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CHAPTER 8 Infinite Series

We now have a variety of tests that can be used to investigate a series
for convergence or divergence. Considerable skill is needed to determine
which test is best suited for a particular series. This skill can be obtained by
working many exercises involving different types of series. The following
summary may be helpful in deciding which test to apply; however, some
series cannot be investigated by any of these tests. In those cases, it may
be necessary to use results from advanced mathematics courses.

Series

| Convergence or divergence Comments
Diverges if lim, _, a, #0 Inconclusive iflim,_ __a, =0

2.4

> _(~D'a,

a, >0

2.4

Useful for comparison tests if the

nth term a,, of a series is similar
n—1

(i) Converges with sum § =
(ii) Diverges if |r| > 1

iflr|<l
-7

toar

Useful for comparison tests if the
nth term a,, of a series is similar
[ tol/n?

(i) Converges if p > 1
(ii) Divergesif p < 1

The function f obtained from
a, = f(n) must be continuous,
positive, decreasing, and readily
integrable.

o0
(i) Converges if f f(x) dx converges
1
o0
(>ii) Diverges if f f(x)dx diverges
1

The comparison series ) b, is
often a geometric series or a
p-series. To find b, in (iii),
consider only the terms of g, that
have the greatest effect on the
magnitude.

@) If ) b, converges and a, < b, for

n— "n
every n, then ) a, converges.

(i) If 3 b, diverges and a, > b, for
every n, then ) a, diverges.

(iii) If lim,_, _(a, /b,) = c for some
positive real number c, then
both series converge or both diverge.

If lim Inconclusive if L = 1

n—>o0
6)] convergrel:s (absolutely) if L < 1
(ii) diverges if L > 1 (or oo)

= L (or 00), the series

|
a

Useful if a, involves factorials
or nth powers

If a, > O for every n, the absolute

value sign may be disregarded.

If lim J an| = L (or 00), the series Inconclusive if L =1

n—->oo

(i) converges (absolutely) if L < 1
(ii) diverges if L > 1 (or co)

Useful if a, involves nth powers

If @, > 0 for every n, the absolute

value sign may be disregarded.
Converges if a; > a; | for every k and Applicable only to an alternating
lim,  a,=0 series

Useful for series that contain
both positive and negative terms

‘ If 3" |a,| converges, then ¥ a, converges.

8.6 Power Series
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Exer. 1-4: Determine whether the series (a) satisfies
conditions (i) and (ii) of the alternating series test (8.30)
and (b) converges or diverges.

1 =" - 2 (=D 'a5"
n=1 n“+17 n=1
&) eZn_,’_
42 (-1
n=1

1
"1
Exer. 5-32: Determine whether the series is absolutely
convergent, conditionally convergent, or divergent.

> 1 s 1
5 (_1)"—14 6 (_1)"—1_
,; V2n+1 n; n?/3

3 D™
n=1

4

o0 1 o0 n
7 (_l)n-l-li 8 (_1)n+1

,; In(n + 1) ; n?+4

o n i Inn
9 - — _pr—=

Z( ) Inn 10 Z( b n

n=2 n=1

o0} 5 [o ¢]
Sy (= 12 Y (=1)yte™

,; n+1 ,;

o0 n [e¢]

(—10) n!

13 )" 14y —

2 T

00 2 00 .

3

15 Z(_l)" n+ S 16 ZM

n=1 @n —35) miVnd +4

> n e (n+ 1)2
17 ) (-1 18 ) (-1

X cos imn . Inn
19 6 20 ) (-1)"

; n? ; (1.5)"

>0 1 s arctan n
21 (—1)"*n sin — 22 (="

00 1 o0 21/n
23y (=)' ———— 24 Y (—1)

nX:; n+/Inn ;( ) n!

o0 nn o0 (I’l2+ l)n
5y — 26y — " 7
Lo e
= 1+4" = nt
27,Z(~1)”1+3n 28 Z(—l)”e—"
n=1 n=1
& cosTn X1 . 2n—Dax
29 —1)" 30 Y Zsin 27
Z( ) - Zn sin :
n=1 n=1
31 i(—l)’u?l2 2 i(—nnln—”
n=1 (n—4"+5 n=1 ‘3/’7

Exer. 33 —38: Approximate the sum of each series to three
decimal places.

> 1
33 Y
r;)( ) n!

. 1 0 1
n-1 n—1
35 ) (-1 = 36 ) ()
n=1 n=1 n
00
n+1 o 1 /1\"
37 —n" in iy 2
Yot sy e (5)
Exer. 39-42: Use Theorem (8.31) to find a positive

integer n such that S, approximates the sum of the series
to four decimal places.

> 1 a 1
39 ) (D' 40 ) (—1)'—

a1 Z(—l)”nin 2y 1y
n=1 n=1

nd+1
Exer. 43 —44: Show that the alternating series converges
for every positive integer k.

0 k )
(Inn) 1
a3 Y -1y = 44 Y (-1 —=
45 If 3 a, and ) b, are both convergent series, is ) a,b,

convergent? Explain.

46 If } a, and )b, are both divergent series, is }_a,b,
divergent? Explain.

= 1
_1\n+1
34 ;)( D™ s

8.6 POWER SERIES

U008 B The most important reason for developing the theory in the previous sec-

tions is to represent functions as power series—that is, as series whose
terms contain powers of a variable x. To illustrate, if we use the formula




748

Definition 8.36

CHAPTER 8 Infinite Series

S = a/(1 — r) for the sum of a geometric series (see Theorem (8.15)(1)),
we obtain

1
T+x4+x2+ 43"+ = ,
1—x

provided |x| < 1. If we let f(x) = 1/(1 — x) with |x| < 1, then
fE) =l+x+x+-+x"+--.

We say that f(x) is represented by this power series. To find a function
value f(c), we can let x = ¢ and find the sum of a series. For example,

1—1+1+12+ +1n+ 1
A3)=1r321\3 2 T

Later we shall apply other techniques to express many different types of

functions as series.
The following definition may be considered as a generalization of the
notion of a polynomial to an infinite series.

Let x be a variable. A power series in x is a series of the form

20
Zanx" =a0+alx+a2x2+...+anx"+
n=0

where each g, is a real number.

If a number c is substituted for x in the power series ) .- a,x", we

obtain
X0

Zanc" =a0+alc—|—a2c2+---—|—ancn +oee

n=0
This series of constant terms may then be tested for convergence or diver-
gence. To simplify the nth term, we assume that x% =1, evenif x = 0. The
main objective of this section is to determine all values of x for which a
power series converges. Every power series in x converges if x = 0, since

ay +a;(0) + a0 + - +a,(0)" + - =a,.

To find other values of x that produce convergent series, we often use the
ratio test for absolute convergence (8.35), as illustrated in the following
examples.

EXAMPLE =1 Find all values of x for which the following power
series is absolutely convergent:

1 2, n
1—|—§x—}—?x _|_...+5_nx"+...

SOLUTION Ifwelet

8.6 Power Series
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then
u 1 n+1 n
lim =L — lim @i_ 5
n—>oo| u, n— 00 g+l nx"
.|+ Dx . n+1 1
= lim |————| = lim |x| = = |x].
n— 00 5n - om0 Sn 5

By the ratio test (8.35), with L = 1|x|, the series is absolutely convergent
if the following equivalent inequalities are true:

x| <1, |x| <5, -5<x<5

The series diverges if £ |x| > F—thatis, if x > 5or x < —5.

If % |x| = 1, the ratio test is inconclusive, and hence the numbers 5 and
—5 require special consideration. Substituting 5 for x in the power series,
we obtain

1+142+3+ - +n+---,

which is divergent, by the nth-term test (8.17), because lim #0.If

. ﬂ—)OOan
we let x = —5, we obtain
1=142-3+--+(=D'n+---,

which is also divergent, by the nth-term test. Consequently, the power
series is absolutely convergent for every x in the open interval (-5, 5) and
diverges elsewhere.

EXAMPLE®=2 Find all vatues of x for which the following power
series is absolutely convergent:

R R ST

SOLUTION  We shall employ the same technique as was used in
Example 1. If we let

1 x"
u, = —x" = —,
" nl n!
then
n+1
lim | 2ol — BEI 1)
nsoo| y | nsoo|(m+ D! x"
n
. ) 1
= lim = lim |x| = 0.
n—>oo|pn +1 n—>oopn + 1

The limit O is less than 1 for every value of x, and hence, from the ratio test
(8.35), the power series is absolutely convergent for every real number x.
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EXAMPLE®=3 Find all values of x for which Y n!x" is convergent.

SOLUTION Letunzn!x”.lfxgéO,then

(n+ D1x"H!
nlx"

un—i—l
Uy,

= lim

n—oo

lim
n—>0o0

= lim |[(n+ x| = lim (n+ 1) |x| = o0
n— 00 n— 00

and, by the ratio test (8.35), the series diverges. Hence, the power series is
convergent only if x = 0.

Theorem (8.38) will show that the solutions of the preceding examples
are typical in the sense that if a power series converges for nonzero values
of x, then either it is absolutely convergent for every real number or it is
absolutely convergent throughout some open interval (—r, r) and diverges
outside of the closed interval [—r, r]. The proof of this fact depends on the

next theorem.

() If a power series 3 a, x" converges for a nonzero number c, then
it is absolutely convergent whenever |x| < |c|.

@i) If a power series ) a,x" diverges for a nonzero number 4, then
it diverges whenever |x| > |d|.

PROOF If > a,c" converges and ¢ # 0, then, by Theorem (8.16),
lim a_c¢" = 0. Using Definition (8.3) with € = 1, we know that there

n—>oq . n A
is a positive integer N such that

la,c"| <1 whenever n > N.

Consequently,

n_.n
ancx

n
’

la,x"| = = |a "| f‘n<‘£
n Cn n c ¢

provided n > N. If |x| < |c|, then |x/c| < 1 and ) [x/c|" is a conver-
gent geometric series. Hence, by the basic comparison test (8.20), the
series obtained by deleting the first N terms of 3 |a,x" | is convergent. It
follows that the series Y |a,x"| is also convergent, which proves (i). .
To prove (ii), suppose the series diverges for x = d # 0. If the series
converges for some number ¢, with |¢,| > |d|, then, by (1), it converges
whenever |x| < |c,|. In particular, the series converges for x = d, contrary
to our supposition. Hence, the series diverges whenever |x| > |d|. ==

8.6 Power Series

Theorem 8.38

Figure 8.12
Y a,x" with radius of convergence r
Absolutely
Divergent convergent Divergent
=) -
—r 0 r X
Figure 8.13
Intervals of convergence
{ | A -
] T / }
~-r 0 r
{ | ] .
A3 i d kol
x
—-r 0 r
L | \ -
| 5 I = =
x
-r 0 r
£ f ] >
x
—r 0 ¥
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‘We may now prove the following.

If 3" a,x" is a power series, then exactly one of the following is true:

() The series converges only if x = 0.
(i) The series is absolutely convergent for every x.

(iii) There is a number r > 0 such that the series is absolutely
convergent if x is in the open interval (—7, r) and divergent
ifx <—rorx>r.

PROOF If neither (i) nor (ii) is true, then there exist nonzero numbers
¢ and d such that the series converges if x = ¢ and diverges if x = d.
Let S denote the set of all real numbers for which the series is absolutely
convergent. By Theorem (8.37), the series diverges if |x| > |d|, and hence
every number in S is less than |d|. By the completeness property (8.10), S
has a least upper bound r. It follows that the series is absolutely convergent
if |x| < r and diverges if |x| > r. ==

Case (iii) of Theorem (8.38) is illustrated graphically in Figure 8.12.
The number r is called the radius of convergence of the series. Either
convergence or divergence may occur at —r or r, depending on the nature
of the series.

The totality of numbers for which a power series converges is called its
interval of convergence. If the radius of convergence r is positive, then
the interval of convergence is one of the following (see Figure 8.13):

[_r’ r)’

To determine which of these intervals occurs, we must conduct separate
investigations for the numbers x = r and x = —r.

In (i) or (ii) of Theorem (8.38), the radius of convergence is denoted
by 0 or oo, respectively. In Example 1, the interval of the convergence is
(-5, 5) and the radius of convergence is 5. In Example 2, the interval of
convergence is (—o0, 00) and we write ¥ = 00. In Example 3, r = 0. The
next example illustrates the case of a half-open interval of convergence.

(=r,r), (—rr], [—r, 7]

EXAMPLE®=4
(a) Find the interval of convergence of the power series
o0
1
Z —x".
n=1 ﬁ

(b) Use a graphing utility to plot the polynomials

k
1
px)=) —x"
¢ ,;ﬁ
fork =3,4,5, and 6.




752

Figure 8.14

—-15<x<15 -3<y<l6
T y=ps®

14 +
12+
10+
il

[
4 +
2

Pslx)
= pals)
}’ P3x)

8N

f:ﬁﬁ-js
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SOLUTION

(a) Note that the coefficient of x% is 0, and the summation begins with
n=1.Weletu, = x"//n and consider

n+1
im et ] = |2 VR
n—oo| u, n>o0 | /n+ 1 x" n—>oo /n +1

= lim / |x = D) |x]| = |x|-
n—>oQ0

It follows from the ratio test (8.35) that the power series is absolutely con-
vergent if |x| < 1—that is, if x is in the open interval (-1, 1). The series
diverges if x > 1 or x < —1. The numbers 1 and —1 must be investigated
separately by substitution in the power series.
If we substitute x = 1, we obtain
1
+—4+-,

SRS

which is a divergent p-series, with p = % If we substitute x = —1, we

obtain
E _1_(_1)”—_1+L_L+..._|_(_1)i+...
n=1 \/—_” B \/_2 ﬁ \/—” ’

which converges, by the alternating series test. Thus, the power series
converges if —1 <x < 1.

(b) Using a computer, we plot the polynomials

k
Pk(x) = ,; ﬁx

for k = 3, 4, 5, and 6 on the same coordinate axes. These polynomials
are defined for all real numbers, and we expect the graphs to approximate
the power series for x in the interval of convergence. Figure 8.14 shows
the convergence of the graphs on the interval —1 < x < 1, where each
successive polynomial provides a better approximation to the power series
because it contains an additional term of the series.

We next consider the following more general types of power series.

Let ¢ be a real number and x a variable. A power seriesinx —cisa
series of the form
o0
Zan(x -y
n=0
=day+a;(x —c)+a,(x — )+ cta x =) 4,

where each g, is a real number.

8.6 Power Series

Figure 8.15
Y a,(x — ¢)" with radius of
convergence r

Absolutely
Divergent convergent Divergent
{ } } =
c—r c c+r *
Figure 8.16
Interval of convergence of
—n" x —3)*
2D T 1€ )
| | W i | [
T T N T | o
0 1 2 3 4 *
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To simplify the nth term in (8.39), we assume that (x — c)® = 1 even
if x = ¢. As in the proof of Theorem (8.38), but with x replaced by x — ¢,
exactly one of the following cases is true:

(i) The series converges only if x — ¢ = O—that is, if x = c.
(ii) The series is absolutely convergent for every x.

(i) There is a number r > 0 such that the series is absolutely conver-
gent if x is in the open interval (¢ — r, ¢ + r) and divergentif x < c —r
orx >c—+r.

Case (iii) is illustrated in Figure 8.15. The endpoints ¢ — r and ¢ + r of
the interval must be investigated separately. As before, the totality of num-
bers for which the series converges is called the interval of convergence,
and r is the radius of convergence.

EXAMPLE®=5 Find the interval of convergence of the series
1 1 1
1——(x=3)4+=(x=3* 4+ (=D" —3)"
2(36 )—|—3(x Y+t ( )n+1(x )+
SOLUTION Ifwelet
(x =3
= (==
u, = (=D Tl
u n+1
then T L e G e A L
nsoo| w, | nmoo| nt2 (x—3)
= lim (x—3)\
n—o0
1
n—oo \ 1 +
=D)|x—=3|=|x-3|.

By the ratio test (8.35), the series is absolutely convergent if |x — 3| < 1;
that is, if,
—1l<x—-3<1, or 2<x<4.

Thus, the series is absolutely convergent for every x in the open
interval (2,-4). The series diverges if x < 2 or x > 4. The numbers 2 and
4 each require separate investigation.

If we substitute x = 4 in the series, we obtain

1 1 . 1
1 2 + 3 (=1 T +-
which converges, by the alternating series test (8.30). Substituting x = 2
gives us

I S
2 3 n+1

which is the divergent harmonic series. Hence, the interval of convergence
is (2, 4], as illustrated in Figure 8.16.

_f_...,




- EXERCISES 8.6

Exer. 1-30: Find the interval of convergence of the power E]

series.
21

1 Z_:n +4x"

> 1
n—1 n
5 nE 1(—1) ——\/_x

n! n .
13 Z—loonx
e’

2n+1
15 _—
2

X0 2n

17y x
= !
32}1
9 352
n=0

oo 2

n
21 Zﬁ(x +4)"

n=0

7O = 2

(e8] " n
n S

o0
1
25 Y :,," (x—e)

n=1

o 1
2 -1 2x — D"
7;( V' @x=1)

- n3n n
29 Z(—n m(x—4)

n=1

x —3)"

1
1yl
162 0"
o0 lon
I8 —x"
n!
n=»
201
n
20 4 nS"(x_s)
n=1
201
22 +3)"
r;)Zn+l(x )

o0 n|
24 ) (-1 5 +2)"
n=1 n

2
26 P (x— D"
. 1
28 ———Gx+ 4"
,;«/3n+4( )

30 Z( 1)"
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Exer. 31-34: (a) Find the radius of convergence of the
power series. (b) Graph, on the same coordinate axes,
the polynomials

k
pp(x) = Zanx"
n=1

associated with the power series for k = 3, 4, and 5.

00 n1.3.5.‘....(2,,_1)n
3 ’;(_1) 3.6.9. ... -(3n)

= 2:4-6-----(2n) "
32 ;4.7.10- Gt
oonn = (n
- x — 5"
33 ;n!x 342 10,, )

Exer. 35 - 36: Find the radius of convergence of the power
series for positive integers ¢ and d.

+o)! " (cn)‘
* Zn'<n+d)' e Z( D"

37 Bessel functions are useful in the analysis of problems
that involve oscillations. If « is a positive integer, the
Bessel function J,(x) of the first kind of order a is
defined by the power series

o0 n
-1 x\ 2n+a
o ) M
— nl(n+a)! \2
n=0
Show that this power series is convergent for every real

number.

38 Refer to Exercise 37. The sixth-degree polynomial

X2 x4 x6
1——+=—
4 64 2304

is sometimes used to approximate the Bessel function
Jo(x) of the first kind of order zero for 0 < x < 1. Show
that the error E involved in this approximation is less
than 0.00001.

E| Exer. 39-40: Refer to Exercise 37. For the given «, find

the first four terms of the series for J (x) and graph J, on
the given interval.

39 a=0; [0, 2] 40 x=1; [0, 4]
41 If lim n+1/an| =k and k #0, prove that the

n—-o0 |a g .
radius of convergence of >_a,x" is 1/ k.

755
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42 If im, _, ./ anl =k and k # 0, prove that the radius 45 If the interval of convergence of Y a x" is (—r, rl,
prove that the series is conditionally convergent at 7.

of convergence of ) a, x" is 1/k.

I Z a,x" has radius of convergence r, prove that 46 .If >_a,x" is absolutely convergent at one endpoint of its
interval of convergence, prove that it is also absolutely

2n :
> a,x" has radius of convergence VT convergent at the other endpoint.

44 If " a, is absolutely convergent, prove that ) a, x"
absolutely convergent for every x in the interval [—1, 1].

8.7  POWER SERIES REPRESENTATIONS OF FUNCTIONS

o)

UL A power series Y a,x" determines a function f whose domain is the in-
terval of convergence of the series. Specifically, for each x in this interval,
we let f(x) equal the sum of the series—that is,

f(x)=ao+a1x+a2x2+---+anx"+....

If a function f is defined in this way, we say that ) a, x" is a power
series representation for f(x) (or of f(x)). We also use the phrase f is
represented by the power series.

Numerical computations using power series provide the basis for the
design of calculators and the construction of mathematical tables. In ad-
dition to this use, power series representations for functions have far-
reaching consequences in advanced mathematics and applications. The
proof of Theorem (8.41) will show that ¢* may be represented as follows:

2 x3 n

X X
—1+x+—+—+ =t
3t n!

We can thus consider e as a series instead of as the inverse of the natural
logarithmic function. As we shall see, algebraic manipulations, differenti-
ation, and integration can be performed by using the series for ¢”, instead
of previous methods. The same will be true for trigonometric, inverse
trigonometric, logarithmic, and hyperbolic functions. In the next example,
we consider a power series representation for a simple algebraic function.

EXAMPLE=1 Find a function f that is represented by the power
series

l—x+x2—x+ (=D + .

SOLUTION If |x| < 1, then, by Theorem (8.15)(1), the given geo-
metric series converges and has the sum

a v_l 1

1—r 1—(—x) I1+x

S =
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Hence, we may write
1
14+x

This result is a power series representation for f(x) =1 /(1 4+ x) on the
interval (—1, 1).

=l—x4+x> -4+ (DN

If a function f is represented by a power series in x, then

f@) =) ax"
n=0

for every x in the interval of convergence of the series. Since a polynomial
in x is a finite sum of terms of the form g, x", it may not be surprising that
f has properties similar to those for polynomial functions. In particular,
in the next theorem (stated without proof), we see that f has a derivative
f’ whose power series representation can be found by differentiating each
term of the series for f. Similarly, definite integrals of f(x) may be ob-
tained by integrating each term of the series ) a,x". In the statement of
the theorem, note that for the nth term anx" of the series, we have

d n n—1 ¥
—(a,x") = na,x and

n+1 xn—i—l
"dt = = .
dx Oa” a"n—i—l o a"n+1

Theorem 8.40 . .
Suppose that a power series »_a,x" has a radius of convergence

r > 0, and let f be defined by

o0
fx) =Zanx” =dy+ayx +a2x2+a3x3+-~-+anx”+~--
n=0

for every x in the interval of convergence. If —r < x < r, then

(i) f’(x) = dy +2a2x + 3a3x2 dzs o +nanxn~1 Moo

o0
:Znanx" !
n=1
x x2 xS X"+1
@) Lf(t)dt=a0x+a1~2—+a2—5—+---+ann+1+~~-
= = a, xn+1
n=0n+1

The series obtained by differentiation in (i) or integration in (i1) of
Theorem (8.40) has the same radius of convergence as Zanx”. How-
ever, convergence at the endpoints x = r and x = —r of the interval may
change. As usual, these numbers require separate investigation.

8.7 Power Series Representations of Functions
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As a corollary of Theorem (8.40)(i), a function that is represented by
a power series in an interval (—r, r) is continuous throughout (—r, r)
(see Theorem (2.12)). Similar results are true for functions represented by
power series of the form " a, (x — ¢)".

EXAMPLE®=2 Use a power series representation for 1/(1 + x) to
obtain a power series representation for

1

SOLUTION From Example 1,
1

14x

If we differentiate each term of this series, then, by Theorem (8.40)(i),

S +2x —3x% — o+ (=)' 4

1 + x)?

By Theorem (8.20)(ii), we may multiply both sides by —1, obtaining

1 .
(1 + x)?

if x| < L.

=l—x+x" =X+ F ()" 4 0 x| <L

=1-2x43x24+ - (=D ax"" 4 ...

EXAMPLE®=3 Find a power series representation for In(1 + x) if
|x| < 1.

SOLUTION If x| < 1, then

1
ln(l—}—x):J —dt
0 141t

X
=f (1=t 4 12— (1) + - e,
0

where the last equality follows from Example 1. By Theorem (8.40)(ii),
we may integrate each term of the series as follows:

X X X X
ln(l—f—x):f ldt—f tdt+f tzdt—----i-(—l)"f ttdr+ -

0 0 0 0
_HX [fz]x . [’T T 1)"[”+1 T+
— = =] =--- _
0 2 o 3 o n+1 0
Hence,
2 3 n+l
x X
In(l4+x)=x—"—+"=—---+(=1)"
( ) 2 3 ( )n+1+
if x| < L.
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EXAMPLE =4 Use the results of Example 3 to calculate In(1.1) to
five decimal places.

SOLUTION In Example 3, we found a series representation for
In(1 + x) if |x| < 1. Substituting 0.1 for x in that series gives us the
alternating series
0.)2  (0.D* (©O.D* (©.1)°
O17 , O ©On' On'

2 3 4 5
~ 0.1 — 0.005 + 0.000333 — 0.000025 + 0.000002 — - - -

In(1.1) = 0.1 -

If we sum the first four terms on the right and round off to five decimal
places, we obtain

In(1.1) ~ 0.09531.

By Theorem (8.31), the error E is less than or equal to the absolute value
0.000002 of the fifth term of the series, and therefore the number 0.09531
is accurate to five decimal places.

EXAMPLE =5 Find a power series representation for arctan x.

SOLUTION  We first observe that

|
arctanx:f 3
o 141¢

Next, we note that if |#| < 1, then, by Theorem (8.15)(i) with a = 1 and
2
r=—t,

dr.

1
1+122

=1—2 4+ (=D

By Theorem (8.40)(ii), we may integrate each term of the series from 0to

x to obtain
t 3 .\ e . 2n+1
areanr =xr= 5T i

+...’

provided |x| < 1. It can be proved that this series representation is also
valid if x| = 1.

In the next theorem, we find a power series representation for e*.

If x is any real number,
2 x3 x"

P O R S
21 T3 nl

8.7 Power Series Representations of Functions 759

PRO 0 F We considered the indicated power series in Example 2 of the
preceding section and found that it is absolutely convergent for every real
number x. If we let f denote the function represented by the series, then

fm=2§.
n=0 """

Applying Theorem (8.40)(i) gives us

OOnxn—l o0 xn—l
flx) = =
; n! r;(n—l)!
2 3 n
X X X
=1 T T T
+X+2!+3!+ +n!+ i

That is,

f'(x) = f(x) forevery x.
If, in Theorem (6.33), we let y = f(¢),t = x, and ¢ = 1, we obtain

f(x) = f(0)e".
However,

2 n

0
fO=14+0+—4+-+—+-.-=1
2! n!

and hence

fx)=¢€",

which is what we wished to prove. =

Note that Theorem (8.41) allows us to express the number e as the sum
of a convergent positive-term series, namely,

e=1+1+ ! + ! !
We can use a power series representation for a function to obtain rep-
resentations for other related functions by making algebraic substitutions.
Thus, by Theorem (8.41), if x is any real number,
2 x3 X"

P TP NI A
21" 3 w

To obtain a power series representation for e ™

—x for x:

, we need only substitute

a2 N3 _on
e R G M )

a4
e + (=x) + o 3l oy

4o,

or
2 3 n
I __x_ L "x_
e X+ 3!+ +(—1) P
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By Theorem (8.20)(i), we may add corresponding terms of the series for
e* and e~*, obtaining
2 4 2n
X X
Pre =242 —+2-— 2.
e +e T2 o
(Note that odd powers of x cancel.) We can now find a power series for
coshx = %(ex + e7*) by multiplying each term of the last series by % (see
Theorem (8.20)(ii)). Thus,

R x2 x4 x2n
coshx=ltotatTam "

We could find a power series representation for sinhx either by using
%(ex — e~ *) or by differentiating each term of the series for coshx. It is
left as an exercise to show that

- N x3 N x5 . x2n+1 N
sinhx =x+ — + — —_—
3t 5t Qn+ 1!

EXAMPLE® 6 Find a power series representation for xe %,

SOLUTION First we substitute —2x for x in Theorem (8.41):
-2x)? —2x)3 —2x)"
(20" (20° L (20)

8.7 Power Series Representations of Functions

_2x - — DR
=14 (—2x)+ o 3 pr +---,
2 3 X"
or —1—2x+(22) (23)— e (D)
n!
Multiplying both sides by x gives us
3 4 xn+1
xe 2 = x — 2x +(22) (23)— e (Dt
which may be written as
n+1
xe” Z( 2)"
n=0
EXAMPLE®=7?
(a) If g is the function defined by
t -—
ift #0
sn={ "7
1 ift=0

show that g is continuous at 0.
(b) Find a power series representation y .., a,x" for the function repre-
sented by [ g(1) dr.

761

(c) Plot the graphs of the polynomials p, (x) = Z _; a,x" associated with
the power series in part (a) for k = 3,4, and 5.

SOLUTION

(a) To show that g is continuous at 0, we need to show that lim, , g(¢) =
g(0) = 1. Since lim,_, (¢’ — 1) =lim,  ;# = 0, we have the indetermi-
nate form 0/0. By ’Hépital’s rule,

ef—1 . -1 . & 1
=lm-——-—= — =
=0t =0 (1) =0 1 1

(b) From Theorem (8.41), we have

. 2 8 "
f—l=i++m+4 Fo
Dividing through by ¢ gives
e —1 t 7 !
—1+ + +—+---+ +e
t 3! n!

Since the power series in this equation has value 1 when ¢ = 0 and g(0) =
1, we have
28 tn—l

t
g =1+ 40+ 5+ +

forall z.
Applying Theorem (8.40)(ii) yields

X x t2 x t3 x P x
J;) g(t)dt = [Z]O + [ﬁ]o + [W]O + -+ l:n 'n!]o +

P S .4
I YO TR Y n-n

Thus, the power series representation of fo g(t)dr is ¥ 2 a,x", where
=1/(n-n!).
(c) The polynomials are

2 3

X
e N TR T
x2 x3 x4
PA) =Xt ot s s T
2 3 4 5

X X X

X
TR Y T

Ps(x) =x+

Using a graphing utility and an x-range restricted to the interval [—4, 4],
we plot the graphs of each polynomial on the same coordinate axes to
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0.1 0.1
_[, 0.1_ t3 N t5
Lo 3 10

0 0

0.1 (0.1
3 T 10

=0.1-

If we use the first two terms to approximate the sum of this convergent
alternating series, then, by Theorem (8.31), the error is less than the third
term (0.1)°/10 = 0.000001. Hence,

f‘“ o gy 0.1 0001
0 ' 3

~ (0.09967,

which is accurate to five decimal places.

The method used in Example 8 is accurate because the numbers in the
interval [0, 0.1] are close to 0. The method would be much less accurate
(for the same number of terms of the series) if, for example, the limits of
integration were 3 and 3.1. Recall also Example 5 of Section 7.7.

Thus far, the methods we have used to obtain power series representa-
tions of functions are indirect in the sense that we started with known series
and then differentiated or integrated. In the next section, we shall discuss
a direct method that can be used to find power series representations for a
large variety of functions.

Il (a) Prove that

ooxn

In(l-x)=-Y = if |x|<Ll
n=1 n
(b) Use the series in part (a) to approximate In(1.2) to
three decimal places, and compare the approxima-

tion with that obtained using a calculator.

E 12 Use the first three terms of the series in Exercise 11(a)
to approximate In(0.9), and compare the approximation
with that obtained using a calculator.

13 Use Example 5 to prove that
1 & 1
s~ AL FaD
\/5 n=0" @n+1)
E 14 (a) Use the first five terms of the series in Example 5 to
approximate /4.
(b) Estimate the error in the approximation obtained in
part (a).

Exer. 15-26: Use a power series representation obtained
in this section to find a power series representation for

f(x). :
15 f(x) = xe>* 16 f(x) = x%e®)
17 f(x) =x3e™* 18 f(x)=xe *

Figure 8.17 obtain the results shown in Figure 8.17. For —2 < x < 2, we see that the - .
—4<x<4,-5<y<18 graphs converge to approximate the function represented by the polynomi- EXERCISES 8.7
als in the power series. '
1y5 e y=p 5(X)
; = ;) ‘;;; Exer. 1-4: (a) Find a power series representation for 19 f(x) =x*In(1 +x?); |x] <1
. PES = P3t .
! o1 fx). (b) I.Jse The(/)rem (8.4)?) to find power series 20 f(x)=xIn(l —x); |x| <1
¥ = ps(x) . _x? representations for f'(x) and fo f®at.
/y —po) oT EXAMPLE=8 Approximate A e dx. X 21 f(x) = arctan /X x| <1
- ) 1
4:.1./.{’ : ! J I f) = 1—3x’ Xl <3 22 f(x) = x* arctan(x*); x| <1
= i ? x| SOLUTION We cannot use the fundamental theorem of calculus to | ) s
evaluate the integral, because we do not know of an antiderivative for e ™. 2 f) = ——; |x|<}i 23 f(x) = sinh(—5x) 24 f(x) = sinh(x")
Although we could use the trapezoidal rule (4.37) or Simpson’s rule (4.38), 1+ 5x 25 f(x) = x* cosh(x?) 26 f(x) = cosh(—2x)
the following method is simpler and, in addition, produces a high degree _ 2
gr p > P 2. g1 ¢eg 3 f)= 1% x| <3 E| Exer. 27-32: Use an infinite series to approximate the
of accuracy using a sum of only two terms. Letting x = —¢“ in Theorem +/x inteeral to four decimal places
(8.41), we obtain 4 f(x)= _ x| < 3 g1 3 ’ . 1/2
S 2 ! / 2
4 12 27 ¢ dx 28 arctan x“ dx
2 _q1_pyt (=1)% ) o . o 1+x 0
e = + TR Gt Exer. 5-10: Find a power series in x that has the given
) % sum, and specify the radius of convergence. (Hint: Use 29 0.2 arctan x e 30 J’ 02 43 0
for every t. Applying Theorem (8.40)(ii) yields (8.15), (8.40), or long division, as necessary.) o1 X o 141
2
0.1 0.1 5 6 2> 7 % Y o 05 4
f eax2 dx zf e—t2 dt 1= %2 1— 4 23y 3i X e dx 32 X e * dx
0 0 3 2 2
s 9 +1 1o > = 3 33 Use the power series representation for (1 — x2)™! to
4—x3 x—1 x—=2 find a power series representation for 2x(1 — )72,

34 Use the method of Example 3 to find a power series
representation for In(3 + 2x).

35 Refer to Exercise 37 of Section 8.6. Use Theorem (8.40)
to prove the following.

(a) If J,(x) and J,(x) are Bessel functions of the first
kind of orders 0 and 1, respectively, then

d
E(J()(x)) = _J1 (x).

(b) If J,(x) and J;(x) are Bessel functions of the first
kind of orders 2 and 3, respectively, then

fx312(x) dx = x3J3(x) + C.

36 Light is absorbed by rods and cones in the retina
of the eye. The number of photons absoibed by
a photoreceptor during a given flash of light is
governed by the Poisson distribution. More precisely,
the probability p, that a photoreceptor absorbs. exactly
n photons is given by the formula p, = e~ A"/ n! for
some X > 0.

(a) Show that ) oo p, = 1.

(b) Sight usually occurs when two or more photons
are absorbed by a photoreceptor. Show that the
probability that this will occuris 1 — e (% 4 1).



764

Exer. 37-38: Find a power series representation for f(x).
(If the integrand is denoted by g(¢), assume that the value
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p(x) = Z’;:l a,x" associated with the power series in
part (a) for k = 3, 4, and 5.

8.8 Maclaurin and Taylor Series 765

EI Exer. 39-42: (a) Find a power series to represent

. . X x
of g(0) is lim,__ , g(£).) 39 f L 40 f Lt
. o 1+1 0 (1+1)
37 f(x) rm(l—t) dr 38 f(x) fxmntdz e ¥
= X) = — - 2
fw= ) o ¢ 41 J te dt 42 f e dr
0 0

the function. (b) Plot the graphs of the polynomials

8.8  MACLAURIN AND TAYLOR SERIES

In the preceding section, we considered power series representations for
several special functions, including those where f(x) has the form

1
——, In(1+x), arctanx, e*, or coshux,

14+x
provided x is suitably restricted. We now wish to consider the following
two general questions.

Question 1: If a function f has a power series representation
o0 o0

f =) ax" o f@)=) a,x—c)
n=0 n=0

what is the form of @, ?

Question 2: What conditions are sufficient for a function f to have a
power series representation?

Let us begin with question 1. Suppose that

o0
S = Za,,xn =a,+ax +a2x2 +a3x3 ~|—a4x4 + e
n=0
and the radius of convergence of the series is r > 0. By Theorem (8.40)(i),
a power series representation for f'(x) may be obtained by differentiating
each term of the series for f(x). We may then find a series for f”(x) by
differentiating the terms of the series for f’(x). Series for f"(x), f™ (x),
and so on, can be found in similar fashion. Thus,

o0
/() =a; +2a,x +3a;x* +da 0 + - = X:notn)c”_1
n=1
o0
S =2a,+ (B Vasx + 4 -3ax> + - =Y nn — Da,x"
n=2

F70) =G ay+ @3- Dagx+-- =Y nln—1n—a,x"",

n=3

and for every positive integer &,
o0
fP@=>"nn-Dr—-2)--0—k+Dax""
=k

Each series obtained by differentiation has the same radius of convergence
r as the series for f(x). Substituting O for x in each of these series repre-
sentations, we obtain

fO) =ay fO)=a, f'0)=2a, f"0)=(3 2a,,
and for every positive integer k,
[P0 =kk =)k -2)---(Da,.
If we let k = n, then
f™©) =n'a,.

Solving the preceding equations for a,, a;, a,, . . ., we see that
f//(O) ///(O)
ay=f0), a;=f'0). a,= 2 a3=f3.2’

and, in general,

F®(0)
a = .

" n!

We have proved that the power series for f(x) has the form stated in the
next theorem. It is called a Maclaurin series for f(x)—named after the
Scottish mathematician Colin Maclaurin (1698—1746).

Maclaurin Series for f(x) 8.42 . . -
If a function f has a power series representation

A = s

n=0

with radius of convergence r > 0, then f ® (0) exists for every posi-
tive integer k and a, = £™(0)/ n!. Thus,

1" (n)
f(x)zf(0)+f’(0)x+I-§('—0—)-x2+--~+f—;'—(?—)—x”+---.

Employing the type of proof used for (8.42) gives us the next theorem.
If ¢ # 0, we call the series a Taylor series for f(x) at c—named after the
English mathematician Brook Taylor (1685-1731).
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Taylor Series for f(x) 8.43
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If a function f has a power series representation

o0
f@) =3 a0
. n=()
with radius of convergence r > 0, then f®(c) exists for every posi-
tive integer k and a, = f ®(c)/ n!. Thus,
f "( )

fx) = —c) 4

x =)+

f(’”( e
I’l

Note that the special Taylor series with ¢ = 0 is the Maclaurin series
(8.42). If we use the convention f © (¢) = f(c), then the Maclaurin and
Taylor series for f may be written in the following summation forms:

X ) 0 ()
f(x):r;fn'(o)xn and f(x)zzfn'(c)(x_c)n

EXAMPLE =1 By Theorem (8.41), ¢* has the following power series
representation:
1 1 1
e =14+x+ Pt x4 —x"

2! 3! n'
Verify that this is a Maclaurin series.

SOLUTION If f(x) = &, then the nth derivative of f is £ (x) =
¢* and

fPO)y=e"=1 forn=0,1,2,....

Hence, the Maclaurin series (8.42) is

00 (n)
Zf © _Z—x—l+x+—x+

1 n
' _|__Tx +’
n=0

which is the same as the given series.

Theorems (8.42) and (8.43) imply that if a function f is represented
by a power series in x or in x — ¢, then the series must be a Maclaurin or
Taylor series, respectively. However, the theorems do not answer question
2 posed at the beginning of this section: What conditions on a function
guarantee that a power series representation exists? We shall next obtain
such conditions for any series in x — ¢ (including ¢ = 0). Let us begin with
the following definition.

8.8 Maclaurin and Taylor Series

Definition 8.44

Taylor’s Formula with
Remainder 8.45

gt) = fx)— [f(t) + 1)

Let ¢ be a real number, and let f be a function that has n derivatives
atc: £(c), f7(), ..., f®(c). The nth-degree Taylor polynomial
P (x)of fatcis

P, (x) = fle) + f(e)

%)
n!

f”( )iy

C‘)Z

R

(x —c)".

In summation notation,

~ )
P,(x) = g = ok,

If ¢ = 01in (8.44), we call P, (x) the nth-degree Maclaurin polyno-
mial of f. Note that P, (x) in (8.44) is the (n + 1)st partial sum of the
Taylor series (8.43). If we let ¢ = 0, then P, (x) is the (n + 1)st partial
sum of the Maclaurin series (8.42). The next result will lead to an answer
to question 2.

Let f have n 4 1 derivatives throughout an interval containing c. If
x is any number in the interval that is different from ¢, then there is a
number z between ¢ and x such that

fx)= P (x)+ R (x), where R (x)—-m( ) s
~ n n v n = (n+1)! X :

PROOF If x is any number in the interval that is different from c, let
us define R, (x) as follows:

R,(x) = f(x) — P,(x)
This equation may be rewritten as

f(x)y= P (x)+ R, (x).
All we need to show is that for a suitable number z, R, (x) has the form
stated in the conclusion of the theorem.
If ¢ is any number in the interval, let g be the function defined by

f”( t) 5 AIO)
n!

_ i+l
—t) + -4+ (x t)

( C)n+1

(x—t)"} R, (x)

If we differentiate each side of the equation with respect to t (regarding
x as a constant), then many terms on the right-hand side cancel. You may
verify that

f(n+1) (Z)
g =-

n!

n (x-=-0"
G =+ R ) (ot D
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By referring to the formula for g(t), we can verify that g(x) = 0. We also
see that

gle) = fx) —[P,(0)] - R, (x)—=7

(x—c
= f(x)— P,(x) — R,(x)
= f(x) = [P,(x) + R,(x)]
=f(x)— f(x)=0.
Hence, by Rolle’s theorem (3.10), there is a number z between.c and x
such that g'(z) = 0—that is,

f(n+1)(z) . (x - 2)"
—T(x - Z) + Rn(x) . (n + l)m =0

Solving for R, (x), we obtain
f(n+l) (Z)

n+1)!
which is what we wished to prove. =

R,(x) = (x — o)™,

If ¢ = 0, we refer to (8.45) as Maclaurin’s formula with remainder.
The expression R, (x) obtained in Theorem (8.45) is called the Taylor re-
mainder of f atc. If c = 0, R, (x) is the Maclaurin remainder of f. In the
next theorem, we use the Taylor remainder to obtain sufficient conditions
for the existence of power series representations for a function f.

Let f have derivatives of all orders throughout an interval containing
¢, and let R, (x) be the Taylor remainder of f at c. If

lim R (x) =0
B0

for every x in the interval, then f(x) is represented by the Taylor
series for f(x) at c.

PROOF The Taylor polynomial P (x) is the (n + 1)st term for the
sequence of partial sums of the Taylor series for f(x) at ¢. By Theorem
(8.45), P,(x) = f(x) — R (x), and hence

Jim P, (x) = lim f(x)~ lim R, (x) = f(x) -0 = f(x).

Thus, the sequence of partial sums converges to f(x), which proves the
theorem. W

In Example 2 of Section 8.6, we proved that the power series Y _ x"/n!
is absolutely convergent for every real number x. Since the nth term of a
convergent series must approach 0 as n — 0o (see Theorem (8.16)), we
obtain the following result.

8.8 Maclaurin and Taylor Series

Theorem 8.47

If x is any real number,

We shall use Theorem (8.47) in the solution of the following example.

EXAMPLE®=2 Find the Maclaurin series for sin x, and prove that it
represents sin x for every real number x.

SOLUTION Letus arrange our work as follows:

F(x) = sinx F0)=0
f'(x) =cosx fo=1
f’(x) = —sinx =0
" (x) = —cosx [0y =-1

Successive derivatives follow this pattern. Substitution in (8.42) gives us
the following Maclaurin series:

3 5 7 2n+1

x x x
o e (] — L
sinx = x + 4.4 (1) ! +

31050 7

At this stage, all we know is that if sinx is represented by a power

series in x, then it is given by the preceding series. To prove that sin x is

actually represented by this Maclaurin series, let us use Theorem (8.46)
with ¢ = 0. If n is a positive integer, then either

| F** V@) = |cosx| or |[fOTD(x)| = |sinx].

Hence, | f"*D(z)| < 1 for every number z. Using the formula for R, (x)
in Theorem (8.45), with ¢ = 0, we obtain

1
|f(n+1)(z)i Ix|n+1 n+

(n+ 1)!

_ I

|R,(x)| = P YR

Tt follows from Theorem (8.47) and the sandwich theorem (8.7) that
lim |R,(x)| = 0. Consequently, lim, R,(x) = 0, and the Maclau-

n—>00 B R A n—o0
rin series representation for sin x is true for every x.

EXAMPLE®=3

(a) Find the Maclaurin series for cos x.

(b) Plot the graphs of several polynomial approximations to the Maclaurin
series of part (a).
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Figure 8.18

—6<x<6,-2<y=<2

(a) k=3

2+

—1 4

_2_|_
(b) k=4
2.4
\ /1\ £ /
6
e
2.4
() k=5
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SOLUTION

(a) We could proceed directly, as in Example 2; however, let us obtain the
series for cos x by differentiating the series for sin x obtained in Example 2:

2 4 6 2n

X XX b (1) x
20 41 6! 2n)!

(b) We use the polynomials

+ .-

x2n

k
Py (x) = ;(—1)" o

for k = 3, 4, and 5. Although we can plot the graphs of cos x and the poly-
nomials on the same coordinate axes, we see the graphs more distinctly if
we plot cosx and each of the polynomials separately, as in Figure 8.18.
From the three views shown in the figure, we note that each successive
polynomial approximates cos x over a larger interval of x, and we easily
see how rapidly the Maclaurin series approaches the cosine function that it
represents.

. /
The Maclaurin series for e* was obtained in Theorem (8.41) by an
indirect technique (see also Example 1 of this section). We next give a
direct derivation of this important formula.

EXAMPLE®4 Find a Maclaurin series that represents e¢* for every
real number x.

SOLUTION If f(x) = e, then f® (x) = " for every positive inte-
ger k. Hence, f ®)(0) = 1, and substitution in (8.42) gives us
N x2 i N X"
e = +X+E+3! +;+
As in the solution of Example 2, we now use Theorem (8.46) to prove
that this power series representation of ¢* is true for every real number x.
Using the formula for R, (x) with ¢ = 0, we obtain

1
— f(n+ )(Z)xn-i-l _ ez xn+1
(n+ D! (n+ 1)
where z is a number between 0 and x. If O < x, then €* < ¢*, since the
natural exponential function is increasing, and hence for every positive
integer n,

R, (x)

3

ex
0<R,(x) < L

(n+ !
By Theorem (8.47),
X ntl
lim " = ¢* lim ad =0,
n—o00 (n + 1)! n—oo (n + 1)!

8.8 Maclaurin and Taylor Series

and by the sandwich theorem (8.7),
lim R (x) =0.

n—oo

If x < 0, then z < 0, and hence ¢* < ¢° = 1. Consequently,

n+1

0<|R,(x)| <

’

(n+ 1)!

and we again see that R, (x) has the limit 0 as n — oo. It follows from
Theorem (8.46) that the power series representation for e* is valid for all
nonzero x. Finally, note that if x = 0, then the series reduces to ¢’ = 1.

EXAMPLE®=S5 Find the Taylor series for the function f(x) = sinx
in powers of x — (7/6).

SOLUTION The derivatives of f(x) = sinx are listed in Example
2. If we evaluate them at ¢ = 7/6, we obtain

: Vi, V3
101 Q-2 G-t (-2

and this pattern of four numbers repeats itself indefinitely. Substitution in
(8.43) gives us

, V3
Slﬂx:%%—?(}c—%)—ﬁ(x—%)z—f:j)(x_%fq_...

The nth term u,, of this series is given by

1 T\
_1y/2 = ifn =
o (—1) 2W)<x 6) ifn=0246,...
=
_ (n—l)/z\/§ A YT
(1) z(n!)(x 6) ifn=13,57 ...

The proof that the series represents sin x for every x is similar to that given
in Example 2 and is therefore omitted.

The next example brings out the fact that a function f may have deriva-
tives of all orders at some number ¢, but may not have a Taylor series rep-
resentation at that number. This shows that an additional condition, such
as !1mn_) « R, (x) = 0, is required to guarantee the existence of a Taylor
series.

EXAMPLE® 6 Let f be the function defined by

_1/x2 .
_Je ifx #£0
SO = {o if x =0

Show that f(x) cannot be represented by a Maclaurin series.
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SOLUTION By Definition (2.6), the derivative of f at 0 is

o f) = fO) e ¥ . (1/x)
/ _ m — - — .
Fo= }%1_)0 x—0 ilen(l) x 31—% RV

The last expression has the indeterminate form oo/o0. Applying
I’Hopital’s rule (6.51), we see that

—1/x2
£ = tim — )y X
x—0 (_2/x3)e1/x x—0 Zel/x

It can be proved that £”(0) = 0, f”(0) = 0, and, in general, f™(0) =0
for every positive integer n. According to Theorem (8.42), if f(x) has a
Maclaurin series representation, then it is given by

0 2 0 n :
f(x)=0+0x+—2—!x +---+Ex +oee

which implies that f(x) = 0 throughout an interval containing 0. However,
this contradicts the definition of f. Consequently, f(x) does not have a
Maclaurin series representation.

As a by-product of Example 6, it follows from Theorem (8.46) that for
the given function f, lim, _, R, (x) # Oatc = 0.

We next list, for reference, Maclaurin series that have been obtained
in examples in this section and Section 8.7. These series are important
because of their uses in advanced mathematics and applications.

(@)

(b)

(©

(d)

(e)

(f)

(2

Interval of
Maclaurin series convergence
3 5 7 2n+1
X X X X
i = x — — — - — D 4 ... —00, 00
sinx = x 3!—|-5! 7!+ +( )(2n+1)! ( )
2 4 6 2
X X X
=1—- — _ —— " vas —00, 00
cosx=l-rta e T G T ( )
x5 x"
x—-‘ JE— — o onw —_— - —
¢ =ldxt gttt (~00, 00)
2 3 4 ntl
X X X X
—y - — 4 T . . N ~1,1
In(l+x)=x 2+3 4+ +( )n+1+ ( ]
3 5 7 2n+1
-l B2 X —_n" 1.1
fan " x =x 3+5 7+ +()2n+1+ [-1,1]
. 3 ) 55 . \ s L2+ L oo 00)
smhx = x4t 5t Cn+ 1) :
2 A 6 L2
= [T T T R —00, 00)
coshr =1+ ot t e Tt G (

. 8.8 Maclaurin and Taylor Series

We can use Maclaurin or Taylor series to approximate values of func-
tions and definite integrals, as illustrated in the next two examples.

EXAMPLE®=7  Use the first two nonzero terms of a Maclaurin series
to approximate the following, and estimate the error in the approximation.

(a) sin(0.1) (b) sin x for any nonzero real number x in [—1, 1]

SOLUTION
(a) Letting x = 0.1 in the Maclaurin series for sinx (see (8.48)(a)) yields

0.001 + 0.00001
120 ’
By Theorem (8.31), the error involved in approximating sin(0.1) by using

the first two terms of this alternating series is less than the third term,
0.00001/120 = 0.00000008. To six decimal places,

0.001
sin(0.1) ~ 0.1 — o ~ (0.099833.

sin(0.1) = 0.1 —

(b) Using the first two terms of (8.48)(a) gives us the approximation for-
mula
. X3
sinx ~ x — &
By Theorem (8.31), the error involved in using this formula for a real

number x in [—1, 1] is less than |x|/ 5!.

1
EXAMPLE®=8 Approximate f sin(x?) dx to four decimal places.
0

SOLUTION Substituting x? for x in (8.48)(a) gives us

5 x6 x]O x14

BT T TR

Integrating each term of this series, we obtain

sin(xz) =x

Lo, 11 1 1
sin(x“)dx = - — — + —— —
0 342 1320 75,600

Summing the first three terms yields
1
f sin(x?) dx ~ 0.31028.
0

By Theorem (8.31), the error is less than —=5 & 0.00001.

Note that in the preceding example we achieved accuracy to four dec-
imal places by summing only three terms of the integrated series for
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sin(x?). To obtain this degree of accuracy by means of the trapezoidal
rule or Simpson’s rule, it would be necessary to use a large value of n for
the interval [0, 1]. However, if the interval were [10, 11], the efficiency of
each method would be quite different. An important point for numerical
applications is that in addition to analyzing a given problem, we should
also strive to find the most efficient method for computing the answer.

To obtain a Taylor or Maclaurin series representation for a function
f, it is necessary to find a general formula for f®™(x) and, in addition,
to investigate lim, _ R, (x). For this reason, our examples have been
restricted to expressions such as sinx, cos x, and . The method cannot
be used if, for example, f(x) equals tanx or sin~! x, because ™ (x)
becomes very complicated as n increases. Most of the exercises that follow
are based on functions whose nth derivatives can be determined easily
or on series representations that we have already established. In more
complicated cases, we shall restrict our attention to only the first few terms
of a Taylor or Maclaurin series representation.

- EXERCISES 8.8

Exer. 1-6: If f(x) =) 2¢a,x", find a, by using the
formula for a,, in (8.42).

I flx)=e* 2 flx)=e %
3 f(x)=sin2x 4 f(x)=rcos3x
5f(X)=1+3x 6f(x)=1_2x

7 Let f(x) =cosx.
(a) Use the method of Example 2 to prove that
lim R, (x) =0.

n—>00
(b) Use (8.42) to find a Maclaurin series for f(x).
8 Let f(x) =e .
(a) Use the method of Example 4 to prove that
lim R, (x) =0.

n—o0

(b) Use (8.42) to find a Maclaurin series for f(x).

Exer. 9-14: Use a Maclaurin series obtained in this
section to obtain a Maclaurin series for f(x).
9 f(x)=xsin3x 10 f(x) = x%sinx
I f(x) = cos(—2x) 12 f(x) = cos(x?)
13 f(x) = cos? x (Hint: Use a half-angle formula.)
14 f(x) =sin’x
Exer. 15-16: Find a Maclaurin series for f(x). (Do not
verify that lim R,(x)=0)
16 f(x)=In(GB+x)

n—>00

15 f(x) = 10"

Exer. 17-20: Find a Taylor series for f(x) at c. (Do not
verify that lim, | __ R, (x) =0.)

17 f(x) =sinx; c=n/4 18 f(x)=cosx; c=mn/3
19 fx)=1/x; c¢=2 20 f(x) =€, c=-3
21 Find a series representation for ¢?* in powers of x + 1.
22 Find a series representation of Inx in powers of x — 1.
Exer. 23-28: Find the first three terms of the Taylor
series for f(x) at c.

23 f(x) = secx; c=mn/3

24 f(x) =tanx; c=rmn/4

25 f(x)=sin"'x; c=4
26 f(x)= tan~! x; c=1
27 f(x) = xe’; c=-1

28 f(x) =cscx; ¢ =2m/3

Exer. 29-38: Use the first two nonzero terms of
a Maclaurin series to approximate the number, and
estimate the error in the approximation.

29 ! 30 ! 31 cos3°
— - cos
Ve e

32 sin1° 33 tan ' 0.1 34 In1.5

1, 1/2 )
35 f e " dx 36J x cos(x>) dx
0 0

Exercises 8.8

0.5 0.1
37 J cos(xz) dx 38 J tan~! (xz) dx
0 0

Exer. 39~-42: Approximate the improper integral to four
decimal places. (Assume that if the integrand is f(x), then

J(0) = lim,_,f(x).)

11 _ 1o

39 f —_czosxdx 40 j il dx

~ 0 X 0o X
1/21 1 1 l—e™*

41 f n—(+—x)dx 42 f ¢ dx
0 x 0 X

Exer. 43-44: (a) Let g(x) be the sum of the first two
nonzero terms of the Maclaurin series for f(x). Use g(x)

to approximate fol Sf(x)dx and | 12 Sf(x)dx. (b) First sketch

the graphs, on the same coordinate axes, of f and g for

0<x<2, and then use the graphs to compare the
accuracy of the approximations in part (a).

43 f(x) =sin(x?) 44 f(x) = sinhx
45 Use (8.48)(d) to find the Maclaurin series for

14+x
T
46 Use the first five terms of the series in Exercise 45 to

calculate In2, and compare your answer to the value
obtained using a calculator.

fx)=1In

47 (a) Use (8.48)(e) with x = 1 to represent 7 as the sum
of an infinite series.

(b) What accuracy is obtained by using the first five
terms of the series to approximate 7 ?

(c) Approximately how many terms of the series
are required to obtain four-decimal-place accuracy
forn?

48 (a) Use the identity

tan ™! 1 -l—tan_1 1 =z
2 37 4

to express 7 as the sum of two infinite series.

(b) Use the first five terms of each series in part (a)
to approximate 7, and compare the result with that
obtained in Exercise 47.

49 In planning a highway across a desert, a surveyor must
make compensations for the curvature of the earth when
measuring differences in elevation (see figure).

(a) If s is the length of the highway and R is the radius
of the earth, show that the correction C is given by
C = R[sec(s/R) — 1].

(b) Use the Maclaurin series for sec x to show that C is
approximately s2/(2R) + (5s%)/(24R3).

(<) The average radius.of the earth is 3959 mi. Estimate

the correction, to the nearest 0.1 ft, for a stretch of
highway 5 mi long.

775

Exercise 49 Line of sight

50 The velocity v of a water wave is related to its length L
and the depth & of the water by
2 gL 2nh

tanh ——,
2 a L

where g is a gravitational constant.

(a) Show that tanh x ~ x — %x3 ifx ~ 0.

(b) Use the approximation tanhx ~ x to show that
v ~ ghif h/L is small.

(c) Use part (a) and the fact that the Maclaurin series

for tanhx is an alternating series to show that if

L > 20h, then the error involved in using LR gh
is less than 0.002g L. ~

51 If too large a downward force of P pounds is applied to
a cantilever column of length L at a point x units to the
right of center (see figure), the column will buckle. The
horizontal deflection § can be expressed as

v

8 =x(seckL —1) with k=./P/R,

where R is a constant called the flexural rigidity of the
material and 0 < kL < 7/2. Use Exercise 49(b) to show
that § ~ %Px L?/R if PL? is small compared to 2R.

Exercise 51
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52 Show thatcosx ~ 1 — %xz + ﬁx“ - 7—;0x6 is accurate 55 cos(x?) 56 tan~!(0.4x) Figure 8.19 It we approximate e* by means of Taylor polynomials (with ¢ = 0), we
to five decimal places if 0 < x < = /4. . y obtain |
*sint *1—cost A
Exer. 53-60: (a) Find a Maclaurin series for the 57 ) —t"dt 58 2 dt 1 e*~ Pi(x)=1+x |
function. (b) Plot the graphs of the polynomials p, (x) = T 5
. . .o | X
>k a,x" associated with the series in part (a) for k = 3, 59 fx sin(r3) dr 60 J’xe"“/& & i P =1+x+ >
4, and 5. 0 0 ~ , ,
53 sin(0.6x) 54 cosh2x = et~ P3(x) =14+x+ % + % l
L1 /! Py - and so on. These approximation formulas are accurate only if x is close to
8 9 APPLICATIONS OF TAYLOR POLYNOMIALS i a x 0. To approximate e* for larger values of x, we may use Taylor polynomials

In this section, we consider how to use Taylor polynomials to approximate
transcendental functions. In particular, we investigate how accurately a
Taylor polynomial of particular degree is in estimating values such as
sin x, cos x, €°, or In x. .

In Example 7(b) of Section 8.8, we used the first two nonzero terms of
the Maclaurin series for sin x to obtain the approximation formula

x3

sinxy ~ x — —.

6

By (8.44), the expression on the right-hand side of this formula is the third-
degree Taylor polynomial P,(x) of sinx at ¢ = 0. Thus, we could write

sinx ~ Py(x).

Using additional terms of the Maclaurin series for sinx would give us
other approximation formulas. To illustrate,

with ¢ # 0.

The accuracy of the preceding three approximation formulas for ¢* is
illustrated by the graphs of the functions P, P,, and P; in Figures 8.19-
8.21. It is of interest to note that the graph of y = P;(x) = 1 + x in Figure
8.19 is the tangent line to the graph of y = ¢ at the point (0, 1). You
may verify that the parabola y = P,(x) =1 +x + %xz in Figure 8.20 has
the same tangent line and the same concavity as the graph of y = ¢” at
(0, 1). The graph of y = P;(x) in Figure 8.21 has the same tangent line
and concavity at (0, 1) and also the same rate of change of concavity, since
Py"(0) = (d%/dx) |e”| 1= - In general, we can show that for any positive
integer n, P (0) = (d"/dx) |e*| v—o- As n increases without bound, the
graph of the equation y = P, (x) more closely resembles the graph of

=e".
g The following table indicates the accuracy of the approximation for-
mula e* & P;(x) for several values of x, approximated to the nearest hun-
dredth.

3 5 -~ _
sinx ~ x — N + % = Ps(x). * x -1.5 -10 =05 0 05 10 15
Lo . oE _ : 65 272 4.48
By Theorem (8.31), the error involved in using this formula is less than L | 022 037 061 1 16 2
|x7[ / 7. Thus, the approximation is very accurate if x is close to 0. Py(x) 006 033 060 1 165 267 419

We can use this procedure for any function f that has a sufficient
number of derivatives. Specifically, if f satisfies the hypotheses of Taylor’s
formula with remainder (8.45), then

f(x) = P,(x) + R,(x),

where P (x) is the nth-degree Taylor polynomial of f at ¢ and R (x) is
the Taylor remainder. If lim, oo B, (x) =0, then, as n increases, we have
P (x) — f(x); hence the approximation formula f(x) ~ P, (x) improves
as n gets larger. Thus, we can approximate values of many different tran-
scendental functions by using polynomial functions. This is a very impor-
tant fact, because polynomial functions are the simplest functions to use
for calculations—their values can be found by employing only additions
and multiplications of real numbers.

As another illustration, consider the exponential function given by
f(x) = €*. From (8.48)(c), the Maclaurin series for ¢* is

2 x3 X"

x
x—- ‘— —_— e — -
e—1+x—{—2!+3!+ +n!+

If more accuracy is desired, we can use any larger positive integer n to
obtain

. xr %3 x"

e %Pn(x)=1+x+a+§—!+---+;1—!A
We can use this remarkably simple formula to approximate ¢* to any
degree of accuracy.

In the remainder of this section, we shall use Taylor polynomials to
approximate values of functions that satisfy the hypotheses of Taylor’s for-
mula with remainder (8.45). Using the conclusion f(x) = P, (x) + R, (x)
of that theorem, we see that the error involved in approximating f(x) by
P (x)is

|f(x) = P,@)| = |R,(x)] .

The complete statement of this result is given in the next theorem.
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Let f have n 4 1 derivatives throughout an interval containing c. If
x is any number in the interval and x # c, then the error in approxi-
mating f(x) by the nth-degree Taylor polynomial of f at c,

P@ =1+ ©6 -+ L2 -y
(n)
+..'+f ,(C)(JC“"C)",
nt
is equal to | R, (x)|, where
B At () Sy
S )

and z is the number between ¢ and x given by (8.45).

In the next two examples, Taylor polynomials are used to approximate
function values. If we are interested in k-decimal-place accuracy in the ap-
proximation of a sum, we often approximate each term of the sum to k& + 1
decimal places and then round off the final result to k decimal places. In
certain cases, this may fail to produce the required degree of accuracy;
however, it is customary to proceed in this way for elementary approx-
imations. More precise techniques may be found in texts on numerical
analysis.

EXAMPLE=] Letf(x)=Inx.

(a) Find P;(x) and Ry(x) atc = 1.
(b) Approximate In1.1 to four decimal places by means of P;(1.1), and
use R;(1.1) to estimate the error in this approximation.

SOLUTION
(a) As in Theorem (8.49), the general Taylor polynomial P;(x) and Taylor
remainder R;(x) atc = 1 are

" 1 " 1
P =+ e -0+ e 024 L e -1y
)
and Ry =L F e,

41

where 7z is a number between 1 and x. Thus, we need the first four deriva-
tives of f. It is convenient to arrange our work as follows:

f@x)=Inx fy=0
fla)y=x" =1
) = —x7? ' =-1
£y =2x73 ) =2

@@ = —6x7* 9% =—-6z7"*

8.9 Applications of Taylor Polynomials
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Substituting in P;(x) and R;(x), we obtain

Py(x) =0+1(x —1) - %(x -1’ + %(x -1y

—6z74

and R3(.Xf) = —4'—

1
(x—D*= —4—Z4<x — 14,

where z is between 1 and x.

(b) From part (a),
In1.1~ Py(1.1) = 0.1 — 2(0.D% + 1(0.1)%,
or In1.1 ~ 0.0953.
To estimate the error in this approximation, we consider
0.1)*
[Ry(1.1)| = —(4 4) where 1 <z <1.1.
Z

Since z > 1, 1/z < 1 and therefore 1/z* < 1. Consequently,

0.D)?
4z4

0.0001
< |- — = 0.000025.

|Ry(1.1)] =

Because 0.000025 < 0.00005, it follows from Theorem (8.49) that the
approximation In 1.1 ~ 0.0953 is accurate to four decimal places.

If we wish to approximate a function value f(x) for some x, it is de-
sirable to choose the number ¢ in Theorem (8.49) such that the remainder
R, (x) is very-close to O when n is relatively small (say, n = 3 or n = 4).
We obtain this result if we choose ¢ close to x. In addition, we should
choose ¢ so that values of the first n + 1 derivatives of f at ¢ are easy
to calculate, as was done in Example 1, where to approximate Inx for
x = 1.1 we selected ¢ = 1. The next example provides another illustration
of a suitable choice of c.

EXAMPLE®=2 Usea Taylor polynomial to approximate cos 61°, and
estimate the accuracy of the approximation.

SOLUTION  We wish to approximate f(x) = cosx if x = 61°. Let
us begin by observing that 61° is close to 60°, or /3 radians, and that it
is easy to calculate values of trigonometric functions at r/3. This suggests
that we choose ¢ = /3 in (8.49). The choice of n will depend on the
degree of accuracy we wish to attain. Let us try n = 2. In this case, the first
three derivatives of f are required and we arrange our work as follows:

f(x) =cosx f (n/S) =1/2
flx)y=—sinx  f'(7/3) = —/3/2
f'@x)=—cosx  f"(n/3)=-1/2

f///(x) = sinx fm(Z) = sing
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As in (8.49), the second-degree Taylor polynomial of f atc = 7/3 is
2
P =3 (e-5) -7 -3
Since x represents a re:al number, we must convert 61° to radian measure
before substituting into P, (x). Writing
o (e} o __ 7 T
61°=60°+1° = 3 + 180
and substituting, we obtain

2

R i) =3 (2) () -4 () =oassm

and hence cos 61° = 0.48481.
To estimate the accuracy of this approximation, we consider
LA I L
3! 3 3! 3
where z is between /3 and x. Substituting x = (7/3) + (z/180) and
using the fact that |sinz| < 1, we obtain
i 3 3

(5| 5 G < ) | < oo

Thus, by (8.49), the approximation cos 61° ~ 0.48481 is accurate to five

decimal places. For greater accuracy, we must find a value of n such that
the maximum value of |R,[(7/3) + (r/180)]| is within the desired range.

’

[Ry(0)| =

EXAMPLE®3 If f(x) = e", use the Taylor polynomial Py(x) of f
at ¢ = 0 to approximate e, and estimate the error in the approximation.

SOLUTION For every positive integer k, f®(x) = ¢*, and hence
f ) 0 = ¢® = 1. Thus, using n = 9 and ¢ = 0 in Theorem (8.49) yields

b1 $2 i3 ¥

o(x) = +x+5+3—!+'“+§,

~Py(l)y=1+1 L1 !
and therefore e~ Py(1) =1+ +E+§+...+a.

This result gives us e &~ 2.71828153.
To estimate the error, we consider
e 10
R9(X) = ﬁx .
If x =1, then 0 < z < 1. Using results about ¢* from Chapter 6, we have
et < el <3, and
eZ
10!

Hence, the approximation e ~ 2.71828 is accurate to five decimal places.

3
|IRy(D)| = (1)‘ <To! < 0.000001.

Exercises 8.9

- EXERCISES 8.9

Exer. 1-4: (a) Find the Maclaurin polynomials P;(x),
Py(x), and P;(x) for f(x). (b) Sketch, on the same
coordinate axes, the graphs of P, P,, P;, and f.
(c) Approximate f(a) to four decimal places by means
of P;(a), and use R;(a) to estimate the error in this
approximation.

I f(x) =sinx; a=0.05
2 f(x) =cosux; a=02
3 f)=In(x+1); a=09
4 f(x):tan_lx; a=01

Exer. 5-6: Graph, on the same coordinate axes, f,
Py, Py,and P; for —3 <x < 3.

5 f(x) =sinhx 6 f(x)=coshx

27 f(x) = arcsinx; n=2

28 f(x)=e n=3
29 f(x)=2x4—5x3; n=4andn =235
30 f(x) =coshx; n=4andn =5

IE] Exer. 31-34: Approximate the number to four decimal

places by using the indicated exercise and the fact that
/180 ~ 0.0175. Prove that your answer is correct by
showing that |R ,(x)| < 0.5 x 107*.

31 sin89° (Exercis’e 7
32 cos47° (Exercise 8)
33 /4.03 (Exercise 9)
34 ¢ 102 (Exercise 10)

Exer. 7-18: Find Taylor’s formula with remainder (8.45) E Exer. 35-40: Approximate the number by using the

for the given f(x), c, and n.

7 f(x) =sinx; c=n/2, n=3
8 f(x\)zcosx; c=n/4, n=3
9 fx) =.x; c=4, n=3
10 f(x)=e%; c=1, n=>3
Il f(x)=tanx; c=mn/4, n=2
12 fx)=1/(x =% c=2, n=>5
13 f(x)=1/x; c=-2, n=5
14 f(x) = Jx; c=-8, n=3
15 f(x):tan_lx; c=1, n=2
16 f(x)=Insinx; c=mn/6, n=3
17 f(x)=xe"; c=-1, n=4
18 f(x)=logx; c =10, n=2

Exer. 19-30: Find Maclaurin’s formula with remainder
for the given f(x) and n.

19 fx)=In(x+1); n=4

20 f(x) =sinx; n=
21 f(x) =cosux; n=3_§
22 f(x):tan_lx';/ n=3
23 f(x) = ¥ n=>5
24 f(x) =secx; n=3

25 f)=1/(x—1% n=5
26 f(x) =+4—1x; n=3

indicated exercise, and estimate the error in the
approximation by means of R, (x).

35 —1/(2.2) (Exercise 13)
36 /-85  (Exercise 14)
37 In1.25 (Exercise 19)
38 sin0.1 (Exercise 20)
39 cos30°  (Exercise 21)
40 log10.01 (Exercise 18)

Exer. 41 -46: Use Maclaurin’s formula with remainder to
establish the approximation formula, and state, in terms
of decimal places, the accuracy of the approximation if
|x| < 0.1.

2
1
41 cosxwl—% 42 «3/l+x%1+§x
43 e"~1+x—|—£ 44 sinx"’x—ﬁ
2 6
45 In(1 + x) L
n X)xx——+ =
2 3

x2
46 coshx ~ 1+ 5

47 Let P (x) be the nth-degree Maclaurin polynomial. If
f(x) is a polynomial of degree n, prove that f(x) =
P (x).

n
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Exer. 1-6: Determine whether the sequence converges or
diverges; if it converges, find the limit.

2
| 11_1(nn+ 1) } 2 {100(0.99)")
107 !
; W} 4 [; a (—2)”}
i = 2 2n
° ﬁ+4_ﬁ+9} ’ [(”;) }

Exer. 7-8: For the recursively defined sequence,
determine what happens to terms of the sequence as k
increases.

7 a =1 a.ndakJrl = 0.5cosha,
8 aq = 2andakJrl = cosh™! a, +1

Exer. 9-34: If the series is positive-term, determine
whether it is convergent or divergent; if the series
contains negative terms, determine whether it is
absolutely convergent, conditionally convergent, or
divergent.
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CHAPTER 8 Infinite Series
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Exer. 35-40: Use the integral test (8.23) to determine the
convergence or divergence of the series.
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Exer. 41-42: Approximate the sum of the series to three
decimal places.
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E Exer. 43-44: Approximate the sum of the given series

to four decimal places by using an integral of the form
IN f(x) dx.

a3y n2 Yy 20
— " +3mn-1

Exer. 45-48: Find the interval of convergence of the
series.
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Exer. 49 —50: Find the radius of convergence of the series.
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Chapter 8 Review Exercises

Exer. 51 - 54: Find the Maclaurin series for f(x), and state
the radius of convergence.

1_
COY tx£0

ifx=0
53 f(x) =sinxcosx

51 f(x) =

52 f(x) =xe ¥
54 f(x)=In@2+x)

Exer. 55-58: (a) Find a Maclaurin series for the
function. (b) Plot the graphs of the polynomials

P () = Zﬁ:o a,x" associated with the power series in
part (a) for k = 3,4, and 5.

55 sinh(0.6x) 56 V%
X X

57 J cosh 2dt 58 f ¢=037 g
0 0

59 Find a series representation for e~ in powers of x + 2.

60 Find a series representation for cosx in powers of
x — (7/2).

Exer. 61~64: Use an infinite series to approximate the
number to three decimal places.

783

1
61 J.xze_xzdx 62 1//e
0 .

1
3 f f(x) dx with f(x) = (sinx)//x if
¥ 0and £(0) =

Exer. 65-66: Find Taylor’s formula with remainder for
the given f(x), c, and n.

65 f(x)=Incosx, c=mn/6, n=3
66 f(x)=+/x—1, c=2, n=4

Exer. 67 -68: Find Maclaurin’s formula with remainder
for the given f(x) and n.

67 f(X)=e*, n=3 68 f(x)=

, n==6

—x

69 Use Taylor’s formula with remainder to approximate
cos 43° to four decimal places.

70 Use Taylor’s formula with remainder to show that
the approximation formula sinx ~ x — %x3 + ﬁxs is
accurate to four decimal places for 0 < x < 7/4.

- EXTENDED PROBLEMS AND GROUP PROJECTS

I (a) Define lower bound and greatest lower bound
analogous to upper bound and least upper bound.
Show that the completeness property is equivalent to
the following statement: Every set of real numbers
that has a lower bound has a greatest lower bound.

(b) A sequence I}, L, ... of scts is mested if [ isa
subset of I, for each n =1,2,.... Show that the
completeness property is equivalent to the nested
interval propefty: Every sequence of nested closed
intervals has at least one real number that belongs to
every interval.

(c) Does the nested interval property remain true if it is
not required that each interval be closed?

2 Investigate the representation of the real numbers as
decimals.

(a) Assuming that there is a one-to-one correspondence
between points on the coordinate line and real
numbers, show. that every real number x can be

written in the form x = N.d|d,d;...d, ..., where
N is an integer and each d; 1s an 1nteger between 0
and 9.

(b) Use the nested interval property to show that every
decimal expression of the form' N.d\d,d; .. .d, ...
corresponds to a real number.

(c) Show that 0.5 and 0.499999... are both decimal
representations of the number % and that 0.9999. ..
represents the same real number as 1.000. . ..

(d) From part (c), we see that some real numbers have
two different decimal representations. Characterize
those numbers. Show that every other real number
has a unique decimal representation.

(e) Show that a real number is rational if and only if it
has decimal representation in which some block of
digits repeats indefinitely; for example,

665

— = 0.19951
3333 995199519951995

3 There is a theory of infinite products analogous to the
theory of infinite series. Given a sequence of nonzero
numbers {a, }, we can form the kth partial product:

k
P.=]]a,= @)@ (@)
n=1

Formulate a definition for the convergence of an infinite
product

in terms of limits of partial products. Prove that if an
infinite product converges, then a, approaches 1. Find
examples of convergent and divergent infinite products.
Discover other tests for convergence of infinite products
that may be analogous to tests for convergence of infinite
series.




