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ATHEMATICAL MODELS of population growth—whether pop-

ulations of people, bacteria in a petri dish, or radioactive

atoms—all reflect the assumption that at least at some stage
of growth or decay, the rate of change of population is proportional
to the size of the population. When such assumptions are written in
terms of differential equations, the solution invariably involves the nat-
ural exponential and logarithmic functions. For example, the simplest
model dP/dt = aP has the solution P(t) = P e”. Predicting the pop-
ulation at various times from this solution requires the evaluation of the
exponential function at specific values of the variables.

Models of other important applications also frequently involve the
transcendental functions. If x is a real number, we generally find arcsin x,
¢*, Inx, cosh x, and other values of transcendental functions by using a
calculator or a table. A more fundamental problem is determining how
calculators compute these numbers or how a table is constructed. A
principal goal of this chapter is to demonstrate how infinite series can be
used to find function values.

We begin with a careful study of sequences in Section 8.1. These are
basic to the definition (Section 8.2) of convergence or divergence of a
series. We then develop various tests for the convergence of a series
of positive constants in Sections 8.3 and 8.4. In Section 8.5, we again
consider series of constants, but without restrictions on their signs.

We see in Section 8.6 how to use infinite series to find function
values. Specifically, if a function f satisfies certain conditions, we de-
velop techniques for representing f(x) as an infinite series whose terms
contain powers of x. Substituting a number ¢ for x and then finding (or
approximating) the resulting infinite sum gives us the value (or an ap-
proximation) of f(c). This method is essentially the same as that which a
calculator uses when it approximates function values. We explore these
techniques further in Sections 8.7 and 8.8,

This new way of representing functions is the most important reason
for developing the theory in the first five sections of the chapter. Infinite
series representations for sinx, e*, and other expressions allow us
to consider problems that cannot be solved by finite methods. For
example, if x is suitably restricted, we can evaluate integrals such as
[ sin /X dx and [ e dx, something we could not do in Chapter 7. As
another application, in Chapter |5 we use infinite series to extend the
definitions of sin x, ¢, and other expressions to the case where x is a
complex number a -+ bi with a and b real and % = —1.

Using calculus to predict future
behavior or population often requires
using infinite series to estimate the
numerical value of transcendental

functions.

Infinite Series
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CHAPTER 8 Infinite Series

SEQUENCES

An arbitrary infinite sequence (or simply a sequence) is often denoted as
follows.

al,az,a‘s,..‘.aﬂ,...

We may regard (8.1) as a collection of real numbers that is in one-to-one
correspondence with the positive integers. Each number a,, is a term of the
sequence. The sequence is ordered in the sense that there is a first term
a,, asecond term a,, and, if n denotes an arbitrary positive integer, an nth
terma,.

We may also define a sequence as a function. Recall that a function
f is a correspondence that associates with each number x in the domain
exactly one number f (x) in the range. If we restrict the domain to the

positive integers 1,2, 3, ..., we obtain a sequence. ;

A sequence is a function f whose domain is the set of positive
integers.

In this text, the range of a sequence will be a set of real numbers. If a
function f is a sequence, then to each positive integer k there corresponds
areal number f (k). The numbers in the range of f may be denoted by

fQ), f@), f3),..., fn),...

The three dots at the end indicate that the sequence does not terminate.
Note that Definition (8.2) leads to the subscript form (8.1) if we let
= f (k) for each positive integer k. Conversely, given (8.1), we can

obtain the function f in (8.2) by letting f (k) = g, for each k.

If we regard a sequence as a function f, then we may consider its graph
in an xy-plane. Since the domain of f is the set of positive integers, the
only points on the graph are

1,a),2,a,),3,a3),...,(n,a,),...,

where a, is the nth term of the sequence (see Figure 8.1). We sometimes
use the graph of a sequence to illustrate the behavior of the nth term a, as
n increases without bound.

Another notation for a sequence with nth term a,, is {a, }. For example,
the sequence {2"} has nth term 2". Using the potation in (8.1), we write
this sequence as follows:

ol 22 93 omo

8.1 Sequences
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Graph of a sequence
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By Definition (8.2), the sequence {2"} is the function f with f(n) = 2"
for every positive integer .

EXAMPLE®= | List the first four terms and the tenth term of each
sequence.

2

n n+1
(){ +1} ®) 2+ (0.1)"} (c){( D"

} @ {4

SOLUTION To find the first four terms, we substitute, successively,
n =1,2,3, and 4 in the formula for a,. The tenth term is found by substi-
tuting 10 for n. Doing this and simplifying gives us the following:

Tenth term

Sequence '- nth terma, First four terms
{ n } o 123 4 ' 10
n+1 | n+1 . 2°3°4° 5 11
{2+ (0.)"} 2+ (0.1)" 2.1, 2.01, 2.001, 2.0001 | 2.0000000001
[ " | T _i o 16 100
3n—1 | 3n—-1 [ 2 58 11 29
{4} | 4 4,4,4, 4 4

For some sequences, we state the first term q, together with a rule
for obtaining any term a;_ ; from the preceding term Y whenever k > 1.
We call this a recursive definition, and the sequence is said to be defined
recursively.

EXAMPLE®=2 Find the first four terms and the nth term of the se-
quence defined recursively as follows:

a, =3 and ak+1=2ak fork > 1

SOLUTION The sequence is defined recursively, since the first term
is given, as well as a rule for finding a, 41 whenever a; is known. Thus, the

|
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CHAPTER 8 Infinite Series

first four terms of the sequence are
a, =3
a,=2a;,=2-3=6
ay=2a,=2-2-3=22.3=12
ay=2a,=2-2-2-3=2>.3=24,

We have written the terms as products to gain insight into the nature of the
nth term. Continuing, we obtain as = 2* .3 and ag = 253t appears that

a, = 2"~1. 3. We can use mathematical induction to prove that this guess
is correct. Using the notation in (8.1), we write the sequence as

3,2-3,22.3,2%.3,..., 07 .3

A sequence {a,} may have the property that as n increases, a, gets
very close to some real number L—that is, a, — L| ~ 0 if n is large. As
an illustration, suppose that

an :2_'_(_%)"_

The first few terms of the sequence {a,} are

2- 32+ 42-42+ L2424 T
or, equivalently,
1.5,2.25, 1.875, 2.0625, 1.96875, 2.015625, . .. .

It appears that the terms get closer to 2 as n increases. Note that for

every positive integer n,
5 5 1\" 5 1\ (1Y 1
2=+ =z) ~4={3)1=5) =7
The number 1/2", and hence ]an — 2|, can be made arbitrarily close to
0 by choosing n sufficiently large. According to the next definition, the
sequence has the limit 2, or converges to 2, and we write

lim [2 n (—%)”] —2.

n—>o0

This type of limit is almost the same as lim _,  f(x)= L, given in
Chapter 1. The only difference is that if f(n) = a,, the domain of f is the
set of positive integers and not an infinite interval of real numbers. As in
Definition (1.16), but using a, instead of f(x), we state the following.

A sequence {a,} has the limit L, or converges to L, denoted by
either

ima =L or a ~> Lasn - o0,
n—soo % £l

8.1

Sequences

Definition 8.4

if for every ¢ > 0 there exists a positive number N such that
la, — L] <€ whenever n > N.

I such a number L does not exist, the sequence has no limit, or
diverges.

A graphical interpretation similar to that shown for the limit of a func-
tion in Figure 1.34 can be given for the limit of a sequence. The only
difference is that the x-coordinate of each point on the graph is a posi-
tive integer. Figure 8.2 is the graph of a sequence {a,} for a specific case
in which lim_, o0 @, = L. Note that for any € > 0, the points (, a,) lie
between the lines y = L + ¢, provided n is sufficiently large. Of course,
the approach to L may vary from that illustrated in the figure (see, for
example, Figures 8.3 and 8.6).

y=L +e€
Li—-—— . ——.——‘——‘— —————
2, a,) C. ha) ¥ = ke
’a2. Y
° (3,03)
(1, ay)
—t
12 3 4 5 N g *

If we can make q, as large as desired by choosing n sufficiently large,
then the sequence {a,} diverges, but we still use the limit notation and
write lim, | __a, = co. A more precise definition follows.

The notation

lim g, = oo
R~00
means that for every positive real number P there exists a number N
such that @, > P whenevern > N.

As was the case for functions in Section 1.4, lim,  a = oo does
not mean that the limit exists, but rather that the number a, increases
without bound as n increases. Similarly, lim, | a, = —o0 means that a,
decreases without bound as n increases.

The next theorem is important because it allows us to use results from
Chapter 1 to investigate convergence or divergence of sequences. The
proof follows from Definitions (8.3) and (1.16).

R [ I T E——
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Theorem 8.5

CHAPTER 8 Infinite Series

Let {a,} be a sequence, let f(n) = a,, and suppose that f(x) exists
for every real number x > 1.

@) Ifxl_ifrgc f(x) = L, then n%o fny=L.

(i) Ifxl_1_)néo f(x) = oo (or —o0), then ngngo f(n) = oo (or —c0).

The following example illustrates the use of Theorem (8.5).

EXAMPLE=®3 [Ifa, =1+ (1/n), determine whether {a, } converges
or diverges.
SOLUTION Welet f(n) =1+ (1/n) and consider
fx)y=1+ % for every real number x > 1.
From our work in Section 1.4,
,r"

1 1
lim f(x) = lim <1+—>= lim 14+ lim —=14+0=1,
xX—00 X=> 00 X

X—>00 X—=>00 X

1
lim (1 + —) =1.
n—>0o0 n

Thus, the sequence {a, } converges to 1.

Hence, by Theorem (8.5),

The difference between

1 1
lim <1+—)=1 and lim <1+—)=1
X—>00 x n—»00 n

is illustrated in Figure 8.3. Note that for 1+ (1/x), the function f is
continuous if x > 1, and the graph has a horizontal asymptote y = 1. For

Figure 8.3
1 . 1
lim (l+—)=1 lim [1+—-)=1
X—00 X n—>0oo n
AY AY

=Y

8.1 Sequences

Figure 8.4

AY

Figure 8.5
AY

1+ (1/n), we consider only the points whose x-coordinates are positive
integers.

EXAMPLE®=4 Determine whether the sequence converges or di-

verges.
@ {in* -1} @ {(-D""}
SOLUTION

(a) fwelet f(x) = %xz — 1, then f(x) exists for every x > 1 and

i 1.2 1)
xlglolo (35° — 1) = o0.
Hence, by Theorem (8.5),
lim (3n% — 1) = oo.

n—oo

Since the limit does not exist, the sequence diverges. The graph in Figure
8.4 illustrates the manner in which the sequence diverges.

(b) Letting n = 1, 2, 3,..., we see that the terms of (—1)""! oscillate
between 1 and —1 as follows:

1,-1,1,-1,1,-1, ...
This result is illustrated graphically in Figure 8.5. Thus, since

lim (—1)*"!
n—>00

does not exist, the sequence diverges.

The next example shows how we may use I’Hopital’s rule (6.51) to find
limits of certain sequences.

EXAMPLE®=5 Determine whether the sequence {5n/ ¢*"} converges
or diverges.

SOLUTION Let f(x) =5x/ e>* for every real number x. Since f
takes on the indeterminate form co/oco as x — oo, we may use I’Hopital’s
rule, obtaining

. Sx ) 5
lim —5 = lim —
X—>00 g x—>00 Q¥

=0.

Hence, by Theorem (8.5), lim (5n/ ez") = 0. Thus, the sequence con-

n—oo
verges to (.
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The proof of the next theorem illustrates the use of Definition (8.3).

Theorem 8.6
@ lim " =0if |r|<1
n—> 00

(i) nl—i>nolo)r =00 if |r|>1

PROOF Ifr =0, it follows trivially that the limit is 0. Let us assume
that 0 < |r| < 1. To prove (i) by means of Definition (8.3), we must show
that for every € > 0, there exists a positive number N such that

if n>N, then |[r"—0|<e.

The inequality |r" — 0| < € is equivalent to each inequality in the follow-
ing list:

Ine
> —_

In |r|

The final inequality sign is reversed because In |r| is negative if 0 < |r| < 1.
The last inequality in the list provides a clue to the choice of N. Let us
consider the two cases € <1 and € > 1 separately. If € <1, then
: Ine < 0 and we let N = In€/In |r| > 0. In this event, if n'> N, then the
I last inequality in the list is true and hence so is the first, which is what
| we wished to prove. If € > 1, then Ine > 0 and hence Ine/In|r| < 0.
In this case, if N is any positive number, then whenever n > N, the last
inequality in the list is again true.

To prove (ii), let |r| > 1 and consider any positive real number P. The
following inequalities are equivalent:

rl" <€, In|r|"<lne, nln|r|<lne, n

|

| In P
i |r">P, Inlr|">InP, nljr|>InP, n>
i In|r|
|

If we choose N = In P/ In |r|, then whenever n > N, the last inequality is
true and hence so is the first—that is, |r|" > P. By Definition (8.4), this

. n
? means thatlim _, __ |r|" =oco. ==

! EXAMPLE =6 List the first four terms of the sequence, and deter-
mine whether the sequence converges or diverges.

@ [{-3"] e o

| SOLUTION
3 (a) The first four terms of {(—%)n} are

‘ Ifweletr = —%, then, by Theorem (8.6)(i), with |r| = % <1,

| lim (—2)" =0.

n—oQo

Hence, the sequence converges to 0.

8.1

Sequences

(b) The first four terms of {(1.01)"} are
1.01, 1.0201, 1.030301, 1.04060401.
If we let r = 1.01, then, by Theorem (8.6)(ii),
nl_i)n;o(l.Ol)” = 00.

Since the limit does not exist, the sequence diverges.

Limit theorems that are analogous to those stated in Chapter 1 for
sums, differences, products, and quotients of functions can be established

for sequences. For example, if {a,} and {b,} are convergent sequences,
then

Jm (@, +0,) = lim o, + Jim b,

Jm (et = (Jfim ) (fim.5,).

and so on.
If a, = c for every n, the sequence {a,}isc,c,...,c,... and
lim ¢ =c.
n—> 00

Similarly, if ¢ is a real number and k is a positive rational number, then, as
in Theorem (1.18),

2
EXAMPLE®7 Find the limit of the sequence {5 22n 3 }
n?_

SOLUTION Tofind lim,_, a,, where a, = 2n%/(5n* — 3), we di-

n—oo n’
vide both the numerator and the denominator of a, by n? and apply limit
theorems to obtain

e =lim%:. noo0”
n>00 5p% — 3 n>05-(3/n?)  lim [5 — (3/n?)]
n—>co
B 2 2 2
lim5— lim 3/n%) 5-0 5
nR—> 00 n=>00

Hence, the sequence has the limit % We can also prove this by applying
1"Hopital’s rule to 2x%/(5x% — 3).

The next theorem, which is similar to Theorem (1.15), states that if the
terms of a sequence are always sandwiched between corresponding terms
of two sequences that have the same limit L, then the given sequence also
has the limit L.
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Theorem 8.8

CHAPTER 8 Infinite Series

If {a,}, {b,}, and {c,} are sequences and a, < b, < c, for every n
and if

lim g, = L= lim c,,
A X B> 00

then
lim b, = L.

A=—>00

cos® n
EXAMPLEwS8 Find the limit of the sequence [

SOLUTION Since 0 < cos’n < 1 for every positive integer 7,

cos’n 1
T

<

Applying Theorem (8.6)(1) with r = %, we have

i 1 i 1\" _0

Jim, 57 = Jim (5) =0
Moreover, lim, 0= 0. It follows from the sandwich theorem (8.7),
witha, =0, b, = (cos’n)/3", and ¢, = (})", that

. COS2 n
lim — = 0.
n—oo 3

Hence, the limit of the sequence is O.

The next theorem can be proved using Definition (8.3).

Let {a,} be a sequence. If niggc la,| = 0, then lim a, = 0.

EXAMPLE®=9 Suppose the nth term of a sequence is
1
1
a, = (-)"* —

Prove that lim a =0.

n—oo n

SOLUTION The terms of the sequence are alternately positive and
negative. For example, the first seven terms are

1

1 1
1’ 2 » T 60 7"

1
’ 47

[PS130
N s

8.1 Sequences

Figure 8.6
n
n—+1
Ay
L y =
1 y=1
L o o o o @
K 7 | | | i ] -
| | ! I L T —
X

Theorem 8.9

Completeness Property 8.10

I

Since
. o1
lim [a,| = lim = =0,
n—>o0 n—oon
it follows from Theorem (8.8) that lim,_, __a, = 0.

A sequence is monotonic if successive terms are nondecreasing:

aISaZS...San<...;

or if they are nonincreasing:
al zazz...Zanz...

A sequence is bounded if there is a positive real number M such that
la,| < M for every k. To illustrate, the sequence
1234 n
2’34’5 n+1"""
is both monotonic (the terms are increasing) and bounded (since we have
k/(k +1) < 1 for every k). The graph of the sequence is illustrated in
Figure 8.6. Note that any number M > 1 is a bound for the sequence;
however, if K < 1, then K is not a bound, since K < k/(k + 1) when k is
sufficiently large.
The next theorem is fundamental for later developments.

A bounded, monotonic sequence has a limit.

To prove Theorem (8.9), it is necessary to use an important property of
real numbers. Let us first state several definitions. If S is a nonempty set
of real numbers, then a real number u is an upper bound of S if x < u
for every x in S. A number v is a least upper bound of S if v is an upper
bound and no number less than v is an upper bound of S. Thus, the least
upper bound is the smallest real number that is greater than or equal to
every number in S. To illustrate, if S is the open interval (a, b), then any
number greater than b is an upper bound of §; however, the least upper
bound of S is unique and equals b. The monotonic sequence {rn/(n + 1)}
illustrated in Figure 8.6 has the least upper bound (and limit) 1.

The following statement is an axiom for the real number system.

If a nonempty set S of real numbers has an upper bound, then S has
a least upper bound.

PROOF OF THEOREM (8.9) Let{a,} be abounded, mono-
tonic sequence with nondecreasing terms. Thus,

aISazf...SanS...,
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and there is a number M such that ¢, < M for every positive integer k.
Since M is an upper bound for the set S of all numbers in the sequence,
it follows from the completeness property (8.10) that S has a least upper
bound L such that L < M (see Figure 8.7).

Figure 8.7
AY
y=1L
L °
(N, aN). ®
L - €
=1 —
2.a) o Y ¢
A, a,) o (3,43
®
f f | f I f *x‘
1 2 3 -+« NN+1N+2

If € > 0, then L — ¢ is not an upper bound of S, and hence at least one
term of {a,} is greater than L — €; that is,

L — € < a,, for some positive integer N,
as shown in Figure 8.7. Since the terms of {a,} are nondecreasing,
Ay Ay Sayp =00
and, therefore,
L—e¢<a, foreveryn> N.
It follows that if n > N, then
0<L-a,<e or |L—aqg,|<e
By Definition (8.3), this result means that
lim a, =L <M.

n—>0o0
That is, {a,} has a limit. ‘
We may obtain the proof for a sequence {a, } of nonincreasing terms in
a similar fashion or by considering the sequence {—a,}.

Programmable calculators and computers have features that allow us to
easily investigate sequences that are defined recursively.

EXAMPLE®=10 If a sequence is defined recursively by a, =5,
a1 = f(a), where f(x) = ¢*/* — 2, find the first five terms and discuss
what happens to the terms of the sequence as k increases.

SOLUTION Onaprogrammable or graphing calculator that permits
storage of variables, we can easily compute many terms of this sequence.

8.1 Sequences

*The notation S — I — S is an abbre-
viation for Susceptible — Infected —
Susceptible and signifies that an infected
person who becomes cured is not immune
to the disease, but may contract it again.
Examples of such diseases are gonorrhea
and strep throat. Recall the discussions of
epidemics in Section 3.8.

T |

For example, on most graphing calculators, the first term can be stored in
the variable memory by the command.

5 = X.

The command line

o) - 2 x [z

calculates the second term. Repeatedly pressing causes the pre-
vious command to execute again, using the most recently stored value in
X . This repetition gives the successive terms in the sequence, which are
approximately

5, 1.490343, —0.548517, —1.128142, —1.245753

Since the range of the function f(x) = Mt~ 2is (=2, 00), this sequence
is bounded below by the number —2. So long as the sequence continues to
be monotone decreasing, it must converge. With this assurance, we look at
more terms to approximate the limit:

ay, ~ —1.27248018104, a s ~ —1.27248552218,
ay, ~ —1.27248552324

The sequence appears to converge to a number that is approximately equal
to —1.27248552.

There are many applications of sequences. In particular, sequences
may be applied to the investigation of the time course of an S — [ —
S epidemic.” Suppose that physicians issue daily reports indicating the
number of persons who have become infected with a particular disease
and those who have been cured. We shall label the reporting days as
1,2,...,n,...and let N denote the total population. In addition, let

I, = number of persons who have the disease on day n
F, = number of newly infected persons on day n
C,, = number of persons cured on day .

It follows that for every n > 1,

In—i—l = In + Fn+1 - Cn+1'

-Suppose health officials decide that the number of new cases on a given

day is directly proportional to the product of the number ill and the number
not infected on the previous day. (This is known as the law of mass action
and is typical of a population of students on a college campus.) Moreover,
suppose that the number cured each day is directly proportional to the
number ill the previous day. Hence,

F.,y=al(N—-1I) and C, , =0bl,

n

where a and b are positive constants that can be approximated from early

data. Substituting in the preceding formula for 7, ;, we have

I, =1I+al(N—1)-bl.
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In the early stages of an epidemic, I, will be very small compared to N,
and from the point of view of public health, it is better to overestimate
the number ill than to underestimate and be unprepared for the spread of
the disease. With this in mind, we drop the term —a, 12 in the formula for
I ., and investigate the early dynamics of the epidemic by examining the

n+1 €
equation
I.,=1,+aNI, —bl, =(+aN —b),.

n

Ifweletr =1+ aN — b, then InJrl = rI, and, therefore,
L=rl, L=rl=r1, I=rL=r1, ..., [,=r""I,

This gives us the following sequence of numbers of infected individuals:

I,rL, L,
The number » = 1 +aN — b is of critical import. If r > 1, then, by Theo-
rem (8.6)(ii), lim, , I = oo and an epidemic is in progress. In this case,

when n is large, I, is no longer small compared to N, and the formula for
I, ., becomes invalid. If r < 1, then, by Theorem (8.6)(i), lim, _, I_n =0
and health officials need not be concerned. The case r = 1 results in the
constant sequence I}, /1, ..., I}, ...

Exer. 1-16: The expression is the nth term a, of a
sequence {a,}. Find the first four terms and lim, __ a,,

if it exists.

: n ) 6n—35
3n+2 Sn+1
2
- 4
3 7 —4n 4
3+2n2 8~7n
5 -5 6 V2
_ 1
7 (2"7;)(3'” ) 8 8n+1
n’+1
2 100n
= "0
n*+9 nc+4
T L R N
n“+4n+5
1
13 1+ 0.D)" 14 1—2—,,
n+1
15 1+ (=*H 16
+ (=1 N

_1 X ln
20 {tan ”} 21 {1000 —n} 22 [m)—}
n

Exer. 17 — 42: Determine whether the sequence converges

or diverges, and if it converges, find the limit.

7 o(-1)

I8 {8—(%)n] 19 {arctann}

100C
Inn n? 4n4+1
-yr—! 24| —— % 25 {
# {( ) n} {ln(n+1)} {2;#—1]
.
6 {COS”] 27 {%} 28 {e " Inn)
n n
1 n
29 [(1+—) ] 30 {(—1)"n337")
n
i 4n’ + 5n + 1
n+1
33 n’ n’ 34 Insin
— = sin —
m—1 2m+1 nsny
35 {cosmn} 36 [4+sin %nn]
2
37 (nV/M) 38 {;—n]

Exercises 8.1

n~10
39
secn

4]

n2
40 (D"
{( ) 1+n2]

(Vn¥1—n} 42 (Vn*+n—n)

43 A stable population of 35,000 birds lives on three

44

[c]45

[c] 46

islands. Each year, 10% of the population on island A
migrates to island B, 20% of the population on island B
migrates to island C, and 5% of the population on island
C migrates to island A. Let A, , B,, and C, denote the
numbers of birds on islands A, B, and C, respectively, in
year n before migration takes place.

(a) Show that

A,y =094, +0.05C,
B,,, =0.1A, +0.80B,

and
C,11.=095C, +0.20B,.

(b) Assuming that lim A_, lim B_, and

n—oo “'n’ n—00 T n’

lim,_  C, exist, approximate the number of birds

on each island after many years.

A bobcat population is classified by age as kittens (less
than one year old) and adults (at least one year old). All
adult females, including those born the preceding year,
have a litter each June, with an average litter size of three
kittens. The survival rate of kittens is 50%, whereas that
of adults is 66%% per year. Let K, be the number of
newborn Kittens in June of the nth year, let A, be the
number of adults, and assume that the ratio of males to
females is always 1.

(a) Show that

K

3 2 1
n+1:§A and An+1:§An+§Kn.

n+1

(b) Conclude that A, = A, and K, = Bk,

17)" ! 17\" !
and that 4, = (13)" 4, and K, = (B) &
What can you conclude about the population?

Terms of the sequence defined recursively by a; = 5
and @, ; = /@ may be generated on a calculator.

We enter 5 and then either repeatedly press for

a scientific calculator or repeatedly use on a

graphing calculator.

(a) Describe what happens to the terms of the sequence
as k increases.

(b) Show thata, = 52" and find lim a

n—>o0 "n’
If a sequence is generated by entering a number and
repeatedly performing the operation of E, under
what conditions does the sequence have a limit?

IZ' 47 Terms of the sequence defined recursively by a =1
and a; , , = cosa; may be generated on a calculator. On
most graphing calculators, we enter 1| — A and then

[cos]A — A [ENTER]. Repeatedly pressing

will produce successive terms in the sequence.

(a) Describe what happens to the terms of the sequence
as k increases. -

(b) Assuming that lim,  _ a, = L, prove that L =

cos L. (Hint: lim,_ a, ., =1L)

El 48 A sequence {x,} is defined recursively by the formula
Xpp] = X — tanx,.
(a) If x; = 3, approximate the first five terms of the

sequence. Predict lim, | __ x,.

(b) If x, =6, approximate the first five terms of the

sequence. Predict lim, _, _ x,.

(c) Assuming that lim

7 n—>o0 xﬂ
for some integer n.

= L, prove that L = 7tn

E 49 Approximations to /N may be generated from the
sequence defined recursively by

N 1( +N)
=5 Y =5\ %™ )
2 + 2 Xy

(a) Approximate Xys Xz, Xy, Xs, X if N = 10.
(b) Assuming that lim

VN.

|E| 50 The famous Fibonacci sequence is defined recursively
bya,,  =a, +a_, witha; =a, =1.

x, = L, prove that L =

n—oo

(a) Find the first ten terms of the sequence.

(b) The terms of the sequence r, =a ,/a, give
approximations to 7, the golden ratio. Approximate
the first ten terms of this sequence.

(c) Assuming that lim

n—>00 rn
T =1(1+5).

Exer. 51-52: If f is differentiable, then a sequence
{a,} defined recursively by a, 11 =f(a), for k > 1, will
converge for any a, if the derivative f’ is continuous
and | f'(x)| < B < 1 for some positive constant B. (a) For
the given f, verify that the sequence {a,} converges for
any a; by finding a suitable B. (b) Approximate, to
two decimal places, lim,  _a, if a, =1 and also if
a; = —100.

= 7, prove that

51 fla) = %sinak cosa, +1

2
a, -

+2
a,%—i—'l

52 f(a) =
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ey .. S MR : " 2 . : """‘\".':'. Il : ¥ .i_-,..-‘ /i k> 2 nite series masterfully but failed to prove that the results obtained were
' Mathematicians and Their Times

correct. Gauss's insistence on rigor fundamentally changed mathematics.

s oY

: = MR 518 e = CRERIAET B applied mathematics. His work established new directions in number
w AT S Y S v ) ; theory, algebra, non-Euclidean geometry, statistics, differential geometry,

o ; ﬁ Y TO A AT i analytical dynamics, potential theory, magnetism, and optics. His doctoral

_ .1 BORN IN A HUMBLE COTTAGE in Germany, Carl Friedrich Gauss (1777— POV B R Tl thesis, for example, gave the first proof of the fundamental theorem of
Al d . ::::,‘ : M Y 1855), arguably the greatest mathematician who ever lived, seemed i Vi ; Vi [\ | _. e i 2gRie. Eeogpohnginidlgiiiihcomplexicoshiiciencsthastadlloasuione
¥ ¥ g Wl Vi at first destined for a life of poverty and hard physical labor. His fa- VLEY VAL NN R complex root. Not only did this work of a 22-year-old establish an
e N (s AT ther, Gerhard, worked as a gardener and bricklayer, and he expected w Nl Sl ra¥ics i potEprtieopD It Steolal thginoeductionof a'cohefent actoyi

VST ELA Il BT R I Y of complex numbers and their geometric representation, a subject of

his son to do likewise. Although he was scrupulously honest, Ger-

¥ ", hard'’s harsh ways came close to brutality central imporiance in mathepatics.

Y, \ “ V as he tried to prevent Carl from acquir- } j 1-.;.-;5?,-;53— — R,
v \ ing a suitable education. Fortunately, the | Wi Yl i
? boy’s mother, Dorothea, recognized and
: encouraged Carl’s talents.
_ Fl S .o, ; \ _ Gauss’s mental prowess was evident at
VDS _ ! R ) I\ b an extremely young age. Before his third
vl GEN ; i birthday, he found an error in his father’s
VIV BIITRRRIRIVIV | 'cu!ation of s weeldy payroll. His school- 8.2  CONVERGENT OR DIVERGENT SERIES
etV y : Wi\ master confessed that at age 10, Gauss
gt R T S A i had mastered arithmetic so well that “l can teach him nothing more”” .
GBI . , We may use sequences to define expressions of the form
L5 Wil . Eventually, the Duke of Brunswick learned of Gauss’s abilities and took _
\/ ¥y Ui : ' responsibility for financing his education. At age 15, Gauss mastered infi- 0.6 + 0.06 + 0.006 + 0.0006 + 0.00006 + - - -,
' .\ nite series (the subject of this chapter) and gave the first rigorous proof where the three dots indicate that the sum continues indefinitely. In Defini-
LAY g of the general binomial theorem, a result that had been conjectured and tion (8.11), we call such an expression an infinite series. Since only finite
_ L7 p ¢ used by Newton, sums may be added algebraically, we must define what is meant by this
vy _" ' i ) Intellectual historians see Gauss as a transition figure. Felix Klein “infinite sum.” As we shall see, the key to the definition is to consider the
-' Y/ describes Gauss as “the point where historical epochs separate: he is sequence of partial sums {S,}, where S, is the sum of the first k numbers
S & the highest development of the past, which he closes, and the foundation of the infinite series. For the preceding illustration,
. S of the new . .. Gauss is like the highest peak among our Bavarian moun- S =06
: gl v tains ... the gradually ascending foothills culminate in the one gigantic S, = 0.6 +0.06 = 0.66
fiy -~ U . Colossus, which falls away steeply into the lowlands of a new formation, S, = 0.6 -+ 0.06 4 0.006 = 0.666
/ : into which its spurs reach out for many miles and in which the waters }
gushing from it begets new life” * Gauss saw the essence of analysis, the S4 = 0.6+ 0.06 + 0.006 -+ 0.0006 = 0.6666
sl branch of mathematics including calculus, as the rigorous use of infinite and so on. Thus, the sequence of partial sums {S, } may be written
/ Y ) : . Pprocesses. Newton, Leibniz, Euler, and Lagrange all manipulated infi- 0.6, 0.66. 0.666. 0.6666. 0.66666, . . . .

It will follow from Theorem (8.15) that
*Felix Klein, Vorlesungen iiber die Entwicklung der Mathematik, Teil |. Berlin: J. Springer, 1926, em (8.15) |

. 62,
P Sn—>% as n — oo.
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From an intuitive point of view, the more numbers of the infinite series that
we add, the closer the sum gets to % Thus, we write

% = 0.6+ 0.06 + 0.006 + 0.0006 + - - -

and call % the sum of the infinite series.
With this special case in mind, let us introduce terminology that will be
used throughout the remainder of this chapter. In the following definition,

we assume thata, a,, ..., a,, ... are the terms of some sequence.

An infinite series (or simply a series) is an expression of the form
ata,+---+a,+---,

or, in summation notation,

20
D B

n=1

Each number g, is a term of the series, and a, is the nth term.

Sometimes there is confusion between the concept of a series and that
of a sequence. Remember that a series is an expression that represents an
infinite sum of numbers. A sequence is a collection of numbers that are
in one-to-one correspondence with the positive integers. The sequence of
partial sums in the next definition is a special type of sequence that we
obtain by using the terms of a series.

As in the special case introduced at the beginning of this section, we
define the sequence of partial sums of a series as follows.

(i) The kth partial sum S, of the series ) a, is
S =a;+a+--+a.
(i) The sequence of partial sums of the series )_ a,, is
81 85,85, Sy

By Definition (8.12)(),
Sy =a
S,=a,+a,
Sy =a;+a,+a,
Sy =a;+a,+a;+a,.
To calculate S5, S, S;, and so on, we add more terms of the series.
Thus, )4, is the sum of the first one thousand terms of ) a,. If the

sequence {S, } has a limit S, we call S the sum of the series ) a,, as in the
next definition.

8.2 Convergent or Divergent Series

Definition 8.13
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A series ) _ a, is convergent (or converges) if its sequence of partial
sums {S, } converges—that is, if

nlgga S, = 8§ for some real number S.

The limit S is the sum of the series )_ a,, and we write
S=a,+ay+--+a,+-

The series Y a, is divergent (or diverges) if {S,} diverges. A diver-
gent series has no sum.

For most series, it is very difficult to find a formula for §S,. However,
as we shall see in later sections, it may be possible to establish the conver-
gence or divergence of a series using other methods. In the remainder of
this section, we consider several important series for which we car find a
formula for S, .

EXAMPLE®=] Given the series

1 1 1 1
12 23 3t T ey T
(@) find S}, S,, S5, 4, S5, and S
(b) find S,

(<) show that the series converges and find its sum

SOLUTION
(a) By Definition (8.12), the first six partial sums are as follows:
1 1
Si=7—===
1-2 2
LI
27 1.2 2.3 3
S, = ! + ! + ! =§
3712 2.3 3.4 4
S - 1 + 1 1 + 1 :f
4T T 4.5 5
SS=S4+05=-:—+-5L6=2
S¢ =S5 +ags= é+ ! 9
6 6-7 7

(b) To find §,, we shall write the terms of the series in a different way.
Using partial fractions, we can show that

1 1 1

T+ n n+l
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Consequently, the nth partial sum of the series may be written

Sp=aytataz+---+a,
_(1 1 N 1 1 N 11 N 1 1
- 2 2 3 3 4)" " \u nx1)

Regrouping, we see that all numbers except the first and last cancel, and
hence

1
S =1- ==
n+1 n+1
(c) Using the formula for S, obtained in part (b), we obtain
lim S = lim —— =1
n—00 n—oon 4+ 1

Thus, the series converges and has the sum 1. As in Definition (8.13), we
may write
1 1 1 1

1= B R
1-2_1_2-3—*_3-4+ +n(n+l)+

|
The series Y 1/[n(n + 1)] of Example 1 is called a telescoping series,
since writing S, as shown in part (b) of the solution causes the terms to
telescopeto 1 — [1/(n + 1)].

EXAMPLE =2  Given the series

o0
DT =1 ED A LA D+ (=D
n=1

(a') ﬁnd S]7 SZ’ S3, S4, S5, and S6

(b) find S,

(¢) show that the series diverges

SOLUTION
(a) By Definition (8.12),

S;=1, §=0 §=1, §=0 S8=1, and S,=0.
(b) We can write S, as follows:

g = 1 ifnisodd
n 10 ifniseven

() Since the sequence of partial sums {S,} oscillates between 1 and 0, it

follows that lim,_, S, does not exist. Hence, the series diverges.

EXAMPLE =3  Prove that the following series is divergent:

PRI I
27374 TR

8.2 Convergent or Divergent Series

Definition 8.14

- W T

SOLUTION Letus group the terms of the series as follows:
+i+G+h+EG+5+3+9
SR GRS DR ¢ SRR ) B ARR

Note that each group contains twice the number of terms as the preceding
group. Moreover, since increasing the denominator decreases the value of
a fraction, we have the following:

beisd+i=)
brlrdedebebebei=d

T T I AT B

e T ¥ REUPR Y

Since the sum of the terms within each set of parentheses is greater than %
we obtain the following inequalities:

Sy > 1+3+7>3(3)
Sg>1+1i+3+1>43
Se>1+i+3+3+3>503
Spy>l+i+i+i+i+1>60)
It can be shown, by mathematical induction, that
Sy > (k+ 1)(%) for every positive integer k.

It follows that S, can be made as large as desired by taking n sufficiently
large—that is, lim,_, S, = oc. Since {S,} diverges, the given series di-
verges.

We can add numerical support to the inequalities in Example 3 by
computing a few of the partial sums on a calculator or a computer. Using
k=9,10, 11, and 12 gives

Sgp X 681652 S0, A 7.50918
Syoag & 8.20208  S,006 & 8.89510.

Although a calculator or a computer will not provide a proof of conver-
gence or divergence, we frequently have reason to compute partial sums.

The series in Example 3 will be useful in later developments. It is given
the following special name.

The harmonic series is the divergent series

1+1+1+ +-1-+---
2" n '

In the next section, we shall give another proof of the divergence of the
harmonic series.
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Certain types of series occur frequently in solutions of applied prob-
lems. One of the most important is the geometric series

a+ar+ar’ +--- a4+

where a and r are real numbers, with a # 0.

Let a # 0. The geometric series
atar+ar’ 4+ +ar" 4.

< if |r] <1

(i) converges and has the sum § = -

(i) divergesif |r| > 1

PROOF Ifr=1,thenS, =a+a+---+a=na and the series di-
verges, since lim, __ S, does not exist.

If r=—1,then §, =aifk is odd and S, = 0if k is even. Since the
sequence of partial sums oscillates between a and 0, the series diverges.

Ifr # 1, then
S =a+ar+ar’+ - +ar*!

n
and rSn=ar+ar2+ar3+---+ar”.
Subtracting corresponding sides of these equations, we obtain
1-r)S, =a—ar".

Dividing both sides by 1 — r gives us

Consequently,

lim S, = Tim (% — 2
oot T i \T—7 1—r

= lim
n—o00 ] —r

a a
1—r

If |r| < 1,thenlim, " =0, by Theorem (8.6)(i), and hence

lim .
1 —rnsoo

a

lim §, = =5
n—00 1—r

If |r| > 1, then lim, " does not exist, by Theorem (8.6)(ii), and

hence lim,_, S, does not exist. In this case, the series diverges. =

EXAMPLE®=4 Prove that the following series converges, and find its
sum:

6
0.6+ 0.06 +0.006 + - + o + -

8.2 Convergent or Divergent Series

Theorem 8.16
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SOLUTION Thisis the series considered at the beginning of this sec-
tion. It is geometric with @ = 0.6 and = 0.1. Since |r| < 1, we conclude
from Theorem (8.15)(i) that the series converges and has the sum

a 06 06 2

S=17"1-01 09-73

2
Thus, 3= 0.6 4+ 0.06 +0.006 + - - - +

This justifies the nonterminating decimal notation % = 0.66666.. ..

EXAMPLE®=5 Prove that the following series converges, and find its
sum:

.2 2 2

2+§+?+--'+3n_1 + -

SOLUTION The series converges, since it is geometric with r =
% < 1. By Theorem (8.15)(i), the sum is

a 2

If a series Y _ a, is convergent, then n{l;rgoan = 0.

PROOF Thenthterm a, of the series can be expressed as

a, =S8, ~S§

n—1-

If S is the sum of the series ) a,, then we know lim S = S and also

. n—=>00 T n
lim,_ S, , =S.Hence,

Jim g, = Jim (5, =8, = Jim 8, ~ Jim 5, =55 =0. mm

The preceding theorem states that if a series converges, then the limit of its
nthterm a, as n — o0 is 0. The converse is false—that is, if lim,_, __a, =
0, it does not necessarily follow that the series ) a, is convergent. The
harmonic series (8.14) is an illustration of a divergent series ) a, for
which lim,___ a, = 0. Consequently, to establish convergence of a series,
it is not enough to prove that lim, | __a, = 0, since that may be true for
divergent as well as for convergent series.

The next result is a corollary of Theorem (8.16) and the preceding
remarks.
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nth-Term Test 8,17

ILLUSTRATION

Theorem 8.18
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@) If lim a, # 0, then the series ) a, is divergent.
R 00 n 24

(i) If Iinga a, = 0, then further investigation is necessary to deter-
n->

mine whether the series ) a, is convergent or divergent.

The next illustration shows how to apply the nth-term test to a series.

Series nth-term test Conclusion
i n 1
1 == Di , by (8.17)(i

; w1l A1 27 werges. by (8.17)(1)
X1 1
Z — lim — =0 Further investigation is ‘

2 00 72 ..
n=1 "1 n necessary, by (8.17)(ii)
201
Z — lim — =0 Further investigation is
= Vn n=00 \/n necessary, by (8.17)(ii)
o0 en . en )
,; o nlirgo = oo Diverges, by (8.17)(1)

We shall see in the next section that the second series in the illustration
converges and that the third series diverges.

The next theorem states that if corresponding terms of two series are
identical after a certain term, then both series converge or both series
diverge.

If Y a, and 3 b, are series such that a; = b, forevery j > k, where
k is a positive integer, then both series converge or both series di-
verge.

PROOF By hypothesis, we may write the following:

Zan:al+a2+...+ak+ak+l+...+an.}.‘...
anzbl+b2+"'+bk+ak+l+"'+an+"'

Let S, and T, denote the nth partial sums of ) “a, and }_b,, respectively.
It follows that if n > k, then

Sn_SkZTn_Y}c’

or S, =T, + (S, —T).
Consequently, lim § = lim 7, + (S, — T,),
n—oo n—>00

8.2 C6'ni'/efgent or Divergent Series

Theorem 8.19

Theorem 8.20

717

and hence either both of the limits exist or both do not exist. This gives us
the desired conclusion. If both series converge, then their sums differ by
S,— T, =

Theorem (8.18) implies that changing a finite number of terms of a
series has no effect on its convergence or divergence (although it does
change the sum of a convergent series). In particular, if we replace the first
k terms of )~ a, by 0, convergence is unaffected. It follows that the series

G Ty T ta, +

converges or diverges if ) a, converges or diverges, respectively. The
series a; | +a;,, +--- is obtained from } a, by deleting the first k
terms.

Let us state this result for reference as follows.

For any positive integer k, the series

o0

o0
Zan=a1+a2+--- and Zan=ak+l+ak+2+~-
n=] n=k+1

either both converge or both diverge.

EXAMPLE®™é  Show that the following series converges:

1

. (n+2)n—+3)
SOLUTION The series can be obtained by deleting the first two
terms of the convergent telescoping series of Example 1. Hence, by Theo-
rem (8.19), the given series converges.

The proof of the next theorem follows directly from Definition (8.13).

If 3" a, and ) b, are convergent series with sums A and B, respec-
tively, then
() > _(a, +b,) converges and has sum A + B
(i) Y ca, converges and has sum cA for every real number ¢
(iii) Y (a, — b,) converges and has sum A — B

It is also easy to show that if ) a, diverges, then so does ) ca, for
every ¢ # 0.
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EXAMPLE=7 Prove that the following series converges, and find its

sum:
> l: 7 4 2
Z nin+1) 3"‘1]

n=1

SOLUTION The telescoping series Y 1/[n(n + 1)] was considered
in Example 1, where we found that it converges and has the sum 1. Using
Theorem (8.20)(ii) with ¢ =7 and a, = 1/[n(n + 1)], we see that the
series »_7/[n(n + 1)] converges and has the sum 7(1) = 7.

The geometric series Y 2/3"~! converges and has the sum 3 (see Ex-
ample 5). Hence, by Theorem (8.20)(i), the given series converges and has
the sum 7 + 3 = 10.

If 3 a, is a convergent series and Y b, is divergent, then the series
> (a, + b,) is divergent.

PROOF Asin the statement of the theorem, let Y a, be convergent
and )" b, be divergent. We shall give an indirect proof—that is, we shall
assume that the conclusion of the theorem is false and arrive at a contra-
diction. Thus, suppose that ) (a, + b,) is convergent. Applying Theorem
(8.20)(iii), we find that the series

Z[(an +b,)—a,]= an

is convergent. This result contradicts the fact that b, is divergent, and
hence our supposition is false—that is, > *(a, + b,) is divergent. ==

EXAMPLE®8 Determine the convergence or divergence of the

series
i 1+1
—\5" n/)’
n=1

SOLUTION Since Y (1/5") is a convergent geometric series and
>-(1/n) is the divergent harmonic series, then by Theorem (8.21), the
given series diverges.

Infinite series often occur in applications in which we want to esti-
mate the long-term behavior of a process that changes at regularly spaced
intervals. The next example illustrates such a situation.

EXAMPLE=9 A chemical plant produces pesticide that contains a
molecule potentially harmful to people if the concentration is too high. The
plant flushes out the tanks containing the pesticide once a week, and the
discharge flows into a river that feeds the water reservoir of a nearby town.

8.2 Convergent or Divergent Series
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The dangerous molecule breaks down gradually in water so that 90% of
the amount remaining each week is dissipated by the end of the next week.
Suppose that D units of the molecule are discharged each week.

(a) Find the number of units of the molecule in the river after n weeks.

(b) Estimate the amount of the molecule in the water supply after a very
long time.

(¢) If the toxic level of the molecule is T units, how large an amount of the
molecule can the plant discharge each week?

SOLUTION

(a) Let A, dencte the amount of the molecule in the river immediately
after the nth weekly discharge. The amount A, is equal to the amount of
the current discharge plus the amount remaining from previous discharges.
Since 90% of the molecule that was in the river the week before is now
gone, only 10% remains, so we have

1
n == D+ EAn—l'

Ay=D+ A, =D+ +D=D(1+ %)
and
\2
Ay =D+ A, =D+ 5 [D (14 15)] = D1+ () + ()]
Similarly, we obtain
. 2 3
Ay =D+ {54y = D1+ () + () + ()]

We can show, by mathematical induction, that the amount of the molecule
in the reservoir after n weeks is

A=D1 () + () -+ ()],

(b) As n increases, the amount of the molecule in the water supply ap-
proaches

D[ (i) + (o) o () 4]

which is a geometric series witha = D and r = %. By Theorem (8.15)(1),
the series converges to

D 10D

1
-1 9

S =

Hence, in the long run, the water supply will contain about %0 D units.
(¢) To keep the long-term level below T units, we must have

10D
—<T
9

9
or D<ET,

so the plant can discharge up to 90% of the toxic level each week.
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We may apply infinite series to the § — I — S epidemic discussed at
the end of Section 8.1. Suppose that instead of I, (the number ill on day
n), we are interested in the total number S, of individuals who have been
ill at some time between the first and nth days. As in our earlier discussion,
let us overestimate S, by approximating the number F, w41 Of new cases on
dayn+1byaNI,. Thus

SnZII+F2+F3+F4+"'+Fn

=L +aNIl,+aNl,+aNIl,+---+aNI _,

Recalling that I/, = . I, withr =1+ aN — b, we obtain

S,=1;+aNI +aNrl +aNr211 +__,+aNrn—211
=1 +aNI(l tr+rta ,.‘+rn—2).
As in the proof of Theorem (8.15), this may be written

If r < 1, then

1 ol
S,=h+aNh | — - 1—).

1
lim §, =1, +aN] <1 )

n—00

=1 1+ 2N
-l b—aN

T M\p—aN )

If a and b are approximated from early data, this result enables health
officials to determine an upper bound for the total number of individuals
who will be ill at some stage of the epidemic.

- EXERCISES 8.2

B —— T e

Exer. 1-6: Use the method of Example 1 to find
(a) Sy, S,, and S3; (b) S,; and (c) the sum of the series,
if it converges.

-2 00
(2n+5)(2n+3) 2 Z n +2)(5n+7)

n=1
1 o0
3 4
izt 4n®—1 ,;9,1 +3n—2
. n
5 In
’; n+1

1
6 ———— (Hint: Rationalize the denominator.)
n; T4 /n
Exer. 7-16: Use Theorem (8.15) to determine whether

the geometric series converges or diverges; if it converges,
find its sum,

3 3 3
73+ 7+ — + -
8 3+ 3 + 3

(-4 (—4)n1

Exercises 8.2

_1 _1 n—l
NG NG
e e\n—1
10 1+(SY+...o (8
+<3)+ +(3) +
Il 037 +0.0037 +---+ 37 +
| : ’ (100)"

628
(1000)”

14 Z (=5)n 14
n=1

16 i(ﬁ)"-l
n=1

+

12 0.628 + 0.000628 + - - - + ————
00

13 Zz—n?,n—l
n=1
0

15 3" (1!
n=1

Exer. 17-20: Use Theorem (8.15) to find all values of x
for which the series converges, and find the sum of the
series.

17 1—x+x2 x4 (1)
18 14x2+x* 4. x2 g

1 (x—3) (x—23)2 (x —3)"
19 -
2Jr 4 + 8 + ontl
_12 . n
20 34 -+ XD, L&D
3 3n—1

Exer. 21-24: The overbar indicates that the digits
underneath repeat indefinitely. Express the repeating
decimal as a series, and find the rational number it
represents.

21 0.23 22 5.146
23 3.2394 24 271828
Exer. 25-32: Use Example 1 or 3 and Theorem (8.19)

or (8.20) to determine whether the series converges or
diverges.

1 1 1

25— _— 4 p—
1556 T T i nmta T

6 — 4 1 + 4 ! +
10-11 " 11-12 (n + 9)(n + 10)
5 5

27 4~ 4
1.2+2.3Jr +n(n+])+
-1 -1 -1

28 — 4 44
1-24_2-3+ +n(n-l—l)+

29 1+1+ bt +
4 5 n+3

306 +7 4 +5 T +

72]

3w

3
33424
ot

4 4
32 42— ... _ ..

3 n
Exer. 33-40: Use the nth-term test (8.17) to determine
whether the series diverges or needs further investigation.

3n

gk

s 1
33 34 -
~ Sn—1 ;1+(03)"
X1 1
35 36

1

37 38

i
5
g
=
g
3|

n

39 e —
n(n + 1)

40

uMg
2

2n
n
Tn—5
Exer. 41 -48: Use known convergent or divergent series,

together with Theorem (8.20) or (8.21), to determine
whether the series is convergent or divergent; if it

converges, find its sum.
1\" 3\" 3\" 2\"
D3] =26 +6)]
LG +G)] Xl +G
(7-+)
« 3n 4

3
I
—_

S
N
gk

S

2
Mz

43 ) (27" —27%

n=1 n

2 T1
45 —
>[5+ o)
> 4
46 ==
Z l:n(n +1) n:'
(5 5
47 —
Z <n +2 n+ 3)
s 1 1
48 -
X:: <n +1 n)
EI Exer. 49 - 50: For the given convergent series, (a) approx-

imate S;, S,, and S; to five decimal places and (b) ap-
proximate the sum of the series to three decimal places.

o
sinn 50 Z Jn

E] 51 Let Sn be the nth partial sum of the harmonic series. If
M = 3, use the method of Example 3 to find a positive
integer m such that S > M, and approximate S, to
two decimal places.

E 52 Work Exercise 51 if M = 8.
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Exer. 53-56: Compute partial sums S, for the series,
using n = 4, 8, 12, 16, and 20.

53

55

57

58

59

60

61

62

63

X1 i 1
- 54 -
n=1" n=1ﬁ
[0,9] o
P 56 ) =
n=1n +l’l+1 n=le

Prove or disprove: If )~ a, and ) b, both diverge, then
> (a, + b,) diverges.

What is wrong with the following “proof” that the
divergent geometric series Y0 ;(—1)"*! has the sum
0? (See Example 2.)

i(_l)n+l
n=1

= [+ DI+ [+ DI [+ D]+
=04+0+0+---=0

A rubber ball is dropped from a height of 10 m. If
it rebounds approximately one-half the distance after
each fall, use a geometric series to approximate the total
distance that the ball travels before coming to rest.

The bob of a pendulum swings through an arc 24 cm
long on its first swing. If each successive swing is
approximately five-sixths the length of the preceding
swing, use a geometric series to approximate the total
distance that the bob travels before coming to rest.

If a dosage of Q units of a certain drug is administered
to an individual, then the amount remaining in the
bloodstream at the end of # minutes is given by Qe ™,
where ¢ > 0. Suppose this same dosage is given at
successive T-minute intervals.

(a) Show that the amount A(k) of the drug in the
bloodstream immediately after the kth dose is given

by A(K) = 3,25 Qe ™7
(b) Find an upper bound for the amount of the drug in
the bloodstream after any number of doses.

(c) Find the smallest time between doses that will
ensure that A(k) does not exceed a certain level M
for M > Q.

Suppose that each dollar introduced into the economy
recirculates as follows: 85% of the original dollar is
spent, then 85% of that $0.85 is spent, and so on.
Find the economic impact (the total amount spent) if
$1,000,000 is introduced into the economy.

In a pest eradication program, N sterilized male flies are
released into the general population each day, and 90%
of these flies will survive a given day.

64

65
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(a) Show that the number of sterilized flies in the
population after n days is

N+ (09N +---+ (09" !N,

(b) If the long-range goal of the program is to keep
20,000 sterilized males in the population, how many
such flies should be released each day?

A certain drug has a half-life in the bloodstream of about
2 hr. Doses of K milligrams will be administered every
4 hr, with K still to be determined.

(a) Show that the number of milligrams of drug
in the bloodstream after the nth dose has been
administered is

K+ 3K+ + @ 'K,

and that this sum is approximately %K for large
values of n.

(b) If more than 500 mg of the drug in the bloodstream
is considered to be a dangerous level, find the lgirgést
possible dose that can be given repeatedly over a
long period of time.

(c) Refer to Exercise 61. If the dose K is 50 mg, how
frequently can the drug be safely administered?

The first figure shows some terms of a sequence of
squares S}, S,,...,S;,.... Leta,, A, and P, denote
the side, area, and perimeter, respectively, of the
square S,. The square S, ;| is constructed from S, by
connecting four points on S, with each point a distance

of %ak from a vertex, as shown in the second figure.

(a) Find a relationship between a;_; and a;.
(b) Finda,, A,, and P,.

n K
o0 o0

(c) Calculate Z P and A,.
n=1 1

n=

Exercise 65

8.3 Positive-Term Series

66 The figure shows several terms of a sequence consisting

Exercise 66
of alternating circles and squares. Each circle is

inscribed in a square, and each square (excluding the

largest) is inscribed in a circle. Let S, denote the area of

the nth square and C, the area of the nth circle.

(a) Find relationships between S, and C, and between

C,andS,,,.
(b) What portion of the largest square is shaded in the
figure?
8.3 POSITIVE-TERM SERIES
v i '@ In the preceding section, we established the convergence or divergence of

Theorem 8.22

several series by finding a formula for the nth partial sum S, and then
determining whether or not lim, , S, exists. Unfortunately, except in
special cases such as a geometric series or a telescoping series, it is often
impossible to find an explicit formula for S, . However, we can develop
tests for convergence or divergence of a series ) a, that use the nth term
a,. These tests will not give us the sum S of the series, but instead will
tell us only whether the sum exists. This result is sufficient in most appli-
cations, because knowing that the sum exists, we can usually approximate
it to any degree of accuracy by adding a sufficient number of terms of the
series.

In this section, we consider only positive-term series—that is, series
> a, such that a, > O for every n. Although this approach may appear
to be very specialized, positive-term series are the foundation for all of
our future work with series. As we shall see later, the convergence or
divergence of an arbitrary series can often be determined from that of a
related positive-term series.

The next theorem shows that to establish convergence or divergence of
a positive-term series, it is sufficient to determine whether the sequence of
partial sums {S, } is bounded.

If 3" a, is a positive-term series and if there exists a number M such
that

S, =ay+a+-+a, <M

for every n, then the series converges and has a sum § < M. If no
such M exists, the series diverges.
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Figure 8.8

y = flx)

H
[\®]
(U8
i
(9]

~
>

=Y

CHAPTER 8 Infinite Series

PROOF If {S,} is the sequence of partial sums of the positive-term
series ) a,, then

S;<§ <<, <

and therefore {S,} is monotonic. If there exists a number M such that
S, < M for every n, then {S,} is bounded monotonic. As in the proof of
Theorem (8.9),

lim §, =S <M

n—>00
for some S, and hence the series converges. If no such M exists, then

lim, 8, = oo and the series diverges. =

We may use the nth term a,, of a series ) _ a, to define a function f such
that f(n) = a, for every positive integer n. In some cases, if we replace n
with x, we obtain a function that is defined for every real number x > 1.
For example,

. 1 1
given Z—Z let f(n)=?.

n=1 1

Replacing n with x, we obtain f(x) = 1/x2, which gives us the desired
function f. Note that

o8] 1 o0
Yo=Y =FM+ F@Q+ A f)+

17

—

n= n=

The next result shows that if a function f obtained in this way satisfies
certain conditions, then we may use the improper integral . 1°° fx)dx to
test the series > o, f(n) for convergence or divergence.

Iy a, is a series, let f(n) = a, and letf be the function obtained
by replacing n with x. If f is positive-valued, continuous, and de-
creasing for every real number x > 1, then the series a,

(i) converges if [, 1°° f(x) dx converges

(i) diverges if [ 1°° f(x) dx diverges

PROOF Asinthehypotheses, welet f(n) = a, and consider f(x) for
every real number x > 1. A typical graph of this positive-valued, continu-
ous, decreasing function is sketched in Figure 8.8. If n is a positive integer
greater than 1, the area of the inscribed rectangular polygon illustrated in
Figure 8.8 is

n

YR =@+ fB) 4+ f).

k=2

8.3 Positive-Term Series

Figure 8.9

Ay

y = flx)

12345 / n X

Similarly, the area of the circumscribed rectangular polygon illustrated in
Figure 8.9 is

n—1
DR =M+ FQ++ fn—1).
k=1

Since J] f (x) dx is the area under the graph of f from 1 to n,

n n n—1
Yrw = rwar<y s,
k=2 1 k=1

Let S, be the nth partial sum of the series f(1)+ f(2)+--- + f(n) + ---,
then this inequality may be written

s, - f(1) < f “fwdr <,
1

The preceding inequality implies that if the integral [ 1°° Jf(x)dx converges
and equals K > 0, then

S, —f)<K, or S, <K+ f(l)

for every positive integer n. Hence, by Theorem (8.22), the series ) f(n)
converges.
If the improper integral diverges, then

n
lim fx)dx = o0,
n—oo 1

and since fln fx)dx <§,_,, we also have lim,__ S, _;, = co—that is,
the series Y f(n) diverges. ==

In using the integral test (8.23), it is necessary to consider
o t
J f(x)dx = lim f f(x)dx.
1 =0 1

Thus, we must integrate f(x) and then take a limit. If f(x) is not readily
integrable, a different test for convergence or divergence should be used.

EXAMPLE® |  Use the integral test (8.23) to prove that the harmonic
series
RS SR
2 3 n

diverges (see Example 3 of Section 8.2).

SOLUTION Since a, = 1/n, we let f(n) = 1/n. Replacing n by
x gives us f(x) = 1/x. Because f is positive-valued, continuous, and
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decreasing for x > 1, we can apply the integral test (8.23):

*1 . "1 . :
—dx = lim —dx = lim [lnx]1
1 X >0 J1 X t—00

= lim([lnt —Inl] = cc
—>o0

The series diverges, by (8.23)(ii).

EXAMPLE®2 Determine whether the infinite series ) ne™™ con-

verges or diverges.

SOLUTI OZN Since a, = ne_”z, we let f(n) = ne™™ and consider

f(x) =xe™ . If x > 1, then f is positive-valued and continuous. The

first derivative may be used to determine whether f is decreasing. Since
fl(x)= e —2xte ™ = e (1—-2x% <0,

f is decreasing on [1, 00). We may therefore apply the integral test as
follows:

00 t
J xe ¥ dx = lim | xe ™ dx = lim [(—%) e_x]
1

=00 fy [—>00

1\ .. 1 1
={|—=) lim —T —
2 ) 100 | ) e

Hence the series converges, by (8.23)(i).

1
2e

In Example 2, we proved that the series ) ne - converges and there-

fore has a sum S. However, we have not found the numerical value of S.

The number 1/(2¢) in the solution is the value of an improper integral, not

the sum of the series. If desired, we could approximate S by using a partial
sum S, , with n sufficiently large. (See Exercise 59.)

An 1ntegra1 test may also be used if the function f satisfies the condi-
tions of (8.23) for every x > k for some pos1t1ve integer k. In this case, we
merely replace the integral in (8.23) by f f(x) dx. This corresponds to
deleting the first k — 1 terms of the series.

The following series, which is a generahzat10n of the harmonic series
(8.14), will be useful when we apply comparision tests later in this section.

A p-series, or a hyperharmonic series, is a series of the form

] 1 1 1 1
21;;—- +-2—;+'3—1;+"'+;5+"'
A=

where p is a positive real number.

Note that if p = 1 in (8.24), we obtain the harmonic series. The fol-
lowing theorem provides information about convergence or divergence of
p-series.

727
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Theorem 8.25
The p-series Z

n=1
() convergesif p > 1
(ii) divergesif p <1

PROOF  The special case p = 1 is the divergent harmonic series. Sup-
pose that p is a positive real number and p # 1. We use the integral test
(8.23), letting f(n) = 1/n? and considering f(x) = 1/x? = x~P. The
function f is positive-valued and continuous for x > 1. Moveover, for
these values of x we see that f/(x) = —px~? ~1 <0, and hence f is de-
creasing. Thus, f satisfies the conditions stated in the integral test (8.23),
and we consider

00 1 t xl—p t
f — dyx=1im | x Pdx = lim
1 X =00 Jq t—oo| 1 — p

1

l-p _
1—pt1—1>nolo(t D.

If p > 1, then p — 1 > 0 and the last expression may be written

1 ) 1 1 1
—— lim { — -1 —0-1)= ——
l—pH°°<t" ) 1—p ©=b= p-1
Thus, by (8.23)(i), the p-series converges if p > 1.
If0<p<1,thenl - p > 0and

lim (1177 — 1) = 00
1—pt—>oo

Hence, by (8.23)(ii), the p-series diverges.
If p <0, then lim,  __(1/n?) # 0 and, by the nth-term test (8.17)(i),
the series diverges. W

The following illustration contains some specific p-series.

ILLUSTRATION

p-Series Value of p Conclusion
1 1 1
Zn_2=1+?+?+... p=2 Converges, by
n=1 (8.25)(1), since 2 > 1
i 1 1 1 1
=l — .. p=s5 Diverges, by

= V2 V3 (8.25)(ii), since 1 < 1
o0

1 1 1 3
ZWZI—FW—F@—FW p=3 Converges, by
n=1 (8.25)(i), since 3 > 1

1
+ 7 4 p=1% Diverges, by
(8.25)(ii), since 3 < 1
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The next theorem allows us to use known convergent (divergent) series
to establish the convergence (divergence) of other series.

Let ) a, and }_ b, be positive-term series.
() If 3 b, converges and a, < b, for every positive integer n,
then ) a, converges.
G) If 3_b, diverges and a, > b, for every positive integer n,
then )" a, diverges.

PROOF LetS, and T, denote the nth partial sums of ) Ja, and }_b,,
respectively. Suppose ) _ b, converges and has the sum 7. If a, < b, for
every n, then S, <7, < T and hence, by Theorem (8.22), } a, con-
verges. This proves part (i).

To prove (ii), suppose )b, diverges and a, > b, for every n. Then
S, > T, and since T, increases without bound as n becomes 1nﬁn1te S0
does S, Consequently, > a, diverges. =

The convergence or divergence of a series is not affected by deleting
a finite number of terms, so the condition a, <b,ora, > b, of (8.26) is
only required from the kth term on, for some positive integer k.

A series ) _d, is said to dominate a series Y ¢, if d, > ¢, for every
positive integer n. In this terminology, (8.26)(i) states that a positive-term
series that is dominated by a convergent series is also convergent. Part (ii)
states that a series that dominates a divergent positive-term series is also

divergent.

EXAMPLE®=3 Determine whether the series converges or diverges:
i 1 i 3

(@) (b)
2t 5" n=2 Vn -

SOLUTION
(a) Foreveryn > 1,

1 1 1\"
—— < ===,
245" 5 5

Since ) (1/5)" is a convergent geometric series, the given series con-
verges, by the basic comparison test (8.26)(i).
(b) The p-series Y 1/4/n diverges, and hence so does the series obtained
by disregarding the first term 1/+/1. If n > 2, then
1 1 3 1

NS > ﬁ and hence ﬁ > ﬁ
It follows from the basic comparison test (8.26)(ii) that the given series
diverges.

8.3 Positive-Term Series

Limit Comparison Test 8.27

Figure 8.10

PR

NSRS

=Y

When we use a basic comparison test, we must first decide on a suitable
series ) b, and then prove that either a, < b, or a, > b, for every n
greater than some positive integer k. This proof can be very d1fﬁcult ifa,
is a complicated expression. The following comparison test is often easier
to apply, because after deciding on ) b, , we need only take a limit of the
quotient a, /b, as n — oo.

Let } a, and 3 b, be positive-term series. If there is a positive real
number ¢ such that

. a,
Iim -2 =¢ >0,
n— 00 bn

then either both series converge or both series diverge.

PROOF [Iflim,  _(a,/b,) =c>0,thena,/b, iscloseto cifn is
large. Hence, there exists a number N such that

¢ < n < 3 wheneve N

- < < — enever >

2 b, "2 :

(see Figure 8.10). This is equivalent to

3¢
—b <a, < 7b whenever n > N.

2 n

If the series ) _ a, converges, then }"(c/2)b, also converges, because it is
dominated by} a,. Applying (8.20)(ii), we find that the series

Sh=(2)(5)n

Conversely, if ) ' b, converges, then so does )" a,, since it is dominated
by the convergent series Y (3¢/ 2)b,. We have proved that ) a, converges
if and only if } ' b, converges. Consequently, > a, diverges 1f and only if
> b, diverges. -

If, in (8.27), the limit equals O or oo, it may be possible to determine
whether the series ) a, converges or diverges by using the comparison
test stated in Exercise 51 or 52, respectively.

To find a suitable series ) b, to use in the limit comparison test (8.27)
when a, is a quotient, a good procedure is to delete all terms in the numer-
ator and the denominator of a, except those that have the greatest effect
on the magnitude. We may also replace any constant factor ¢ by 1, since
2_b, and Y cb, either both converge or both diverge (see Theorem 8.20).
The next 111ustrat10n demonstrates this procedure for several series Y a,.
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Deleting terms of

a, least magnitude Choice of b, in (8.27)
3n+1 3n 3 _1_
4n3 +n* =2 4n®  4n? n?

5 5 5

1
Vn+2om+17 \/,?_n n
m \3/?_”2/3 1

6nt—n—1 W_Eﬁzsn““ n4T

EXAMPLE®= 4 Determine whether the series converges or diverges.
. 3n2 +5n

b —
( )n=1 2"(n* + 1)

i 1
(@) —

r;\/anz‘f‘l
SOLUTION

(a) The nth term of the series is
1

\/3 n?+ 1.
If we delete the number 1 in the radicand, we obtain b, = 1 / \/3 nz, which

is the nth term of a divergent p-series, with p = % Applying the limit
comparison test (8.27) gives us the following:

an=

. a . /n? .3 n’
nlingo—bf :nllzgom :nlggo I’l2+1 =1 >0

Since ) _ b, diverges, so does ) _a,,.

It is important to note that we cannot use b, = 1/ \3/;5 with the basic
comparison test (8.26), because a, < b, instead of a, > b,,.
(b) The nth term of the series is

_ 3n*+5n

Deleting the terms of least magnitude in the numerator and the denomina-
tor, we obtain

3n2 3

2"n? T
and hence we choose b, = 1/2". Applying the limit comparison test (8.27)
gives us

3n*+50 2" 3n? 45
lim 22 = fim o T 2 g M 5,
n—00 bn X—>00 2"(1’! +1 1 x—00 pt 41
‘Since, by Theorem (8.15)(i), Y b, is a convergent geometric series (with
r= % < 1), the series ) _ a, is also convergent.

8.3 Positive-Term Series

: 8n + /n
EXAMPLE®S5 lLeta, = —-2—\/—7— Determine whether ) a,
i 5+n*4-n'?
converges or diverges.

SOLUTION To find a suitable comparison series an, we delete
all but the highest powers of n in the numerator and the denominator,
obtaining

8n 8

n7/2 n5/2'

Applying the limit comparison test (8.27), with b, = 1/ n/2, we find
a 8n+n'/2  pd?
lim -* = lim ————~ - ——
n—00 bn n—00 5 4 I’l2 4+ n7/2 1
8 7/2 3
= lim —— " __g.0
n—>o0 5 +n2 +n7/2

Since ) b, is a convergent p-series with p = % > 1, it follows from (8.27)
that )" a, is also convergent.

With a programmable calculator or a computer, it is relatively easy
to find the nth partial sum S, for a given infinite series. If the infinite
series converges to the sum S, then given an € > 0, we can find an N such
that S, is within € of S. In some cases, we can determine a value for
N without explicitly knowing S. Whenever this is possible, we can obtain
good approximations to the sum of the infinite series. One such case occurs
when the terms of {a, } form a positive, decreasing sequence.

As in the integral test (8.23), if Y a, is a series, let f(n) = a, and let
f be the function obtained by replacing n with x. If f is continuous and
decreasing for x > N for some integer N, then it can be shown that the
error in approximating the sum of the given series by Zflv:l a, is less than
i} :,Q £f(x) dx (see Exercise 53).

EXAMPLE®6  Approximate the sum of the series 3 o, (1/n°) with
an error smaller than 107,

SOLUTION The given series converges by Theorem (8.25) with p =
3. The function f(x) = 1/x is positive, continuous, and decreasing for all
x > O—the last condition is true since f(x) = —3/x% is negative. We also
have

o0 ool tl
f f(x)dx=f —dx=lim | —dx
N N X

=00 N X

. [-17 . [-1 1 1
= lim — | = lim —St-5 ==
=00 | 2x° |y 1P| 2t 2N 2N
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From the result of Exercise 53, we see that Zflv 1(1/n?) is within 1/(2N?)
of the sum of the infinite series Z ° [(1/n%). If we wish the error in our
approximation to be less than 1073 , then we must choose N such that

Exercises 8.3

- EXERCISES 8.3

1 .
a2 < 1072, Exer. 1-12: (a) Show that the function f determined Exer. 29 —46: Determine whether the series converges or
IN by the nth term of the series satisfies the hypotheses of diverges.
which is equivalent to N2 > 10°/2 = 50,000, or N > /50,000 ~ 223.6. thg iﬁtegtf;l test. (b) Use the “(‘fiegerralefst 0 detcrmine Yo S 2+ so S dnd 4 1
Thus, by summing the first 224'5 terms, we can approximate ) o, (1/ n) L eooer & SERES COIVERSES OF OOV g '1 ; FEN Z mS rat 42
with an error smaller than 107°. A simple computer program yields | Z % Z 732 % 1o o 3,
the result 3 22 (1/n%) ~ 1.20204698, which is our approximation to n=1 (3+42n) e CENONE 30Yy Ty 32 ) 7
3% ,(1/n*). By our error estimate, we have 3 i 1 i n n=l n=t
2 0 1 >, Inn
= i A t7 il 33— 34 S 27
1.20204698 < ) — < 1.20204698 + 0.000005. o oo | = ety — p
iy 2,-n’
n=1 SZne" Zn(zn_s) oo 1 % © 4 4lnn
Thus, the true value of 322 (1/n%) lies in the interval n=l ”:03 35 2; Yon + 1 Z 2 4n+1
X, inn 1 n= n=l
1.20204698, 1.20205198]. 7 — 8 ) o0 >
[ » 1.20205198] ’; n = n(inn)? 37 Z ne " 38 Z 1
- . o | . = e nin+ 1D +2)
We c.onclude this section Wth severfﬂ. general remarks about positive- ; av/nZ — 1 ’; n—3 n 39 Z sin 1 40 Z tan —
term series. Suppose that ) a, is a positive-term series and the terms are o o ) —_ n? = N
: arctann ~
grouped in some manner, such as ! 11 arc 12 _ 00 3 00
,;1+n2 gl+16n 4,2M £ Z”““”
(ay+ay +ay;+(a,+as+ag+a,)+-- - — 4 1)? =l
i Exer. 13-20: Use a basic comparison test to determine R 00
If we denote the last series by )b, so that whether the series converges or diverges. 43 Z mt Zn 44 Z In (1 + in)
by=a,+a, by=a;, by=a,+a5+ag+a, ..., 00 1 i J monts n=1 2
13 e 14 o 0 n
then any partial sum of the series ) b, is also a partial sum of > a . It ,; nt+n?+1 “nt+ ] 45 Z Inn 46 Z s +n2
follows that if ) a, converges, then )b, converges and has the same © 2+ cosn n=1 " 1 nt>
sum. A similar argument may be used for any grouping of the terms of 15 Z pE 16 Z — . & for which th
Y a,. Thus, if a positive-term series converges, then the series obtained n=1 n=l Exo.sr. 47-48: Find every real number k for which the
by grouping the terms in any manner also converges and has the same 17 >, arctann I8 i arcsec n SETies converges.
sum. We cannot make a similar statement about arbitrary divergent series. nX_; n —~ (0.5 47 Z 3 i 1
For example, the terms of the divergent series Y (—1)" may be grouped to o ) = | n*Inn “— n(lnn)*
Procli\}lceta convergt:}rllttserles (see E)t(er01§§ 58tof Sectlpn 8.2). . 19 Z = 20 Z - 49 (a) Use the proof of the integral test (8.23) to show that,
ext, suppose that a convergent positive-term series ) a, has the sum _ n=1 n=1 for every positive integer n > 1,

S and that a new series » b _is formed by rearranging the terms in some .
z " Y ing Exer. 21-28: Use the limit comparison test to determine

way. For example, 3 by, could be the series whether the series converges or diverges. Inn+1) <1+ % + % 4ot ! < 1+1Inn.
a,+ag+a t+as+a;,+a;+---. . ©  Jn ZZi 5 n

If T, is the nth partial sum of ) b,, then it is a sum of terms of ) _a,. If r; n+4 —3+n (b) Estimate the number of terms of tﬁlgoharmomc series

m is the largest of the subscripts associated with the terms a, in T, then 00 1 00 . that should be added so that S, > 100.

T, < S, <S§. Consequently, T, < S for every n. Applying Theorem 23 Z T——— 24 Z CECES) 50 Consider the hypothetical problem illustrated in the

(8.22), we find that )" b, converges and has a sum 7 < S. The preceding n=2 V4n~ —5n i Y " figure on the following page: Starting with a ball of radius

X 8yt _7 X 3m+5 1 ft, a person stacks balls vertically such that if 7, is the
o Z 1)2 26 Z n2" radius of the kth ball, thenr, | = r,\/n/(n + 1) for each
positive integer n.
(a) Show that the height of the stack can be made
arbitrarily large.

proof is independent of the particular rearrangement of terms. We may
also regard the series ) a, as having been obtained by rearranging the
terms of )b, and hence, by the same argument, S < 7. We have proved

o0 - 00
that if the terms of a convergent positive-term series ) _ a, are rearranged 27 E ! 28 E
in any manner; then the resulting series converges and has the same sum. n=




<\

(b) If the balls are made of a material that weighs
11b/f%, show that the total weight of the stack is
always less than 477 pounds.

Exercise 50

51 Suppose that ) a, and ) b, are positive-term series.
Prove that if lim, , (a,/b,) =0 and )_ b, converges,
then ) a, converges. (This is not necessarily true for

series that contain negative terms.)

52 Prove that if lim,_, (a,/b,) = oo and }_ b, diverges,
then ) a, diverges.

53 Let ) a, be a convergent, positive-term series. Let
f(n) = a,, and suppose f is continuous and decreasing
for x > N for some integer N. Prove that the error in
approximating the sum of the given series by Z,I:’:l a,
is less than f;o Ff(x)dx.

Exer. 54-56: Use Exercise 53 to estimate the smallest
number of terms that can be added to approximate the
sum of the series with an error less than E.

x M|
54 Zn_z; E =0001 55 2—4; E =0.01

n=1 n=1
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2
6 § . E =005
“= n(lnn)?

57 Prove that if a positive-term series ) a, converges, then
Y_(1/a,) diverges.

58 Prove that if a positive-term series ) a, converges,
then }_ /@ @, | converges. (Hint: First show that the
following is true: /@@ | < (a, + an+1)/2.)

Exer. 59-64: Approximate the sum of the given series

to three decimal places. (Use Exercise 53 to justify the
accuracy of your answer.)

0] N o0 3
59 Zne‘" 60 ane_"

n=1 n=1

o 00 el/"
61 > — 62 ) —

n=1 n4 n=1 "

S Inn X, o~V
63 — 64

2 2

n

E 65 Graph, on the same coordinate axes, y =x and y =

ln(xk) for k=1,2,3 and 1 < x < 20. Then uge the
graphs to predict whether the series Zf;z(l/ln(nk))
converges or diverges for k = 1, 2, and 3.

E‘ 66 Graph, on the same coordinate axes, y = x and y =

(lnx)k for k=1,2,3 and 1 < x < 200. Then use the
[o.0)

graphs to predict whether the series Y22, (1/(Inn)*)
converges or diverges for k = 1,2, and 3.

8.4  THE RATIO AND ROOT TESTS

For the integral test to be applied to a positive-term series ) a, with
a, = f(n), the terms must be decreasing and we must be able to integrate
f(x). These conditions often rule out series that involve factorials and
other complicated expressions. In this section, we examine two tests that
can be used to help determine convergence or divergence when other tests

are not applicable. Unfortunately, as indicated by part (iii) of both tests,
they are inconclusive for certain series.

8.4 The Ratio and Root Tests

Ratio Test

Let Y a, be a positive-term series, and suppose that

a
im 2 = L.
B0 @,

(i) If L < 1, the series is convergent.
a
(i) IfL > lorlim,_, ~5’a—ﬂ~ = 00, the series is divergent.
3
(i) If L = 1, apply a different test; the series may be convergent
or divergent.

PROOF

(i) Suppose that lim,__ (a, . /a,) =L < 1. Let r be any number
such that 0 < L < r < 1. Since anH/an is close to L if n is large,
there exists an integer N such that whenever n > N,

an+1

4,

Substituting N, N + 1, N + 2, ... for n, we obtain

<r Or dn+1 < a,r.

Ay <ayr

Anig <Ayl < aNr2

Ayiy < Ayof < aNr3
and, in general,

Anipm < ayr™  whenever m > 0.
It follows from the basic comparison test (8.26)(i) that the series
Aty ot ayy, oo

converges, since its terms are less than the corresponding terms of the
convergent geometric series

aNr+aNr2+---+aNr"—|----.

Since convergence or divergence is unaffected by discarding a finite
number of terms (see Theorem (8.19)), the series Z;’,ozl a, also con-

verges.

(ii) Suppose that lim, , _ (a, +1/an) = L > 1. If r is a real number
such that L > r > 1, then there exists an integer N such that

an+l

aﬂ

>pr>1 whenever n > N.

Consequently, a, | > a, if n > N. Thus, lim,  _ a, # 0 and, by the
nth-term test (8.17)(i), the series )  a, diverges.
The proof for lim,_, (4, ,/a,) = oo is similar and is left as an

exercise.
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(iii) The ratio test is inconclusive if
i, =1,
n
for it is easy to verify that the limit is 1 for both the convergent series
3"(1/n%) and the divergent series S (1/n). Consequently, if the limit
is 1, then a different test must be used. Wl

EXAMPLE®=1 Determine whether the series is convergent or diver-

gent.
o0 3}1 o0 3}1
@Y = ®)) 5
n=1 n=1
SOLUTION
(a) Applying the ratio test (8.28), we have
a 1
lim —* = lim (an+1 - —)
n—oo a n-—>00 a,

3n+1 n!

lim —— - —
n—so0 (n + 1)1 3"
= lim =0
n—oon + 1
Since 0 < 1, the series is convergent.
(b) Applying the ratio test (8.28), we obtain

a 3n+1 2
lim ~* = lim s
n—>00 a, n—o0o (I’l 4 1) 3
3n?

n—>oopc 4+ 2n+1

Since 3 > 1, the series diverges, by (8.28)(ii).

o0 n
EXAMPLE®=2 Determine the convergence or divergence of Z n_'
n!

n=1
SOLUTION  Applying the ratio test gives us

lim 2t — fim (D™ n!
n—oo a, nsoco (n+ 1) n”

n+ D1
= lim ———— . —
nso0o (n+1) a"
o (m+ D" . n+1\"
= lim —_— = lim

n—>00 n 1—>00 n

1 n
= lim (1 + —) =e.
n—00 n

The last equality is a consequence of Theorem (6.32)(ii). Since e > 1, the
series diverges.

8.4 The Ratio and Root Tests

If) a, isa s:t'a'ries such that lim, oo(an +1/a,) =1, we must use a d'if_
ferent test (see (iii) of (8.28)). The next illustration contains several series
of this type and suggestions on how to show convergence or divergence.

ILLUSTRATION

a
. . n+1
Series ) _a, lim ——

S .
o uggestion

i M2 43n+4 Show convergence by using

i 1 he limit .
— 5 5 7,3 the limit comparison test
n=i O = It (8.27) with b, = 1/n’.
s 2n+1 . Show divergence by using the

limit comparison test (8.27)
with b, = 1//n.

Show divergence by using the
integral test (8.23).

n=1 \a'jl’l3 +5n+3

n=1

The following test is often useful if @, contains powers of 7.

Root Test 8.29 » .
Let ) a, be a positive-term series, and suppose that

lim @, = L.

A~ 00

(i) If L < 1, the series is convergent.
(i) If L > Lorlim,_, . y/@, = 0o, the series is divergent.

iy If L = 1, apply a different test; the series may be convergent
or divergent.

PROOF IfL < 1,considerany numberrsuchthat0 < L < r < 1.
By the definition of limit, there exists a positive integer N such that if
n > N, then

Ja, <r or a, <r".

Since 0 < r < 1, Y 02\ r" is a convergent geometric series, and hence,
by the basic comparison test (8.26), Y .-y a, converges. Consequently,
Y oo a, converges. This proves (i). The remainder of the proof is similar
to that used for the ratio test. ==

EXAMPLE®3 Determine the convergence or divergence of

23n+1

00
D i
n=ln
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SOLUTION Applying the root test (8.29) yields
I+l o1\ /m
lim [/ ~—— = lim | —;
n—oo n n—>00 n
23+(1/")
= lim =0.
n—»00 n

Since 0 < 1, the series converges. We could have applied the ratio test
(8.28); however, the process of evaluating the limit would have been more
complicated.

- EXERCISES 8.4

Exer. 1-10: Find lim,__ _ (a,,,,/a,), and use the ratio test
(8.28) to determine if the series converges or diverges or
if the test is inconclusive.

: i 3n2;|-1

Exer. 11-18: Find lim

n—oQ
(8.29) to determine if the series converges or diverges or 36

if the test is inconclusive.

1

"Z,Tn

n=1

Exer. 19 -40: Determine whether the series converges or

diverges.
03 F |
2 Z = n2 +1 n=I ?n " 4
"2+4 Z 99" (n° + 2) ’ i 3
21 - peere
0o on—t = n  R210™ £ 5 ]
4 ;
; 5"(n+1) 23§: 2 24 X on+1
3
o< 10 n=1 n’ + " p=1 T 1
6 Z + & 2 . n! < n
n=1 25 Z <; n! 26 Z .I’l_ 27 Z 10n+1
n=1 n=1 n=1
o0 n o] '2 [ee] (211)'
Sl 3n 10+2 29 () 30 :
8 Z : 28 Z n! Z; 2n)! ”X_‘: o
n=1 vno +1 no=ol n= N —n
1 (2n)
31 3
" i n! ;n«/ln_n ; (5n +3n71)"
n=1 (n 1) & Inn il l/n 35 s
33 Z G 34 Z 3 Zntan—
n=1 n=1 n=1
»/a,, and use the root test o -~ N ~ .
arctann
37 1+ —> 38 P a—
; n2 ;( n ; (Inn)"
(nn)" o 2" 1-3 1-3-5
- 13 — e B
n? ,12::1 n? 391+ 2! + 3! +
1-3 -2n—1)
n 00 10 !
- 16 i
3" ;10” 40 1 1.4+1.4.7
2723256
18 i(iy’ 1-4-7 - (3n—2)
Inn +
n=2 2.4.6---(2n)

8.5 Alternating Series and Absolute Convergence

Alternating Series Test 8.30

Figure 8.11

....a4

g

739

ALTERNATING SERIES AND
ABSOLUTE CONVERGENCE

The tests for convergence that we have discussed thus far can be applied
only to positive-term series. We now consider infinite series that contain
both positive and negative terms. One of the simplest, and most useful, se-
ries of this type is an alternating series, in which the terms are alternately
positive and negative. It is customary to express an alternating series in one
of the forms

aj—ay+ay—a,+-+(=1)""a +

or —ay+ay—a;+a,—---+(=D"a, +--

with a, > 0 for every k. The next theorem provides the main test for con-

vergence of these series. For convenience, we consider Z;"zl(—l)”_lan
A similar proof holds for } .7 | (—1)"a,

The alternating series
o0
D D", =0~y tay —ag 4 (=) g, +
n=1
is convergent if the following two conditions are satisfied:

0 a =z a, >0forevery k
@i) lima, =0
H—> X
PROOF By condition (i), we may write
a, 20y > 03 2 0y > ds > -ZakZakHz---.
Let us consider the partial sums
Sy Sgs S ees Sps ey
which contain an even number of terms of the series. Since
S = (ay —ay)) + (a3 —a,) +---
— G = 0 for every k, we see that

()5525545...

+ (ay,_y — a3,)
and a,
<S8, <

that is, {S,,} is a monotonic sequence. This fact is also evident from Figure
8.11, where we have used a coordinate line ! to represent the following four
partial sums of the series:

S, = ay, S, =a; —a,, S, =a; —ay+as, S4=a1—a2+a3—a4

You may find it instructive to locate the points on / that correspond to S
and S,.
6




CHAPTER 8 Infinite Series

Referring to Figure 8.11, we see that S, < a, for every positive integer
n. This may also be proved algebraically by observing that

Son =y = (ay = a3) = (@ = as) = -+ = (ay,_» = 1) ~ gy =y

Thus, {S,,} is a bounded monotonic sequence. As in the proof of Theorem

(8.9),

Iim S, =S<a
n—>o0 N -

for some number S.
If we next consider a partial sum S,, . ; having an odd number of terms
of the series, then S,, = A and, since lim,__ _ a,, ., = 0,

lim S,,,, = lim.S,, = S.

n—oo n—oo
Because both the sequence of even partial sums and the sequence of odd
partial sums have the same limit S, it follows that

lim § =S <a.
n— oo

That is, the series converges. Hul

EXAMPLE =1 Determine whether the alternating series com?erges

‘or diverges.

S 2n > 2n
_ n—1 b _1 n—1
(a);( D" m <);< i

SOLUTION
(a) Let a,= f(n) =

2n
4n? -3
To apply the alternating series test (8.30), we must show that

() a, > a, ., for every positive integer k
@ii) lim, , a, =0
There are several ways to prove (i). One method is to show that f(x) =

2x/(4x? — 3) is decreasing for x > 1. By the quotient rule,
4x? = 3)(2) — 2x)(8x) _ —8x*—6 -
(4x? —3)? (4x? — 3)?
By Theorem (3.15), f(x) is decreasing and, therefore, f (k) > f(k + 1);

that is, a;, > a; 41 for every positive integer k.
We can also prove (i) directly, by proving that a, — a, ; > 0. Thus, if

a, =2n / (4n2 — 3), then for every positive integer k,

2k 2k+1) 8k” + 8k + 6 .
ST T T T3 T Ak )P =3 @B +8k+ 1)
Still another technique for proving that a; > a; , is to show that

G/ < 1.
To prove (ii), we see that

[l =

2
"o

lim g = lim

nsoo T psoo 4p? — 3 -

8.5 Alternating Series and Absolute Convergence

Theorem 8.31

741

Thus, the alternating series converges.
(b) We can show thata; > a,_ , for every k; however,

. . 2n 1
lim g = lim :575(),

n—oo * nsocodp —3

and hence the series diverges, by the nth-term test (8.17)(j).

The alternating series test (8.30) may be used if condition (i) holds for
k > m for some positive integer m, because this corresponds to deleting
the first m terms of the series.

If a series converges, then the nth partial sum S, can be used to approx-
imate the sum S of the series. In many cases, it is difficult to determine the
accuracy of the approximation. However, for an alternating series, the next
theorem provides a simple way of estimating the error that is involved.

Let 32 (— 1)"‘1an be an alternating series that satisfies conditions
(i) and (ii) of the alternating series test. If S is the sum of the series
and S, is a partial sum, then

|S'— Sn' = L

that is, the error involved in approximating S by S, is less than or
equaltoa, .

PROOF The series obtained by deleting the first n terms of
Z(—l)"_lan, namely,

(=D, + (=", 0+ (D" a, 4
also satisfies the conditions of (8.30) and therefore has a sum R, . Thus,

S= S =R =(1"@y — a4y +a,5—-)

and IRnI =an+1_an+2+an+3_”'

Employing the same argument used in the proof of the alternating series
test, we see that |R | < a, +1- Consequently,

E=[S=5,[=IR|<a,,.

which is what we wished to prove. =

In the next example, we use Theorem (8.31) to approximate the sum of
an alternating series. In order to discuss the accuracy of an approximation,
we must first agree on what is meant by one-decimal-place accuracy, two-
decimal-place accuracy, and so on. Let us adopt the following convention.
If E is the error in an approximation, then the approximation will be
considered accurate to k decimal places if | E| < 0.5 x 107%. For example,
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we have

1-decimal-place accuracy if |E| < 0.5 x 107! = 0.05
2-decimal-place accuracy if |E| < 0.5 x 1072 = 0.005
3-decimal-place accuracy if |E| < 0.5 x 1073 = 0.0005.

EXAMPLE®2 Prove that the series
1

T
3t 5! 2n — 1)!

is convergent, and approximate its sum $ to five decimal places.

SOLUTION Thenthterma, =1/(2n — 1)! has limit0 asn — oo,
and a, > g, for every positive integer k. Hence the series converges, by
the alternating series test. If we use S, to approximate S, then, by Theorem
(8.31), the error involved is less than or equal to a, ; = 1/2n + D).
Calculating several values of a, 41 We find that for n = 4,

1
as = o ~ (0.0000028 < 0.000005.

Hence, the partial sum S, approximates S to five decimal places. Since

1 1 1
+_.___

TR TRT

_ 1 1 1

=1- 14+ 45 — ol ~ 0.841468,
we have S ~ 0.84147.

It will follow from (8.48)(a) that the sum of the series is sin 1, and
hence sin 1 ~ 0.84147.

S, =1

The following concept is useful in investigating a series that contains
both positive and negative terms but is not alternating. It allows us to use
tests for positive-term series to establish convergence for other types of
series (see Theorem 8.34).

Definition 8.32 ; .
A series Y _ a, is absolutely convergent if the series

Zi‘m='“1[+‘d2|+---+lan‘+...
is convergent.

Note that if )" a, is a positive-term series, then |q, | = a,, and in this
case, absolute convergence is the same as convergence.

EXAMPLE®=3 Prove that the following alternating series is abso-
lutely convergent:

11
1- 5+

1 1
+ot (D)
22 n?

? g

8.5 Alternating Series and Absolute Convergence

Definition 8.33

Theorem 8.34

SOLUTION Taking the absolute value of each term gives us

1 1
S+t =t
n

1 1
1+?+—+42

32

which is a convergent p-series. Hence, by Definition (8.32), the alternating
series is absolutely convergent.

EXAMPLE =4 The alternating harmonic series is

o0 1 11 1 1
S BT/ el e T PSRRI G B Sl IV
n;( e R b LR G Vi

Show that this series is

(a) convergent  (b) not absolutely convergent

SOLUTION
(a) Conditions (i) and (ii) of the alternating series test (8.30) are satisfied,
because
1 1 1
— > —— foreveryk and lim —=0.
k k41 n—oon
Hence, the alternating harmonic series is convergent.

(b) To examine the series for absolute convergence, we apply Definition

(8.32) and consider
i( St PN UL IR S
o n| 2 3 4 n '

This series is the divergent harmonic series (see Example 3 of Section
8.2). Hence, by Definition (8.32), the alternating harmonic series is not
absolutely convergent.

Series that are convergent but not absolutely convergent, such as the
alternating harmonic series in Example 4, are given a special name, as
indicated in the next definition.

A series ¥ a, is conditionally convergent if ) _ a, is convergent and
Y |a,] is divergent.

The following theorem tells us that absolute convergence implies con-
vergence.

If a series ) a,, is absolutely convergent, then Y a, is convergent.

T TRy
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PROOF Ifweleth, =a, + |a,| and we make use of the property that
~la,| < a, < a,|, then

0<a,+|a,| <2|a,|, or 0<b, <2a,]|.

If Y a, is absolutely convergent, then }_ |a,| is convergent and hence,
by Theorem (8.20)(ii), > 2 |a, | is convergent. If we apply the basic com-
parison test (8.26), it follows that > b, is convergent. By (8:20)(111),
> (b, — |a,|) is convergent. Since b, — la,| = a,, the proof is com-
plete. .

EXAMPLE®=5 Let) a, be the series
1 1 1 1 1 1 1 1

where the signs of the terms vary in pairs as indicated and where la,| =
1/2". Determine whether ) a, converges or diverges.

SOLUTION The series is neither alternating nor geometric nor
positive-term, so none of the earlier tests can be applied. Let us consider

the series of absolute values: |

1 1 1 1 1
Zlan|=§+p+§+g+”'+2—n+“'
This series is geometric, with r = % and since % < 1, it is convergent,
by Theorem (8.15)(i). Thus the given series is absolutely convergent and
hence, by Theorem (8.34), it is convergent.

EXAMPLE®=6 Determine whether the following series is convergent
or divergent:

. sin2 sin3 sinn
Sln1+7+?—+"'+—r‘l‘2—+

SOLUTION The series contains both positive and negative terms,
but it is not an alternating series, because, for example, the first three terms
are positive and the next three are negative. The series of absolute values
is

i sinn i |sinn|
= 2
n=1 n’ n=1 "
Since |sinn| < i
n? n?

the series of absolute values ) |(sin n)/ n2| is dominated by the conver-

gent p-series Y (1/ n?) and hence is convergent. Thus, the given series is
absolutely convergent and therefore is convergent, by Theorem (8.34).

8.5 Alternating Series and Absolute Convergence 745

Ratio Test for Absolute
Convergence 8.35

We see from the preceding discussion that an arbitrary series may be
classified in exactly one of the following ways:
(i) absolutely convergent (i) conditionally convergent (iii) divergent

Of course, for positive-term series, we need only determine convergence
or divergence.

The following form of the ratio test may be used to investigate absolute
convergence.

Let 3 a, be a series of nonzero terms, and suppose

iy
an

lim = L.
R—> 00

() If L < 1, the series is absolutely convergent.
9pyi
an
@ii) If L = 1, apply a different test; the series may be absolutely

convergent, conditionally convergent, or divergent.

@) IfL > 1or lim

= 0o, the series is divergent.
A= 00

The proof is similar to that of (8.28). Note that for positive-term series the
two ratio tests are identical.

We can also state a root test for absolute convergence. The statement is
the same as that of (8.29), except that we replace , /@, with ,/|a_|.

EXAMPLE®7 Determine whether the following series is absolutely
convergent, conditionally convergent, or divergent:
[e.0]

)

n
n=1 2

SOLUTION Using the ratio test (8.35), we obtain

fim [ Yt | g |BED 42
n—o00 an - n-—>00 2n+1 n2 +4
1 {n*4+2n+5 1 1
—tim < () Ly
02\ nia 2 2

Hence, by (8.35)(i), the series is absolutely convergent.

It can be proved that if a series ) g, is absolutely convergent and if the
terms are rearranged in any manner, then the resulting series converges and
has the same sum as the given series, which is not true for conditionally
convergent series. If ) a, is conditionally convergent, then by suitably
rearranging terms, we can obtain either a divergent series or a series that

converges and has any desired sum S. (See an advanced calculus text for
details.)
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We now have a variety of tests that can be used to investigate a series
for convergence or divergence. Considerable skill is needed to determine
which test is best suited for a particular series. This skill can be obtained by
working many exercises involving different types of series. The following
summary may be helpful in deciding which test to apply; however, some
series cannot be investigated by any of these tests. In those cases, it may
be necessary to use results from advanced mathematics courses.

Summary of Convergence and Divergence Tests for Series

nth-term

Geometric
series

p-series

Integral

Comparison

Ratio

Root

Alternating
series

>l

Test |

Series

Convergence or divergence

Diverges iflim,_, a, #0

M2
:_ul —

a,>0,b, >0

Y (-1)a,

a, >0

2.

(i) Converges with sum § =
(ii) Diverges if [r| > 1

—r

(i) Converges if p > 1
(it) Diverges if p < 1

(o0}
(i) Converges if f f(x) dx converges
1
o0
(>ii) Diverges if f f(x)dx diverges
1

(@) If )b, converges and a, < b, for
every n, then ) _ a, converges.

(i) If )b, diverges and a, > b, for
every n, then ) a, diverges.

(iii) If lim, _, __(a,/b,) = c for some

positive real number c, then

both series converge or both diverge.

|
aﬂ
(i) converges (absolutely) if L < 1
(ii) diverges if L > 1 (or o0)

If lim

n—>00

= L (or 00), the series

If lim,_,  /|a,| = L (or 00), the series
(i) converges (absolutely) if L < 1

(ii) diverges if L > 1 (or oo)

Converges if a;, > a; | for every k and

lim,_, an =0

If Y |a,| converges, then }" a, converges.

if|r] <1

Comments

Inconclusive if lim,  a, =0

Useful for comparison tests if the
nth term a,, of a series is similar
toar!
Useful for comparison tests if the
nth term a,, of a series is similar
to 1/n?

The function f obtained from
a, = f(n) must be continuous,
positive, decreasing, and readily
integrable.

The comparison series ) _ b, is
often a geometric series or a
p-series. To find b, in (iii),
consider only the terms of a, that
have the greatest effect on the
magnitude.

Inconclusive if L =1

Useful if a,, involves factorials
or nth powers

If a, > O for every n, the absolute
value sign may be disregarded.

Inconclusive if L =1 |
Useful if a,, involves nth powers

If a, > O for every n, the absolute
value sign may be disregarded.

Applicable only to an alternating
series

Useful for series that contain ‘
both positive and negative terms |
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- EXERCISES 8.5
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Exer. 1-4: Determine whether the series (a) satisfies
conditions (i) and (ii) of the alternating series test (8.30)
and (b) converges or diverges.

1Y (! 2 ) (=) a5
n=l1 n2 +7 n2=;
o0 o0 2n
1
3Y =1 4e™ 4y 1 +
n=1 n=1 e

Exer. 5-32: Determine whether the series is absolutely
convergent, conditionally convergent, or divergent.

5 Z(—l)"’l—le:_l 6 Z(—l)"”%
8 Z( 1)n+1 n

7 rH-l
Z( ln(n D 21 a

9 Z( 1)"lnn 10 Z(—u"lnT"
n=1

x [es]
1y (= 12 —1)te ™
,; n3 +1 Z( )
o0
(—10)"
13 14
n; n! 2( 5)n
00 2 .
13 Z(-l)ﬂii 16 M
n=1 (2n -5) vn3 +4
o0
Jn (n+ 1)?
17 ) (-t 18 ) (- 1)"
,; n+l Z S+
X2 cos ixn 00 Inn
19 6 20 1y
n; 5 ;( N e
[o ¢] 1 0
21 (~1)"nsin - 22 Z(—l)"mtazn”
n=1 n n=1 n
00 0 1/n

1 2
23 E 1) — 24 E -D*
=D n+/Inn n:l( D n!

n=2
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D"
25 26 (n +
Z( 5)" ; (—n)"
o 1+4n o0 n4
27 - 28 —H'—
,;( " Z_jl( =
o0 o0
29 Z(_l)n cosmn 10 Zl sin (2n — D
n=1 i =1 2

Inn
31 E — — 2 E =
1( (I’l _4)2 n=l( b %

Exer. 33 - 38: Approximate the sum of each series to three
decimal places.

s 1
33 =

;)( y

. 1
35 ) ()l o

x
n—17 +1
3 ) D) o
n=1

= 1
34 oyt
n;)( AT Y

> 1
36 —prlo

,;1( =

s L1 (Y
38 ;(—1) - <5>

E Exer. 39-42: Use Theorem (8.31) to find a positive

integer n such that S, approximates the sum of the series

to four decimal places.
> 1
40 ) (-1 —
L

s 1
9 Y1
n=1 n
i 1
42 (="
,; nd 41

s 1
41 S
;< '

Exer. 43 -44: Show that the alternating series converges
for every positive integer k.
o<
44 (- —
=%

®  (Inn)
43 ;(—1) —

45 If ) a, and }"b, are both convergent series, is Y a b,
convergent? Explain.

46 If 3 a, and 3~ b, are both divergent series, is )_a,b,
divergent? Explain.

POWER SERIES

SO PR Y L The most important reason for developing the theory in the previous sec-
tions is to represent functions as power series—that is, as series whose
terms contain powers of a variable x. To illustrate, if we use the formula



