterval is 3/n. Employing the notation used in Figure 4.4, with a = 0
and b = 3, we have

xy =0, x; = Ax, xy, =2Ax, ..., x, =kAx, ..., x, =nAx =3.
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Since Ax = 3/n,
3 3k

X, =kAx =k— = —.
n n

Since f is decreasmg on [0, 3], the number u, in [x;_1» x;] at which f
takes on its minimum value is always the right-hand endpoint x, of the
subinterval; that is, u, = x, = 3k/n. Thus,

3k 3k k>
=1 (2) =10 (2] 162
n n n
and the summation in Definition (4.13) is

n u %2\ 3
Boovse=gl(e-%) ]

k=1 n

SE-3)

where the last equality follows from (ii) of Theorem (4.11). (Note that 3 /n
does not contain the summation variable k.) We next use Theorems (4 11),
(4.10), and (4.12) to obtain

Zf(uk)Ax=§(Z16—%Zk2)
k=1 T \i=1 n" =l
3 9nn+1HR2rn+1)

9 (n+D2n+1)

I’l2

=48 —

To find the area of the region, we let Ax approach 0. Since Ax = 3/n,
we can accomplish this by letting # increase without bound. Although our
discussion of limits involving infinity in Section 1.4 was concerned with
a real variable x, a similar discussion can be given if the variable is an
integer n. Assuming that it is and that we can replace Ax — 0 by n — oo,
we obtain

n

T . 9(m+1)2n+1)
Al;r_r)l(); fu)Ax = lim [48 -3 ; ]
=48— 2.2 =139

Thus the area of the region under the graph of f from 0 to 3 is 39, which
means that the area of the farmer’s field is 39 km?.

The area of a region under the graph of f may also be found by using
circumscribed rectangular polygons. In this case, we select, in each subin-
terval [x,_;, x.], the number v, = (k — 1)(3/n) at which f takes on its
maximum value.

The next example illustrates the use of circumscribed rectangles in
finding an area.

4.3 Summation Notation and Area

375

EXAMPLE®=8 If f(x) = x°, find the area under the graph of f from
Otob forany b > 0.

SOLUTION Subdividing the interval [0, b] into n equal parts (see
Figure 4.9), we obtain a circumscribed rectangular polygon such that
Ax =b/nand x;, =k Ax.

Figure 4.9
Ay
y=x
[
flog)
f S .
Xo X X% | xe 1% x,=b x
| I vk
N
—>{ Axle—

Since f is an increasing function, the maximum value f(v,) in the

interval [x,_;, x,] occurs at the right-hand endpoint—that is,
KA kb _ bk
v, =x, =kAx = =

The sum of the areas of the circumscribed rectangles is

n n bk 3 b n b4

k=1 k=
b* Xn:k3 b [n(n 4 1)]2
- nt — gt 2

bt n’(n+1)°
=g T
where we have used Theorem (4.12)(iii). If we let Ax approach O, then n
increases without bound and the expression involving n approaches 1. It
follows that the area under the graph is

4

n
b
i Ax = —.
Jimg Y f0Ar =7
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The last example shows how we can use knowledge of the area under

4.4 The Deﬁn}te Integral

Exer. 27-32: Let A be the area under the graph of the

e !

(a) inscribed rectangles and (b) circumscribed rectangles.

the graph of f on the interval [0, b] for any b > 0 to find the area under given function f from a to b. Approximate A by dividing 33 f)=2x+3; b=4
the graph for a subinterval of [0, b]. Ea,) 114] 1ntods(1:31;111;tervals of equal length Ax and using 4 f)—8 3% b2
a) App an cp* 0T oh -
_ 7 =3_x -2 b= = 35 =9-x% b=3
Figure 4.10 EXAMPLE=9 1f fx)y= x3, find the area A of the region under the e =3 “ 2 b s 7 :

Ay graph of f from 3 to 2. 28 fx)=x+2; a=—1, b=4, Ax=1 36 f(x) =x% b=>5
1 29 fo)=x+1 a=1, b=3 Axr=] W fR =2+ b=2

SOLUTION The region is sketched in Figure 4.10. If we let |
T A, = area under th hof f fi 1 0 fx)=4—x% a=0, b=2 Ax=3 38 ) =dxtx% b=2
1 [ = a under the graph of f from 0 to 5 @ 31 Fo) = m_ 2=0 b=15 Ax =015 Exer. 39-40: Refer to Example 8. Find the area under
1 and A, = area under the graph of f from 0 to 2, , | ?:; [g; ag}h sifessae i EE e GG e

_ 32 f(x) = a=0 b=3 Ax=03 » b].

1 the area A can be found by subtracting A from A,: B Vi1 39 f(x) = x> 40 fx)=x>+2

=Y

- EXERCISES 4.3

A=A, - A,

In Example 8, we found that the area under the graph of y = x> from 0 to
bis 1b"' Hence, using b = for A, and b =2 for A, yields

2t ! 1
4 4 64 3.98

Exer. 1-8: Evaluate the sum. 15 % n % I % n %
4 4
i 1,2, 3 4
'Z(] +1 22(21 F1) 6 1+24+3 4+ 4
7 = 2 4 6 2n
X X
5 4 |71—7+7_%+ +(_1)n_2_
3 ) ktk—1) 43 k-2k-3)
k=0 k=0 18 1+ +x2+x3+ "
X —_— —_— -
3 273 S

5 Z[1+( )"

7 Z 10
i=1

1000

8 Zz
k=1

4 1
6 ;(—1) (;)

E’ Exer. 19-26: Approximate the sum using a calculator
or a computer. Write a short program or use a built-in
summation procedure in your calculator or CAS.

20 ~k
2
19 — 20 f
Exer. 9-12: Express the sum in terms of n (see Exam- ,; k Z
ple 4). =
| n n 1000 4 50 ¢
‘ 9 ) (K +3k+5) 10 > (3k2 — 2k + 1) 2y Z_z

k=1 k=1

1 Z(k3+2k2—k+4) 12 Z(3k3+k)

k=1 k=1

sin(k/40) cos[—1 + */25)]
23 7 24 i et Sl L IS0
> >

Exer. 13 —-18: Express in summation notation.

I3 14+54+9+13+17

1424+54+8+11+14

40 30
25 Zk“ 26 st
k=1 k=1

Exer. 33 -38: Refer to Examples 7 and 8. Find the area
under the graph of the given function f from 0 to b using

4.4

THE DEFINITE INTEGRAL

Our objective in this section is a careful definition, using Riemann sums,
of the definite integral of a function on a closed interval. We examine
the concept of an integrable function and discuss the relationship between
continuous functions and integrable functions.

‘In Section 4.3, we defined the area under the graph of a function f
from a to b as a limit of the form

n
Ii .
Jim, 2, S0

In our discussion, we restricted f and Ax as follows:

I. The function f is continuous on the closed interval [a, b].

2. f(x) is nonnegative for every x in [a, b].

3. All the subintervals [x, _,, x, ] have the same length Ax.

4. The number w, is chosen such that f(w,) is always the minimum
(or maximum) value of f on [x, |, x;].

There are many applications involving this type of limit in which one or
more of these conditions is not satisfied. Thus it is desirable to allow the
following changes in (1) —(4):

I’ The function f may be discontinuous at some number in [a, b].

2’ f(x) may be negative for some x in [a, b].

3’ The lengths of the subintervals [x,_,, x,] may be different.

4 The number w, may be any number in [x,_;, x.].
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; : . ; ition (4.14), f(w,) is not necessarily a maximum or minimum
: -axi Figure 4.12 In Definition ( X
e g o i g s o, o y e of  on 5,511 vecostnit arsctnee of g 11|
Let us introduce some new terminology and not.ation. A partition P of | T "Wr Wi(.hh Axy as illustra't ed in Figure 4'12’ the rectanglebmay bi-nzltc:;;?r;
a closed interval [a, b] is any decomposition of [a, b] into subintervals of | 7 ) ~ /) scribed nor circumscribed. Moreover, since f gx) may be negatve,
the fi ’ Y P ’ ¢ subintervals o terms of the Riemann sum R, may be negative. Consequently, R p does
e o | not always represent a sum of areas of rectangles. .
[xg, x11: [, %) [ 23], oony [x,_p, %, We may interpret the Riemann sum R in (4.14) geometrically, as fol-
for a positive integer n and numbers x, such that l fwi) lows. For each subinterval [x,_;, x; ], we construct a vertical line segment
N( through the point (w, f(w)). thereby obtaining a collection of rectan-
=Xy <X} <Xy <X3<-+-<x, ;<Xx,=b [ i | — gles. If f(w,) is positive, the rectangle lies above the X-axis, as illust'rated
The length of the kth subinterval [x, ,, x,] will be denoted by Ax, —that ' Yo X1 %2 / wk\ *» % by the lighter rectangles in Figure 4.13, and the product f (W) Ax, is the
is k1> *k k ! X1 Xk area of this rectangle. If f(w,) is negative, then the ref:tangle lies belo?v
| the x-axis, as illustrated by the darker rectangles in Figure 4.13. In this
Axp =X — Xy case, the product f(w,)Ax, is the negative of the area of a Fectangle. It
A typical partition of [a, b] is illustrated in Figure 4.11. The largest of the follows that R, is the sum of the areas of the rectangles thatll'le t2)1blove t{lle
numbers Ax,, Ax,, ..., Ax, is the norm of the partition P and is denoted x-axis and the negatives of the areas of the rectangles that lie below the
oy IPI. X-axis.
Figure 4.11 A partition of [a, b]
Ax;  Ax, Ax, Ax, Ax,
I&<——>-I<—>t<——>: > > Figure 4.13
{ t ; +—t— } 1 +———— =
a = x, X X X3 Xpq1 Xy X, 4 x,=b* Ay
| y = f(x)
EXAMPLE®1 The numbers {1,1.7,2.2,3.3,4.1,4.5,5,6} deter-
mine a partition P of the interval [1, 6]. Find the lengths Axy, Ax,, ..., Ax,

of the subintervals in P and the norm of the partition.

SOLUTION The lengths Ax, of the subintervals are found by sub-
tracting successive numbers in P. Thus,

Wy
f
Xy X
/s [

a=x, x; X ji g { 1 x,=b x

Ax; =0.7, Ax, =05, Ax; =11, Ax, =0.8, ‘ 3{ 15

Axs =04, Axg =0.5, Ax; =1.0. (R
i The norm of P is the largest of these numbers. Hence, (Wi f(W,))

[Pl =Ax; =1.1.
Figure 4.14 "
Ay EXAMPLE=2 Let f(x)=8— %xz, and let P be the partition of
The following concept, named after the nineteenth-century mathemati-

[0, 6] into the five subintervals determined by
cian G. F. B. Riemann (see Mathematicians and Their Times, Chapter 11),

is fundamental to the definition of the definite integral.

xq =0, x, =15, x, =12.5, x, =4.5, x4 =75, x5 =06.

Find the norm of the partition and the Riemann sum R p if
Definition 4.14

w; =1, w, = 2, wy = 3.5, w, =5, ws = 35.5.

.
L1 =t

| = 1 i

Let f be defined on a closed interval [a, b], and let P be a partition

of [a, b]. A Riemann sum of f (or f(x)) for P is any expression T e
R, of the form

SOLUTION The graph of f is sketched in Figure 4.14, where we
have also shown the points that correspond to w, and the rectangles of
lengths | f(w,)| fork =1,2,3, 4, and 5. Thus,

Ax; =15, Axy,= 1, Ax3=2, Axy= 0.5, Axs=1.

|
{ N3 |

Rp=)_ fw)Ax,
k=1

S ] (O (N S |
LI L

where w, isin[x,_,,x,Jandk =1,2,...,n.

1

The norm || P|| of the partition is Ax,, or 2.
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Using Definition (4.14) with n = 5, we have

5
Rp =) f(w)Ax,
k=1

= fw)Ax; + f(wy)Ax, + f(ws)Axs + f(wy)Ax, + fws)Axg
= f(AL5) + f)(D) + f(3.5)(2) + fF(5)(0.5) + £(5.5)(1)

= (7.5)(1.5) + (6)(1) + (1.875)(2) + (—4.5)(0.5) + (=7.125)(1)
= 11.625.

We shall not always specify the number n of subintervals in a partition

P of [a, b]. A Riemann sum (4.14) will then be written
Rp =Y f(w)Ax,
k

and we will assume that terms of the form f (wp)Ax, are to be summed

over all subintervals [x;_;, x; ] of the partition P.
Using the same approach as in Definition (4.13), we next define

lim ) f(w)Ax, = L
k

IPl—0

for a real number L.

Let f be defined on a closed interval [a, b], and let L be a real
number. The statement

I =
nPlﬂIgo; f(wk)A.xk L

means that for every e > 0, there is a § > 0 such that if P is a
partition of [a, b] with || P|| < &, then

< €

3 fw)Ax, ~L
k

for any choice of numbers w; in the subintervals [x, i x ] of P. The
number L is a limit of (Riemann) sums.,

For every é > 0, there are infinitely many partitions P of [a, b] with
I P|l < &. Moreover, for each such partition P, there are infinitely many
ways of choosing the number wy in [x,_,, x,]. Consequently, an infinite
number of different Riemann sums may be associated with each partition
!’. Hovyever, if the limit L exists, then for any € > 0, every Riemann sum
is Wlt?ll.n € units of L, provided a small enough norm is chosen. Although
Definition (4.15) differs from the definition of the limit of a function,
we may use a proof similar to that given for the uniqueness theorem in
Appendix I to show that if the limit L exists, then it is unique.

We next define the definite integral as a limit of a sum, where w, and
Ax; have the same meanings as in Definition (4.15). ¢

T

4.4 The Definite Integral

Definition 4.16

Let f be defined on a closed interval [a, b]. The definite integral of
f from a to b, denoted by fab flx)ydx, is

b
[ rwax=, fim, X Fwx,

provided the limit exists.

If the limit in Definition (4.16) exists, then f is integrable on [a, b],
and we say that the definite integral 1) ab f(x)dx exists. The process of
finding the limit is called evaluating the integral. Note that the value of
a definite integral is a real number, not a family of antiderivatives, as was
the case for indefinite integrals.

The integral sign in Definition (4.16), which may be thought of as an
elongated letter S (the first letter of the word sum), is used to indicate the
connection between definite integrals and Riemann sums. The numbers a
and b are the limits of integration, a being the lower limit and b the
upper limit. In this context, limit refers to the smallest or largest number
in the interval [a, b] and is not related to definitions of limits given earlier
in the text. The expression f (x), which appears to the right of the integral
sign, is the integrand, as it is with indefinite integrals. The differential
symbol dx that follows f (x) may be associated with the increment Ax, of
a Riemann sum of f. This association will be useful in later applications.

EXAMPLE=3 Express the following limit of sums as a definite in-
tegral on the interval [3, 8]:

n
lim 5w + Jw, — 4sinw,)Ax,,
”P”‘*Okzz;( k k ) AX
where w, and Ax, are as in Definition (4.15).
SOLUTION The given limit of sums has the form stated in Defini-

tion (4.16), with
f(x)=5x>+ /x — 4sinx.

Hence the limit can be expressed as the definite integral

8
f (Sx3 + /x —4sinx)dx.
3

Letters other than x may be used in the notation for the definite integral.
If f is integrable on [a, b], then

b b b
f F)dx = f Fs)ds = f Faydr

and so on. For this reason, the letter x in Definition (4.16) is called a
dummy variable.
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Whenever an interval [a, b] is used, we assume that a < b. Conse- all &, has the form
quently, Definition (4.16) does not take into account the cases in which the b n
lower limit of integration is greater than or equal to the upper limit. The J fdx~ L, = Z S _DAx.
definition may be extended to include the case where the lower limit is a k=1

greater than the upper limit, as follows. Similarly, if we let w, = x, for all k, then we obtain a right endpoint

approximation R, ,
Definition 4.17

d e b n
If ¢ > d, then f fx)dx = ~f f(x)dx. f fx)dx ~ R, = ;f(xk)Ax.
c d =

Often one of these endpoint approximations tends to be a lower estimate
(as with inscribed rectangles) for the area under the graph, while the other

Definition (4.17) may be phrased as follows: Interchanging the limits endpoint approximation gives a higher estimate (as with circumscribed
of integration changes the sign of the integral. rectangles).
The case in which the lower and upper limits of integration are equal is The midpoint approximation, which uses the midpoint (x, | + x,)/2
covered by the next definition. | as w, for all &, often gives more accurate approximations. It has the form
|
b n
X, 1 +x
Definition 4.18 f fx)dx =~ M, = Zf (—k %) Ax.
| a k=1

If f(a) exists, then j f(x)dx =0.

= EXAMPLE®4 Use midpoint approximations with n = 10, 20, 40,

. 2
If f is integrable, then the limit in Definition (4.16) exists no matter and 80 to estimate fi cos(x?) dx.

how w, is chosen in the subinterval [x,_,, x, ] and no matter what type of

partition is used (provided the norm of the partition gets small). Thus we SOLUTION Foraregular partition, Ax = (w — 0)/n = m/n, so that
may choose the partition and the w,’s in a computationally or theoretically X, = km/n. Thus,
convenient manner. k—Dr  kn
For numerical approximations, it is convenient to select w, as either X, . +x Tt % kot — o —
the left-hand endpoint x, _,, the right-hand endpoint x,, or the midpoint k—12 L C .2 thm—n = ke = ]ﬂr_ - i_
of every subinterval. For theoretical considerations, we may want to select 2 2n 2n n. 2n
each w, so that f(w,) is the minimum value for f on [x,_,, x;] as with With f(x) = cos(x?), we have
inscribed rectangles for area, or so that f(w,) is the maximum value for f 5
on [x,_;, x;] as with circumscribed rectangles for area. For both numerical ¥ ( =1 T %k + xk) — cos (Iﬁ _ 1) .
and theoretical work, it is convenient to select partitions in which all the 2 n 2n
subintervals [x,_;. x, | are of equal length. Such a partition is called a We use a calculator to compute the desired summations for the midpoint
regular partition. approximations:
If a regular partition of [a, b] contain§ n subintervals, then Ax = )
(b — a)/n. The requirement that || P| — O is equivalent to Ax — 0 or ® 2 N R kr w T
n — oo. For a regular partition, Definition (4.16) takes the form 0 cosx)dx & M, = 1; e W™ n
b n
f fdx = lim 3 f(w)Ax. . M,, = 0.553751825506
a n—00 = M,, = 0.562860413669

If we specialize Definition (4.16) to left-hand endpoints for a regular M,, = 0.564995257214
partition, for example, we have My, = 0.565519579069

b n
f fxydx = lim > f(x,_)Ax.
a n—>00 =1

For an arbitrary partition of the interval [a, b], evaluation of the sum
We can use this result to obtain a numerical approximation to the defi- Yk f (w,)Ax, involves the addition of n terms, each of which is the
nite integral. The left endpoint approximation L, where w, = x;_; for product of two numbers f(w,) and Ax,. Thus we have n additions and
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Figure 4.15
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n multiplications to perform. For a regular partition, Ax = (b — a)/n is
independent of k, and we have

n n b _ b _ n
INUCAISEDD [f(wk) ( - ")] =3 Fay.
k=1 k=1

k=1

In this case, since evaluation of the sum involves n additions but only 1
multiplication, it is more efficient (computationally) to work with a reg-
ular partition than with an arbitrary partition. We shall give more careful
consideration to numerical approximation for definite integrals in Section
4.7.

The following theorem is a first application of the special Riemann
sums. Many other applications will be discussed in Chapter 5.

If f is integrable and f(x) > 0 for every x in [a, b], then the area A
of the region under the graph of f froma to b is

A= Lb flx)dx.

PROOF From the preceding section, we know that the area A is a
limit of sums Zk S ) Ax, where f(u,) is the minimum value of f on
[x;_;, x;]. Since these are Riemann sums, the conclusion follows from
Definition (4.16). ==

Theorem (4.19) is illustrated in Figure 4.15. It is important to keep
in mind that area is merely our first application of the definite integral.

There are many instances where [ ab f(x) dx does not represent the area of
a region. In fact, if f(x) < 0 for some x in [a, b], then the definite integral
may be negative or zero.

If f is continuous and f(x) > 0 on [a, b], then Theorem (4.19) can be
used to evaluate | ab J(x) dx, provided we can find the area of the region
under the graph of f from a to b. This will be true if the graph is a
line or part of a circle, as in the following examples. (We consider more
complicated definite integrals later in this chapter.) When evaluating a
definite integral using this empirical technique, remember that the area of
the region and the value of the integral are numerically equal; that is, if the
area is A square units, the value of the integral is the real number A.

4
EXAMPLE=S Evaluatej (3x +3) dx.
-2

SOLUTION If f(x)= %x+3, then the graph of f is the line
sketched in Figure 4.16. By Theorem (4.19), the value of the integral is
numerically equal to the area of the region under this line from x = —2 to
x = 4. The region is a trapezoid with bases parallel to the y-axis of lengths

Y

4.4 The Definite Integral

Figure 4.17

Theorem 4.20

2 and 5 and altitude on the x-axis of length 6. Using the formula for the
area of a trapezoid, we obtain

4
f (3x +3)dx =12+ 56 =21.
-2

4 o
EXAMPLE®=6 Evaluatej \/16—x2dx.
—4

SOLUTION If f(x) =16 — x?%, then the graph of f is the semi-
circle shown in Figure 4.17. By Theorem (4.19), the value of the integral
is numerically equal to the area of the region under this semicircle from
x = —4tox = 4. Hence,

4
f J16—x2dx = 1. m(@)? = 87.
—4

EXAMPLE®=7 Evaluate
—4 4
(a)f vV 16 — x2dx (b)J y 16 — x% dx
4 4
SOLUTION

(a) Using Definition (4.17) and Example 6, we have

LAA dex = —f: dex = —8m.
(b) By Definition (4.18),
f ’ \/ﬁ dx = 0.

4

The next theorem states that functions that are continuous on closed
intervals are integrable. This fact will play a crucial role in the proof of the
fundamental theorem of calculus in Section 4.6.

If f is continuous on [a, b], then f is integrable on [a, b].

A proof of Theorem (4.20) may be found in texts on advanced calculus.
Definite integrals of discontinuous functions may or may not exist, de-

pending on the types of discontinuities. In particular, functions that have

infinite discontinuities on a closed interval are not integrable on that in-
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Figure 4.18 terval. To illustrate, we consider the piecewise-defined function f with
Nonintegrable discontinuous function domain [0, 2] such that
14 0 ifx=0
_(Wh fw) f =141

— if0<x<?2
x

The graph of f is sketched in Figure 4.18. Note that lim,_ o f(x) = oo.
If M is any (large) positive number, then in the first subinterval [xg, %41
of any partition P of [a, b], we can find that there exists a number w

4 such that f(w;) > M/Ax,, or, equivalently, f (w)Ax; > M. It follows
that there are Riemann sums i f (wy) Ax, that are arbitrarily large, and
hence the limit in Definition (4.16) cannot exist. Thus, f is not integrable.

=
—_
[N

discontinuity in [a, b]. Consequently, if a function f is integrable on
[a, D], then it is bounded on [a, bl—that is, there is a real number M such
that | f(x)| < M for every x in [a, b).

As an illustration of a discontinuous function that is integrable, we
Ay consider the piecewise-defined function f with domain [0, 2] such that

Figure 4.19
Integrable discontinuous function

4 ifx=0
1 f(x)={3 if x

x7 f0<x <2

The graph of f is sketched in Figure 4.19. Note that f has a jump discon-
| tinuity at x = 0. From Example 8 of Section 4.3, the area under the graph
T of y = x% from 0 to 2is 2/4 = 4. Thus, by Theorem (4.19), f02 x3dx = 4.
We can also show that f02 f(x)dx = 4. Hence, f is integrable.

We have shown that a function that is discontinuous on a closed interval
may or may not be integrable. However, by Theorem (4.20), functions that
are continuous on a closed interval are always integrable.

- EXERCISES 4.4

Exer. 1-4: The given numbers determine a partition P of 7 fx)=8—x% P={[—1,-05, 03,08,1}, n=4

an interval. (a) Find the length of each subinterval of P. 1.2, _

(b) Find the norm |[P}| of the partition. 8 f)=8—2x% P=1{0,153,456), Ly
1 {0,1.1,2.6,3.7,4.1,5} 2 {2,3,3.7,4,5.2,6} 9 fx)=x>; P=1{-2,0,1,3,4,6}, n=>3
3 {—3,-2.7,-1,04,09,1) 10 f(x) =.4/x; P=1{1,3,4,9,12, 16}, n=>5

4 {1,1.6,2,3.5, 4} Exer. 11-14: Find the Riemann sum R, for the given

- A similar argument can be given for any function that has an infinite
X

Exer. 5-10: Find the Riemann sum R, for the given
function f on the indicated partition P by choosing on
each subinterval of P (a) the left-hand endpoint, (b) the
right-hand endpoint, and (c) the midpoint.

5 fr)=2x+3 P=1{1,3,4,5}, n=3
6 fx)=3-4x; P={-1,0,2,4,6}, n=4

function f on the indicated interval with a regular
partition P of size n by choosing on each subinterval of P
(a) the left-hand endpoint, (b) the right-hand endpoint,
and (c) the midpoint.

1 fx) =x3 (=2, 6], n=232
12 f(x) = /x; (1, 16], n =30

Exercises 4.4

13 f(x) =x2J/cosx; [0,1], n=25 26
14 f(x) =sin(cosx); [—1, 1], n =40

Exer. 15 -18: Use Definition (4.16) to express each limit
as a definite integral on the given interval [a, b].

n

I5 lim (Guw? — 2w, +35)Ax,; [—1,2]
\|P1|—>0,; kR

n

16 lim r(w? — HAx,; i2,3]
||P||+0,; : k

n

17 lim Zznwk(1+w,§)Axk; [0, 41

1210 &
n 27
I8 lim Y (Juw, +4w)Ax; =4 3]
1210 &=

4
Exer. 19-24: Given J Jxdx = 1, evaluate the integral.
1

1
19 f Jx dx
4

4
20 f A5 ds
1

4 28
21 Jﬁdt
1

4 1
22 f ﬁdx—i—j Vx dx
1 4

4 1
23 f ﬁdx—l—f Vxdx
4 4

4
24 J X dx
4

Exer. 25 —28: Express the area of the region in the figure
as a definite integral.

\ Y 5
25 J_ 29J 6dx
—1
2
31 J (2x + 6) dx
-3

3
33 J' |x — 1] dx
0

3
35 J V9 — x%dx
0
2
31J B+ V4 —x%)dx
-2

Exer. 29 — 38: Evaluate the definite integral by regarding
it as the area under the graph of a function.

3
30 f ddx
2

2
32f (7= 3x)dx
—1
4
34J' | x| dx
-1

a
36 f a® —x%dx, a>0
0

2
38 j (B — V4 —x%)dx
-2




