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CHAPTER 4  Integrals

PROPERTIES OF THE DEFINITE INTEGRAL

This section contains some fundamental properties of the definite integral

Most of the proofs are difficult and have been placed in Appendix 1.

If ¢ is a real number, then
b
J cdx = c(b — a).

a

P R OOF Let‘ S be the constant function defined by f(x) = ¢ for every
x in [a, b). If P is a partition of [a, b], then for every Riemann sum of f

Xk:f(wk)Axk = ;chk = czk: Ax, =c(b — a).

(The last equality is true because the sum i
i Ax, is the 1
interval [a, b].) Consequently, 2k Axy ¢ length of the

= 'c(b_a)_C(b—a)l :O,

3" fw)Ax, —c(b - a)
k

which is less than any positive number ¢ re i
h ardless of th
Thus, by Definition (4.15), with L — ¢(b — &), © e

lim - i
||P||—>0; flwhx, = ||11>1||n—l>02k:CAxk =c(b - a).

By Definition (4.16), we thus obtain

b b
ff(x)dx=f cdx =c(b—a). mm

a

Note that if ¢ > 0, then Theorem (4.21) a i

‘ fe>0, . grees with Theorem (4.19):
As 111ustratf?d in Figure 4.20, the graph of f is the horizontal line y = 2
and the region under the graph from a to b is a rectangle with sides of

lengths ¢ and b — a. Hence the area J ab f(x)dx of the rectangle is c(b — a).

3
EXAMPLE =] Evaluatef 7 dx.
—2

SOLUTION Using Theorem (4.21) yields

3
f ) Tdx =17[3 — (=2)] =7(5) = 35.

4.5 Properties of the Definite Integral

Theorem 4.22

Theorem 4.23

If ¢ = 1 in Theorem (4.21), we shall abbreviate the integrand as fol-

lows:
b
J d«x=b—a

a

If a function f is integrable on [a, b] and c is a real number, then, by
Theorem (4.11)(ii), a Riemann sum of the function cf may be written

Zcf(wk)Axk = CZ fw)Ax,.
k

k

We can prove that the limit of the sums on the left of the Jast equation is
equal to ¢ times the limit of the sums on the right. This gives us the next
theorem. A proof may be found in Appendix L

If f is integrable on {a, b] and ¢ is any real number, then cf is
integrable on [a, b] and

b b
ch(x)dx:cJ. fx)dx.

Theorem (4.22) is sometimes stated as follows: A constant factor in
the integrand may be taken outside the integral sign. It is not permissible
to take expressions involving variables outside the integral sign in this

manner.
If two functions f and g are defined on [a, b], then, by Theorem

(4.11)(i), a Riemann sum of f + g may be written
S () + g1 = Y Fw)Ax, + ) 8w,
k k k

We can show that if f and g are integrable, then the limit of the sums on
the left may be found by adding the limits of the two sums on the right.
This fact is stated in integral form in (i) of the next theorem. A proof of (i)
may be found in Appendix I. The analogous result for differences is stated

in (ii) of the theorem.

If f and g are integrable on [a, b}, then f + g and f — g are inte-
grable on [a, b] and

b b b
(i) f [f(x) + gx)]ax =J f(x)dx +f g(x) dx
a a @

b b b
(i f LF ) — g(0)]dx = f Fxydx - f e




CHAPTER 4  Integrals

Th.eorem (4.23)(1) may be extended to any finite number of functions.
Thus, if f,, f,, ..., f, are integrable on [a, b], then so is their sum and

b .
f[fl(x>+fz(x)+---+f,,<x>]dx
b b b
=f fl(x)dx+f fz(x)dx‘l‘“"Fj f,(x)dx.

EXAMPLE =2 It will follow from the results in Section 4.6 that

2 2
fx3dx=4 and fxdx=2.
0 0

2
Use these facts to evaluate J (Sx3 —3x +6)dx.
0

SOLUTION We may proceed as follows:

2 2 2 2
f(5x3—3x+6)dx:f 5x3dx—f 3xa’x+J 6 dx
0 0 0 0

2 2
zsf x3dx—3f xdx + 62 —0)
0 0

=54)-32)+12=26

If f is continuous on [a, b] and f(x) > 0 for every x in [a, b], then,
by Theorem (4.19), the integral fab f(x)dx is the area under the graph of
f from a to b. Similarly, if @ < ¢ < b, then the integrals fac f(x)dx and
fcb f(x) dx are the areas under the graph of f from a to ¢ and from ¢ to b,

respectively, as illustrated in Figure 4.21. Since the area from a to b is the
sum of the two smaller areas, we have

b c b
ff(x)dxzf f(x)dx+f f(x)dx.

The next theorem shows that the preceding equality is true under a more
general hypothesis. The proof is given in Appendix 1.

Figure 4.21
AY

y = f(x)

=Y

1

4.5 Properties of the Definite Integral

Theorem 4.24

Theorem 4.25

__I

If a < ¢ < b and if f is integrable on both [a, c] and [c, b], then f
is integrable on [a, b} and

Lb féxydx =f f(x)dx-!—fcb flx)ydx.

The following result is a generalization of Theorem (4.24) to the case
where ¢ is not necessarily between a and b.

If f is integrable on a closed interval and if a, b, and ¢ are any three
numbers in the interval, then

& ¢ b
f e f Feyda+ f Fodx.

PROOF 1If a, b, and ¢ are all different, then there are six possible
ways of arranging these three numbers. The theorem should be verified for
each of these cases and also for the cases in which two or all three of the
numbers are equal. We shall verify one case. Suppose that ¢ < a < b. By
Theorem (4.24),

b a b
J fx)dx = J f(x)dX+f fx)dx,
C c a
which, in turn, may be written

b a b
ff(X)dx=—f f(X)dx+f f(x)dx.

The conclusion of the theorem now follows from the fact that interchang-
ing the limits of integration changes the sign of the integral (see Definition
4.17). m=

EXAMPLE=3 Express as one integral:

7 7
f f(X)dx’—f fx)dx
2 5

SOLUTION First we interchange the limits of the second integral
using Definition (4.17) and then use Theorem (4.25) witha =2,b=35,
andc=T7:

7 7 7 5
f ) dx— j F)dx = f Fydx+ f Fx)d
2 5 2 7

5
=f f(x)dx
2




Figure 4.22

Theorem 4.26

Corollary 4.27
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CHAPTER 4  Integrals

As an alternative solution, by recognizing that

7 5 7
f f(x)dx:J f(x)dx+f Jf(x)dx,
2 2 5

the previous result immediately follows.

If fand g are continuous on [a, b] and f(x) > g(x) > 0 for every
x in [a, b], then the area under the graph of f from a to b is greater
than or equal to the area under the graph of g from a to b. The corollary
to the next theorem is a generalization of this fact to arbitrary integrable
functions. The proof of the theorem is given in Appendix I.

If f is integrable on [a, b] and f(x) > O for every x in [a, b], then

b
f fx)dx 2 0.

If f and g are integrable on [a, b] and f(x) > g(x) for every x in
[a, b], then

b b
f Flxydx = f A

a

PROOF By Theorem (4.23), f — g is integrable. Moreover, since
S(x) > gx), f(x) — g(x) = 0 for every x in [a, b]. Hence, by Theorem
(4.26),

b
f [f(x) —g(x)]dx > 0.

Applying Theorem (4.23)(ii) leads to the desired conclusion. mm

2 2
EXAMPLE®=4 Showthatf (x2+2)dxzj (x — 1) dx.
-1 ~1

SOLUTION The graphs of y = x>+ 2 and y = x — 1 are sketched
in Figure 4.22. Since

x2+22x—1

for every x in [—1, 2], the conclusion follows from Corollary (4.27).

Suppose, in Theorem (4.26), that f is continuous and that, in addition
to the condition f(x) >0, we have f(c) > 0 for some c in [a, b]. In
this case, lim, _ . f(x) > 0, and, by Theorem (1.6), there is a subinterval

T

4.5 Properties of the Definite Integral

Figure 4.23
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Mearn Value Theorem
for Definite Integrals 4.28

Figure 4.24
v y = fx)

flv) = M |
|
[
i

fw) =m —f !

I
a Lit 11; b :)_c

[a’, b'] of [a, b] throughout which £ (x) is positive. If f(x) is the minimum
value of f on [a’,b'] (see Figure 4.23), then the area under the graph
of f from a to b is at least as large as the area f(u)(b' —a’) of the
pictured rectangle. Consequently, [ ab f(x)dx > 0. It now follows, as in
the proof of Corollary (4.27), that if f and g are continuous on [a, b], if
f(x) > g(x) throughout [a, b], and if f(x) > g(x) for some x in [a, b],
then fab fx)dx > [ ab g(x) dx. This fact will be used in the proof of the
next theorem.

If f is continuous on a closed interval {a, b}, then there is a number
z in the open interval (a, b) such that

b
f A B ).

PROOF If fis a constant function, then f(x) = c for some number
¢, and by Theorem (4.21),

b b
f f(x)dx:J cdx =clb—a)= f(z)(b—a)

a

for every number z in (a, b).

Next, assume that f is not a constant function and suppose that m and
M are the minimum and maximum values of f, respectively, on [a, b].
Let f(u) =m and f(v) = M for some u and v in [a, b], as illustrated in
Figure 4.24 for the case in which f(x) is positive throughout [, b]. Since
f is not a constant function, m < f(x) < M for some x in [a, b]. Hence,
by the remark immediately preceding this theorem,

b b b
fmdx<J f(x)dx<f Mdx.

a a

Applying Theorem (4.21) yields

b

mb —a) < J f(x)dx < M(b — a).

a

Dividing by b — a and recalling that m = f(u) and M = f(v) gives us
1 b
f) < b_f f@®)dx < f(v).

Since [1/(b — a)] fab f(x)dx is a number between f(u) and f(v), it

follows from the intermediate value theorem (1.26) that there is a number
z, with u < z < v, such that

1 b
f@)= b—f fx)dx.

Multiplying both sides by b — a gives us the conclusion of the theo-
rem.
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CHAPTER 4 Integrals

The number z of Theorem (4.28) is not necessarily unique; however,
the theorem guarantees that at least one number z will produce the desired
result.

The mean value theorem has an interesting geometric interpretation if
f(x) >0 on [a, b]. In this case, [ ab S (x)dx is the area under the graph
of f from a to b. If, as in Figure 4.25, a horizontal line is drawn through
the point P(z, f(z)), then the area of the rectangular region bounded by
this line, the x-axis, and the lines x = g and x = b is f(z)(b — a), which,
according to Theorem (4.28), is the same as the area under the graph of f
from a to b.

E3XA MPLE®=5 It will follow from the results of Section 4.6 that
fo x2dx.=9. Find a number z that satisfies the conclusion of the mean
value theorem (4.28) for this definite integral.

SOLUTION The graph of f(x) = x? for 0 < x <3 is sketched in
Figure 4.26. By the mean value theorem, there is a number z between 0
and 3 such that

3
JﬁM=f@@—m=fm.
0

This result implies that

9=3z2, or z?=3."
The solutions of the last equation are 7z = ++/3; however, —+/3 is not in
[0, 3]. The number z = /3 satisfies the conclusion of the theorem.

If we consider the horizontal line through P («/5 , 3), then the area of
the rectangle bounded by this line, the x-axis, and the lines x = 0 and
x = 3 is equal to the area under the graph of f from x = 0to x = 3 (see
Figure 4.26).

In statistics, the term arithmetic mean is used for the average of a
set of numbers. Therefore, the arithmetic mean of two numbers a and
b is (a + b)/2, the arithmetic mean of three numbers a, b, and ¢ is
{(a+b+c)/3, and so on. To see the relationship between arithmetic
means and the word mean used in mean value theorem, let us rewrite the
conclusion of (4.28) as

1 b
@)= h—a f fx)dx

and express the definite integral as a limit of sums. If we specialize Defini-
tion (4.16) by using a regular partition P with » subintervals, then

B R Ax
f@= b_angrgo;f(wk)Ax =n11)rgol;[f(wk)b_a]

Exercises 4.5

Definition 4.29

- EXERCISES 4.5

Exer. 1-6: Evaluate the integral.

4
| f S5dx
-2

10
2 V2dx
1

for any number w, in the kth subinterval of P and Ax = (b — a)/n. Since
Ax/(b — a) = 1/n, we obtain

R Ax . 1
f@) = lim ; [f(wk)m] = lim ; [f(wk);] :

or f(z)=nli)ngc;|:f(wl)+f(w2)+.“+f(wn)jl~

n

This result shows that we may regard the number f(z) in the mean value
theorem (4.28) as a limit of the arithmetic means (averages) of the function
values f(w,), f(w,), ..., f(w,) as n increases without bound. This fact
is the motivation for the next definition.

Let f be continuous on [a, b]. The average value f,of f on [a, b}
is

1 b
fo = ;;“:;;L f(x)dx.

Note that, by the mean value theorem for definite integrals, if f is
continuous on [a, b], then

fo = f(z) forsome z in [a, b].

3
EXAMPLE®=6 Given f xldx = 9, find the average value of f on
[0, 3]. 0

SOLUTION By Definition (4.29), with a =0,b =3, and f(x) =
2

X,
1, 1
fav:3___—0 X X dx=§9:3
In the interval [0, 3], the function values f(x) = x? range from f(0) =0
to f(3) = 9. Note that the function f takes on its average value 3 at the

number z = /3.




Exer. 7-10: It will follow from the results in Section 4.6
that

4 4
f x*dc =21 and f xdx:%.
1 1
Use these facts to evaluate the integral.

4 4
7 f (3x2 +5)dx 8 f (6x — 1) dx
1 1

4 4
9 f (2 —9x — 4x%) dx 10 f Bx + 2)% dx
1 1

Exer. 11 - 16: Verify the inequality without evaluating the
integrals.

2 2
1 f(3x2+4)dxzf (2x* + 5)dx
1 1
4 4
12 f (2x+2)dx5f (Bx + 1) dx
1 1
4 4
|3f(x2—6x+8)dx50 |4f(5x2-x+1)dxzo
2 2
2 /3

15 (1 +sinx)dx >0 16 j (secx —2)dx <0
0 ~/3

Exer. 17 -22: Express as one integral.

1 5

17 f f(x)dx+f f(x)dx
5 -3
1 4

18 f f(x)dx-l—j f(x)dx
4 6
d c

19 f f(x)dx—i—f fx)dx
6 2

20 J- f(x)dx—f fx)dx
-2 -2
c+h h

2IJ f(x)dx—f fx)dx

22 jmf(x)dx—jm fx)dx
c d

CHAPTER 4  Integrals

Exer. 23 - 30: The given integral [ : Jf(x)dx may be verified
using the results in Section 4.6. (2) Find a number z that
satisfies the conclusion of the mean value theorem (4.28).
(b) Find the average value of f on [a, b].

3 -13 9
23f3x2dx=27 24f = dx = =
0 -4 x 4

1
25f 2+ Ddx=6
-2
3
26f (Bx% — 2x +3)dx =32
-1
8 —18
27f 3J/x + 1dx =54 zsf —dx=-3
-1 -2 X

2 -
29 f (4x> — 1)dx = 14
1

4
30 f 2+3/x)dx =20
1

E| Exer. 31-32: The given integral may be verified

using results in Section 4.6. Use Newton’s method to
approximate, to three decimal places, a number z that
satisfies the conclusion of the mean value theorem (4.28).

3
3|f (8x> 4+ 3x — 1) dx = 132.5

-2
ﬂ/4 T \/§
32 — = — 4+ —
L/6 (1 —cos4x)dx B + 3

33 Let f and g be integrable on [a, b]. If ¢ and 4 are any
real numbers, prove that

b b b
f [ef(x) +dg(x)]dx = cf fx)dx + df g(x)dx.

a a

34 If f is continuous on [a, b], prove that

b
sf ()] dx.

b
j f(x)dx
(Hint: —|f(x)| = fx) <[ f)] )

4.6 THE FUNDAMENTAL THEOREM OF CALCULUS

This section contains one of the most important theorems in calculus. In
addition to being useful in evaluating definite integrals, the theorem also
exhibits the relationship between derivatives and definite integrals. This
theorem, aptly called the fundamental theorem of calculus, was discovered
independently by Sir Isaac Newton and by Gottfried Wilhelm Leibniz. It

4.6 The Fundamental Theorem of Calculus

Figure 4.27
AY
y = f
f (o) dt
a
+ =
a X b t
Figure 4.28
AY
bt

Fundamental Theorem
of Calculus 4.30

397

is primarily because of this discovery that both men are credited with the
invention of calculus.

To avoid confusion in the following discussion, we shall use ¢ as the
independent variable and denote the definite integral of f from a to b by
fab f()dt. If f is continuous on [a, b] and a < x < b, then f is contin-
uous on [a, x]; therefore, by Theorem (4.20), f is integrable on [a, x].
Consequently, the formula

G(x) = J f@)dt

determines a function G with domain [a, b], since for each x in [a, b],
there corresponds a unique number G(x).

To obtain a geometric interpretation of G(x), suppose that f(¢) > O for
every ¢ in [a, b]. In this case, we see from Theorem (4.19) that G(x) is the
area of the region under the graph of f from a to x (see Figure 4.27).

As a specific illustration, consider f(¢) = 13 witha = Oand b > 0 (see
Figure 4.28). In Example 8 of Section 4.3, we proved that the area under
the graph of f from O to b is %b“. Hence the area from O to x is

X
G(x) =f £t = ix*.
0

This gives us an explicit form for the function G if f(z) = #>. Note that in
this illustration,

d
G'(x) = 21;(%"4) =x’ = f(x).

Thus, by Definition (4.1), G is an antiderivative of f. This result is not
an accident. Part I of the next theorem brings out the remarkable fact
that if f is any continuous function and G(x) = [ ax f(t)dt, then G is an
antiderivative of f. Part II of the theorem shows how any antiderivative

may be used to find the value of [ ab fx)dx.

Suppose f is continuous on a closed interval [a, b].
Part | If the function G is defined by

Gx) = j f(e)ds

for every x in [a, b], then G is an antiderivative of f on [a, b].
Part 1l If F is any antiderivative of f on [a, b}, then

b
f f(x)dx = F(b) — F{(a).

PROOF To establish Part I, we must show that if x is in [a, #], then
G'(x) = f(x)—that is,

. G(x+h)—Gx)
m

li
h—0 h

= f(x).
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Figure 4.29
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Before giving a formal proof, let us consider some geometric aspects of
this limit. If f(x) > O throughout [a, b], then G(x) is the area under the
graph of f from a to x, as illustrated in Figure 4.29. If A > 0, then the
difference G(x + h) — G(x) is the area under the graph of f from x to
x + h, and the number 4 is the length of the interval [x, x + h]. We shall
show that

Gx+h)—G
ELEL I

for some value z between x and x + k. Apparently, if 7 — 0, then z — x
and f(z) — f(x), which is what we wish to prove.

Let us now give a rigorous proof that G'(x) = f(x).Ifx and x + h are
in [a, b], then using the definition of G together with Definition (4.17) and
Theorem (4.24) yields

x+h X
G(x+h)—G(x)=J f(t)dt—f f@de

x+h a
=f ﬂnm+J.ﬂow

a

x+h
= f f(@)de.

Consequently, if 2 # 0, then
G(x +h)— G IFM
= — t)dt.
Y n F@®
If & > 0, then, by the mean value theorem (4.28), there is a number 7z in
the open interval (x, x + h) such that

x+h
J fOdt = f(Dh
and, therefore,
G(x+h)—G(x)
h

Since x < z < x + h, it follows from the continuity of f that

‘hlin(; f@ = lim f(2)=f@x)

—>X

= f(2).

and hence

G —_
fim CEEM =Wy f0) = £
h—0" h h—0"

If h < 0, then we may prove in similar fashion that
G(x +h)— G(x)
h—0" h a f(X)
The two preceding one-sided limits imply that
G(x+h)—Gx)
h

G'(x) = Jim = f(x).

This completes the proof of Part I.

4.6 The Fundamental Theorem of Calculus

i ey

To prove Part II, let F be any antiderivative of f and let G be the
special antiderivative defined in Part I. From Theorem (4.2), we know that
there is a constant C such that

Gix)=Fx)+C

for every x in [a, b]. Hence, from the definition of G,
X
f f@)ydt=Fx)+C
a

for every x in [a, b]. If we letx =a and use the fact that f : f@)d:t =0,
we obtain 0 = F(a) + C,or C = —F(a). Consequently,

rfmw=mm—ﬂu

This is an identity for every x in [a, b], so we may substitute b for x,
obtaining

b
J f(t)dt = F(b) — F(a).

Replacing the variable ¢ by x gives us the conclusion of Part Il 1

We often denote the difference F(b) — F(a) either by F (x)]Z or by
[F (x)]Z. Part 1I of the fundamental theorem may then be expressed as
follows.

Corollary 4.31 . . - Y )
If f is continuous on [a, b] and F is any antiderivative of f, then

b b
J- flxydx = F(x)] = F(b) — F(a).

The formula in Corollary (4.31) is also valid if a > b. If a > b, then,
by Definition (4.17),

b a
j f(x)dx=—L fx)dx

= —[F(a) — F(b)]
— F(b) — F(a).

If @ = b, then by Definition (4.18),
a
f fx)dx =0= F(a) — F(a).
a

Corollary (4.31) allows us to evaluate a definite integral very easily
if we can find an antiderivative of the integrand. For example, since an




Theorem 4.32

‘Y—

4.6 The Fundamental Theorem of Calculus
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S 3. 1.4 ) 4.30 SOLUTION The region is sketched in Figure 4.30. Applying Theo-

antiderivative of x” is 1x*, we have Figure 4 rems (4.19) and (4.32) gives us the following;

) B AY . .

f Xdx = %x“] = %b“ — %(0)4 = %b4- A =f sinx dx = lj sin x dx:l
0 0 0 0
- 3 b4

Those who doubt the importance of the fundamental theorem should com- 15 y = smx = [_ cos x ]0
pare this simple computation with the limit of sums calculation discussed = —cosm — (—cos0)
in Example 8 of Section 4.3. 7,.\ > - (Di1=2

3
EXAMPLE =] Evaluatef (6x% — 5) dx.
-2

SOLUTION  An antiderivative of 6x” — 5 is F(x) = 2x° — 5x. Ap-
plying Corollary (4.31), we get

3
3
f_2(6x2 ~5)dx =26 = 5x],

=12(3)> - 5(3)1 — [2(—2)® — 5(—2)]
=[5%4—-15]—-[-16+ 10] = 45.

Note that if F(x) + C is used in place of F (x) in Corollary (4.31), the
same result is obtained, since

[F(x) + €], = [Fb) + €1~ [F(a) + C]
= F(b) — F(a)
=[F@);.
In particular, since

ff(x)dx= F(x)+C,

where F'(x) = f(x), we obtain the following theorem.

L  Payds — [ [ f(x)dx]:

Theorem (4.32) states that a definite integral can be evaluated by eval-
uating the corresponding indefinite integral. As with previous cases, when
using Theorem (4.32), it is unnecessary to include the constant of integra-
tion C for the indefinite integral.

EXAMPLE®2 Find the area A of the region between the graph of
y = sinx and the x-axis from x = Qto x = 7.

By Theorem (4.32), we can use any formula for indefinite integration
to obtain a formula for definite integrals. To illustrate, using Table (4.4),

we obtain
b xr+1 2
f x"dx =
y r+1

a

ifr #£ -1

b b
f sinx dx = [~ cos x]a

a

b b
f sec? x dx = [tanx]a‘

a

2
EXAMPLE=3 Evaluatef 3 + 1) dx.
J—1

SOLUTION  We first square the integrand and then apply the power
rule to each term as follows:

2 2

j 3+ 1) dx =f (x + 2x3 + 1) dx
—1 -1

4

_7 2
=% +2. 2 4
0 4 »

(27 ot D’ =Dt
= 7+2'Z+2}_[ 7 t2——+(D
405
T 14

4 32
EXAMPLE=4 Evaluatef (5x—2ﬁ+—3>dx.
1 x
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4.6 The Fundamental Theorem of Calculus

SOLUTION We begin by changing the form of the integrand so that
the power rule may be applied to each term. Thus,

4 ~ /.2 3/2 -2\ 7*
o2 390 e = 5[ o[ 3 (*_
L(Sx 2x /< +32x" ") dx (2 3/2 + ) 1

“12° T3 T,

5 4 16 5 4

=@ - @2 -2 -1
B B FRERL
259

=<

A common misuse of the fundamental theorem of calculus is to make the
false interpretation that Corollary (4.31) asserts that if F is a function such
that F'(x) = f(x) for some function f, then fab f(x)dx = F(b) — F(a).
Guided by this false interpretation, we might make the following fallacious
argument: i

—1 1
“If Fx) = —, then F(x)=—
x x

1
1
and so f —-z—dx =FQ1)— F(-1)=-=-2"
-1 X

This reasoning is incorrect because it tries to make use of the conclusion
of Corollary (4.31) in a situation in which the hypothesis is not true. The-
orems in mathematics are of the form: If a certain set of conditions holds
(the hypothesis), then certain conclusions must be true. In Corollary (4.31),
the hypothesis is that the function f is continuous on the interval [a, b]. In
this instance, the function f is not continuous on the interval [—1, 1]: Not
only is f undefined at x = 0, but lim, __, f(x) does not even exist.

Before we apply any theorem in a particular situation, we must check
that all of the conditions in the hypothesis are true.

The method of substitution developed for indefinite integrals may also
be used to evaluate a definite integral. We could use (4.7) to find an in-
definite integral (that is, an antiderivative) and then apply the fundamental
theorem of calculus. Another method, which is sometimes shorter, is to
change the limits of integration. Using (4.7) together with the fundamental
theorem gives us the following formula, with F/ = f:

b

b
f fg(x))g'(x)dx = F(g(X))]

a
The number on the right may be written
g(b) g(b)

F(g(b)) — F(g(a)) = F(u)] = f)du.

gla) gla)

Theorem 4.33

This result gives us the following theorem, provided f and g’ are inte-
grable.

g{b)

b
If u = g(x), thenf fgx)g' (x)dx = = fu)du.
a gla

Theorem (4.33) states that after making the substitution ¥ = g(x) and
du = g'(x) dx, we may use the values of g that correspond to x = a and
x = b, respectively, as the limits of the integral involving u. It is then
unnecessary to return to the variable x after integrating. This technique is
illustrated in the next example.

10
3
EXAMPLE=5 Evaluate —dx.
2 5x—1

SOLUTION Letusbegin by writing the integral as

10 1
3 f —dx.
2 A5x—1
The expression +/5x — 1 in the integrand suggests the following substitu-
tion:
u=5x—1, du = 5dx

The form of du indicates that we should introduce the factor 5 into the
integrand and then compensate by multiplying the integral by % as follows:

10 I 3 10 1
3 —_—dx = - — Sdx
2 5x—1 5h J5x—1

We next calculate the values of u = 5x — 1 that correspond to the limits of
integration x = 2 and x = 10:

(i) fx=2thenu=52)—1=9.»

(i) If x = 10, then u = 5(10) — 1 = 49.

Substituting in the integrand and changing the limits of integration as in
Theorem (4.33) gives us

10 1 3 10 1
3 —-——dx:——f —S5dx
2 5x—1 S5)h 5x—1

3 49 1 3 49
= — —du = — ~1/2d
5f9 NG U SL u u

3«21 6 2 oy 24
= — el =——-4 —_ = —
(5) /2, ST 9=
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/4
EXAMPLE®=6 Evaluate f (1 + sin 2x)? cos 2x dx.
0

SOLUTION The integrand suggests the power rule [ ab udu =
[%”4]2 . Thus, we let
u=1++sin2x, du = 2 cos2x dx.

The form of du indicates that we should introduce the factor 2 into the
integrand and multiply the integral by %, as follows:

/4 /4
j (1 + sin2x)3 cos 2x dx = 3 f (1 + sin2x)* 2 cos 2x dx.
0 0

We next calculate the values of u = 1 + sin 2x that correspond to the limits
of integration x = 0 and x = 7/4:

(@) fx=0,thenu =1+sin0=1+0=1.
(ii) Ifx:%,thenu:l—i—sin%:l—j—l:l

Substituting in the integrand and changing the limits of integration gives
us "

/4 2
f 1+ sin2x)3 cos2x dx = %f u? du
0 1

2
1[u 1 15
=—|—| =-p16-11=—=.
2[4}1 glie—11=73

The following theorem illustrates a useful technique for evaluating cer-
tain definite integrals.

Theorem 4.34 ;
Let f be continuous on [—a, a].

(i) If f is an even function,
a a
fx)dx = 2‘[ fx)dx.
—a 4]
(i) If f is an odd function,

a

Figure 4.31 fx)dx =0.
Ay 28
y = f(x)
PROOF Weshall prove (i). If f is an even function, then the graph of
f is symmetric with respect to the y-axis. As a special case, if f(x) > 0
for every x in [0, a], we have a situation similar to that in Figure 4.31, and
= - - hence the area under the graph of f from x = —a to x = a is twice that

from x = 0 to x = a. This gives us the formula in (i).

4.6 The Fundamental Theorem of Calculus

To show that the formula is true if f(x) <O for some x, we may
proceed as follows. Using, successively, Theorem (4.24), Definition (4.17),
and Theorem (4.22), we have

a 0 a
fx)dx = f(x)dx-l—f f(x)dx
—a —a 0

= - f(x)dx-l—f fx)dx
0 0

= f(x)(—dx)+f fx)dx.
0 0

Since f is even, f(—x) = f(x), and the last equality may be written

J fx)dx =f0_ f(—X)(—dX)+fO f(x)dx.

—a
If, in the first integral on the right, we substitute ¥ = —x, du = —dx and
observe that u = a when x = —a, we obtain

’ f(x)dX=faf(u)du+f fx)dx.
—a o o

The last two integrals on the right are equal, since the variables are dummy
variables, and, therefore,

’ f(x)dx=2fa f(x)dx. wm
—a 0

EXAMPLE®7 Evaluate

1

(a) f (x*+3x2+ 1) dx
-1
1

(b) f (> +3x° + x) dx
-1
5

(© f (x> 4 3x% + 7x) dx
-5

SOLUTION

(a) Since the integrand determines an even function, we may apply Theo-
rem (4.34)(i):

1 i
J o +3x% + 1 dx = 2J (* +3x2 4 1) dx
-1 0
p 1
—2|Z +x34+x| = 2—2
5 5
0
(b) The integrand is odd, so we apply Theorem (4.34)(ii):

1
f @ +33+x)dx=0
-1



T

Theorem 4.35
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(¢) The function given by 2x> + 7x is odd but the function given by 3x? is
even, so we apply Theorem (4.34)(ii) and (i):

5 5 5
J Qx> +3x2 4+ Tx)dx = f x> + 7x) dx + f 3x2dx
-5 =5 -5

i 5
=o+2f 3x% dx
0

=2[x*]) =250

The technique of defining a function by means of a definite integral,
as in Part I of the fundamental theorem of calculus (4.30), will have
a very important application in Chapter 6, when we consider logarith-
mic functions. Recall, from (4.30), that if f is continuous on [a, b] and
Gx) = fax f(®)dt for a < x < b, then G is an antiderivative of f—that
is, (d/dx)(G(x)) = f(x). This result may be stated in integral form as
follows:

d (*
EL f)dt = f(x)

The preceding formula is generalized in the next theorem.

Let f be continuous on [a, b]. If a < ¢ < b, then for every x in
[a, b],

d X
zl;]; fdt = f(x).

PROOF If Fisan antiderivative of f, then

d (* d
E-[c: f@)dt = E(F(x)— F(c))

= : F B F
= a( (x)) — E( ()
=f(x)—-0=f(x). ==

X

EXAMPLE®S8 IfG(x):f

1
- dt and x > 0, find G’ (x).
1

SOLUTION We apply Theorem (4.35) with ¢ = 1 and f(x) = 1/x.
If we choose a and b such that 0 < a <1 < b, then f is continuous on
[a, b]. Hence, by Theorem (4.35), for every x in [a, b],
d ("1 1
Gx)=—| —dt=-.
dx )1 t X

Exercises 4.6
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In (4.29), we defined the average value f,, of a function f on {a, b] as
follows:

1 b
fo= 5 f Fx)dx

The next example indicates why this terminology is appropriate in appli-
cations.

EXAMPLE=9 Suppose that a point P moving on a coordinate line
has a continuous velocity function v. Show that the average value of v on
[a, b] equals the average velocity during the time interval [a, b].

SOLUTION By Definition (4.29) with f = v,

1 b
v,, = j v() dt.

b—al,
If s is the position function of P, then s'(t) = v(t) —that'is, s(¢) is an
antiderivative of v(z). Hence, by the fundamental theorem of calculus,
b

b b
j v(t) dt = f s dt = s(t)] = s(b) — s(a).

a a
Substituting in the formula for v,, give us
s(b) — s(a)
Yo T T g

which is the average velocity of P on [a, b] (see Definition 2.2).

Results similar to that in Example 9 occur in discussions of average
acceleration, average marginal cost, average marginal revenue, and many
other applications of the derivative (see Exercises 49-54).

Exer. 1-36: Evaluate the in/tegral.

4
| j (x2—4x—3)dx
1

3 2
3J @3 13- 1de 4 f @' — 2% dz
2 0

12
SJ dx
7

7

2

5
—6dx
1x

3
2 f (5+x—6x2)dx
-2

-1
6 J 8dx
—6

4
8 f V163 dx
1

dt

9t —3 “22p 7
9 10

—dt
4 At a8

8 0
uf /52 +2)ds |zfs2(y§—ﬁ)ds
-8 1

0 2
13 f (2x +3)2dx 14 f (4x~3 — 5x*) dx
-1 1
2,2 _ 4 -1,3 ¢
15 J T T i I6j T EO
3 x—1 o x+2
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1
17 f (4x? — 5)100 gy
1

5
18 f \3!x2+\/x5+ 1dx
5

32 3_4 2 5 -1 1 2
19 f #dx 20f (x——) dx
1 X -2 X

6 5
21 f |x — 4| dx 22 J |2x — 3| dx
3 1

4 5 )
23 f 5 —xdx 24 f J2x — 1dx
1 1

0 v2
-2 —2)

i 1 4 x
7f—dx Zsj—dx
0 (3—2x) 0 vx2+9

1
25 f (v2—1)3vdv
-1

4 1 1
9| —— 4 30 | 3—xH3x3d
jlﬁ(ﬁ+l)3 x fo( x7)x" dx

4 /2
31 f cos(%x) dx 32 f 3sin(%x) dx
/2 0

/3
33 j (4sin 260 + 6 cos 30) db
/4

/4 /6
34 f (1 —cos40)db 35 f (x + sin5x) dx
n/6 —n/6

/3 o
36f MY ax

0 COS2 X

Exer. 37-40: Is the calculation or argument valid?
Explain.

T
37 f sec? xdx = [tanx]g =tanw —tan0=0—-0=0

0
T : T
38f cos? x dx = £+sm2x
0 2 4 0
T g
_(5+0)—(O+O)=5

39 If f(x) =x3, then since f(—x) = — f(x), we have
P2 f@ydx = — [} f(x)dx and hence [, f(x)dx =
0.

40 If f(x) = 1/x>, then since f(—x) = — f(x), we have
12 f)dx = = [} f(x)dx and hence [ f(x)dx =
0.

Exer. 41-44: (a) Find a number z that satisfies the
conclusion of the mean value theorem (4.28) for the given
integral fab f(x)dx. (b) Find the average value of f on
[a, b].

4 0
X
41 f—dx 42f Jx F Ldx
0 vx2+9 -2
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5 2
43 f Vx +4dx 44 f V6 —xdx
0 . -3
Exer. 45 -48: Find the derivative without integrating.
d 3 d !
45 Ef V% +16dx 46 d—f xVx? - ddx
0 X Jo

x
47i Lt
dxJjg t+1

48 dr, x| <1

d f |
dxJo /142
49 A point P is moving on a coordinate line with a
continuous acceleration function a. If v is the velocity
function, then the average acceleration on a time
interval [#, 5] s

v(t,) — u(t )

h=1
Show that the average acceleration is equal to the
average value of a on £, 1)

50 If a function f has a continuous derivative on [a, b],
show that the average rate of change of f(x) with
respect to x on [a, b] (see Definition 2.4) is equal to
the average value of f’ on [a, b].

51 The vertical distribution of velocity of the water in a
river may be approximated by v = c(d — y)l/ 6, where
v is the velocity (in meters per second) at a depth of
y meters below the water surface, d is the depth of the
river, and c is a positive constant.

(2) Find a formula for the average velocity v, in terms
of d and c.

(b) If vy is the velocity at the surface, show that v, , =
6u,.

52 In the electrical circuit shown in the figure, the
alternating current / is given by I = I sinw?, where
t is the time and I,; is the maximum current. The rate
P at which heat is being produced in the resistor of R
ohmsis givenby P = I 2R. Compute the average rate of
production of heat over one complete cycle (from t = 0
to t = 2r/w). (Hint: Use the half-angle formula for the
sine.)

Exercise 52

R ©

4.7 Numerical Integration

53 If a ball is dropped from a height of s, feet above the
ground and air resistance is negligible, then the distance d [E®
that it falls in ¢ seconds is 167> feet. Use Definition
(4.29) to show that the average velocity for the ball’s
journey to the ground is 4, /55 ft/sec.

dx k(x)

54 A meteorologist determines that the temperature T (in derivative.

°F) on a cold winter day is given by 57
1
T = 55ttt —12)(t — 24),

where ¢ is time (in hours) and ¢ = 0 corresponds to
midnight. Find the average temperature between 6 A.M.

3

d (*' ¢
Ly
dxhr 342

56 Extend the formula in Exercise 55 to

58

X
59 —| @+DYa 60

- f@dt = f(g(x)g'(x) — fRGNE ().

Exer. 57-60: Use Exercises 55 and 56 to find the

d (¥ 7
— | Vit +1de
de +

Vit + 12 1+ 4ar

and 12 noon.

d d fﬁ
dx 3x dx 1/x

55 If g is differentiable and f is continuous for every x,

prove that
d &w

— f)yde = f(g(x))g' (x).

dx J,

4.7

NUMERICAL INTEGRATION

In this section, we will study several techniques of numerical integra-
tion that help us approximate definite integrals to any desired degree of
accuracy. Evaluating a definite integral fab f(x)dx by the fundamental
theorem of calculus requires having an antiderivative for f. If we cannot
obtain an antiderivative, we may use these numerical methods to obtain
very accurate approximations. To emphasize their geometric nature, we
illustrate these methods for functions with f(x) > 0 on [a, b].

RECTANGLE RULES

Recalling Definition (4.16) and assuming that the definite integral
fab f(x)dx exists, we approximate its value, as a sum of areas of rect-
angles, using any Riemann sum of f. In particular, if we use a regular
partition with Ax = (b — a)/n,thenx, =a +kAxfork=0,1,2,...,n,
and

b n
[ rwac~ > rapax
a k=1

where w, is any number in the kth subinterval [x _;, x,] of the partition.
(Refer to Figure 4.12 on page 379.) Each term f(w,)Ax in the sum is the
area of a rectangle of width Ax and height f(w,). The accuracy of such an
approximation to fab £ (x) dx by rectangles is affected by both the location
of w, within each subinterval and the width Ax of the rectangles.

As we saw in Section 4.4, by locating each w, at a left-hand endpoint
x,_;» we obtain a left endpoint approximation. Alternatively, by locating
each w, at a right-hand endpoint x,, we obtain a right endpoint approxi-
mation. A third possibility is to let w, be the midpoint of each subinterval;
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Rectangle Rules 4.36

CHAPTER 4  Integrais

thgn w, = ()‘ck_l'-l— x,)/2. This choice of location for w, gives a mid-
point approximation. Using the notation x, _, ,, to indicate this midpoint,

(xp_y +x) /2, we formalize the three choices for the location of w . in the
following rules.

For a regular partition of an interval [a, b] with n subintervals, each
of width Ax = (b — a)/n, the definite integral { ab f(x) dx is approx-
imated by

(i) the left rectangle rule:

n = Zf(xk—l)Ax
k=1

(ii) the right rectangle rule:

R, =) flx)Ax

k=1
(iii) the midpeint rule:

B
M, = Z i) B
k=1

If a function is strictly increasing or strictly decreasing over the inter-
val, then the endpoint rules in (4.36) give the areas of the inscribed and
circumscribed rectangles. Figure 4.32 shows a function f that is decreas-
ing over the interval [a, b]. In Figure 4.32(a), the left rectangle rule L,

Numerical Integration

Similarly, for a decreasing function, as shown in Figure 4.32(b), the
right rectangle rule gives the sum of the areas of the inscribed rectangles,
and it underestimates the definite integral. The gray-shaded area shows
the resulting error, which is made up of the regions under the graph that
are not included within the inscribed rectangles. Finally, we see in Figure
4.32(c) that the midpoint rule appears to give a better approximation of the
definite integral. As indicated by the gray-shaded area, the resulting error
includes regions under the graph that are not within the rectangles as well
as portions of the rectangles that are not under the graph. These areas of
error may partially offset each other and yield a more accurate estimate
of the original definite integral. Thus, the midpoint rule M, often gives a
number that lies between the left rectangle rule L, and the right rectangle
rule R,

In the next example, we apply the left rectangle, the right rectangle, and
the midpoint rules to determine approximations for the definite integral of
a specific function on a prescribed interval.

EXAMPLE®= | Approximate J ’ 1/x dx using a regular partition with
n = 4, using !

(2) the midpoint rule M, (b) the left rectangle rule L,

(c) the right rectangle rule R,

SOLUTION Withn=4, wehave Ax=(b—a)/n=02-1)/4=
1/4, and the function f is given by f(x) = 1/x. The endpoints of the
subintervals are x, = 1, x; = %,xz = %,x3 = %, and x, = 2.

gives the sum of the areas of the circumscribed rectangles; it overestimates . s dpoi -2 = 1 =13 =13
the definite integral. The gray-shaded area represents the error resulting ;l(gu)re_4.l3/3 ;a-) The4n;13d)p(;nt?4a;z))?/‘2) N 8’)&/ 2= 80552 = 8 and Xy, =5 (see
from the left rectangle rule. That is, the gray-shaded regions are contained = igure 4.35). By (.70)lL), we o5ttt

| Y

within the circumscribed rectangles but are not under the graph of f. 1

b 2 1 4

Figure 4.32 v =f) J fx)ydx = J'l X dx ~ M, = Z fOo_1)Ax
n n n ¢ =

@ L, =301 fx_PAx () R, =34 f(x)Ax () M, =D k) fOx_y)Ax xi .

LY AV Y ] 24 ( : (1)
H h‘\‘\. = »
T L =1 \*x—1/2 4

{

i

1

i

i

j

J i
1
! 1< 1
< \_ = -y
LN\ I =L : i . 45 \ K-
1_2222122 X
| = A SR b -

| s
N N BN
1
§ )
| ~ 0.6912198912.

\ y =1 y =[x y=f

O o im

(b) The left-hand endpoints are 1, %, % and %. By (4.36)(i),

21 1 4 2 4 319

dx~L,=-(1+-+=+=-}="+1
. J;xx 4 4<+5+3+7> 420
k=127 H

ot A ol Ax e ol Ax b ~ (0.7595238095.

Y
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(c) The right-hand endpoints are 45'1’ %, %, and 2. By (4.36)(ii),

led cR oLt 2 4]
px T T3

__ 533
= 333~ 0.6345238095.

In Chapter 6, we will see that the correct value to ten decimal places for
f 1/x dx is 0.6931471806. We note that the midpoint rule, which yields a
number between those given by the left and the right rectangle rules, gives
a better approximation than either endpoint rule.

Note that in each of the rectangle rules (4.36), Ax is a constant factor
so that we can also write these rules as

L,=Ax) f(_ ), R,=AxY f(x), M,=Ax D fri)
k=1 k=1 k=1

Once we compute the left endpoint or the right endpoint approxima-
tion, it is easy to determine the other endpoint approximation since the
right-hand endpoint of one subinterval is the left-hand endpoint of the next
interval:

n—1 n—1
L, = Ax { fo)+>° f(xk):l and R, = Ax [Z fe)+ f(xn)jl
k=1 k=1

Ifwelet C = Zk 1 f(x) and note that Xy =aand x, = b, we have

R, — L, = AX[C + f(B)] — Ax[f(a) + C] = Ax[£(b) — f(a)]
or, equivalently,
L, =R, + Ax[f(@) - fB)].

Thus, for the case of Example 1, we can find the left endpoint approxima-
tion from the right endpoint approximation, as follows:

Ly=R,+DIfQ) - f)
~ 0.6345238095 + ($)(1 — 1)
= (.7595238095

TRAPEZOIDAL RULES

Since the left and right rectangle rules often yield under- or overestimates,
it is natural to consider a numerical integration rule based on their average,
T .

n*

T,=4(L,+R)= (%) (Z fOg_DAx + Z f(xk)Ax>
k=1 k=1

—zybfukp+ﬂ%ﬂ

413

4.7 Numerical Integration

Trapezoidal Rufe (G528 For a regular partition of an interval [a, b] with n subintervals, each

of width Ax = (b — a)/n, the definite integral fab f(x) dx is approx-
imated by the trapezoidal rule:

T, =3, +R) = 3[fx.)+ Fx)] Ax

k=1

b—
= -5’~1—6}- [f(x0)+2f(x])+2f(x2)+...+2f(xﬂ‘l)+ f(xn)]

Note that since each term in the sum for 7, has a constant factor
(%)Ax = (b — a)/2n, we can also write the sum as
LS ) + ).
k=1

The last equality in (4.37) follows from the relation between the left
rectangle and right rectangle rules,

L, =R, + Ax[f(@) — fB)] = R, + Ax[f(xp) — fx)],
and the definition of the trapezoidal rule as the average of L, and R, :

=3(L, + R) = 3(R, + Ax[f(xg) = f(x,)] + R,)

3 (2R, + Ax[f (xg) = f(x,)])

L= 2n

( Ax Z FO) + Ax [ f(xy) — f(x, )]>
X

= SE LA+ F) o+ ) + ]+ FG) = F)

= b;’la [f(-xo) + 2f(x1) -+ 2f(x2) + .. 4 2f(xn_1) + f(xn)]

Figure 4.34 provides a graphical interpretation of the trapezoidal rule.
Each term %[f(xk_l) + f(x;)]Ax in the sum is the area of a trapezoid

Figure 4.34 LY




Figure 4.35
LAY

CHAPTER 4  Integrals

formed by the secant line joining the endpoints of the graph over the kth
subinterval [x,_;, x.], the interval itself, and the vertical segments above
x,_; and x,. The gray-shaded regions in the figure show the error when we
approximate the area under the graph of f by the area of the trapezoid.

EXAMPLE=2 Approximate [ 12 1/x dx using a regular partition with
n = 4, using the trapezoidal rule 7.

SOLUTION  With the results of Example 1, we have
T, = %(L4 +Ry)
= %(0.7595238095 + 0.6345238095)
= 0.6970238095,

which is closer to the correct value (to ten decimal places) of 0.6931471806
than either L, or R,.

Alternatively, we can compute T, directly from the last form of the
trapezoidal rule in (4.37):.

2—-1 5 3 7
L=%a [f(l) +2f (Z) +2f <5> +\,2f (Z) + f(2)]

=i[1+2h+23) +23) + ()]
=10+8+5+3+D

11171y _ 1171
= Ly . 7L~ 0.6970238095

We can obtain other trapezoidal approximations for the area under the
graph of f over a subinterval. For example, as illustrated in Figure 4.35,
we can construct a nonvertical line ! through the point M, which lies on
the graph over the midpoint of the interval. Extending this line until it
meets the vertical lines over x,_, and x, at points P and Q, respectively,
forms a trapezoid TPQU. Adding a horizontal line through M forms a
rectangle TRSU, whose area is one of the terms of the midpoint rule. Using
elementary geometry, it can be shown that the area of the trapezoid TPQU
is equal to the area of the rectangle TRSU.

Note that this result is independent of the shape of the graph of f.
If we take any nonvertical line through M, the resulting trapezoid has
the same area as the midpoint rectangle. Thus, in addition to having a
second trapezoidal approximation, we also have an alternative geometric
way of viewing the midpoint rule. By an appropriate choice of the line /,
we may be able to see if the midpoint rule gives an underestimate or an
overestimate of the definite integral. We may be able to choose the line
I, as in Figure 4.36, so that the entire area under the curve is below the
line; thus the midpoint rule will overestimate the definite integral on this
subinterval.
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If we examine the difference between the midpoint rule and the trape-
zoidal rule on one subinterval (Figure 4.36), we see that the midpoint rule
is an overestimate and the trapezoidal rule is an underestimate. The mid-
point rule has about half the error of the trapezoical rule.

SIMPSON’S RULE

Recall that the trapezoidal rule, which averages the results of the left
rectangle rule and the right rectangle rule, is an improvement over each
of them. We may do even better by combining the midpoint rule and
the trapezoidal rule. The British mathematician Thomas Simpson (1710-
1761) suggested a combination, using a “weighted average,” where M, is
counted twice as heavily as 7.

For a regular partition of an interval {a, b] with n subintervals, each
of width Ax = (b — a)/n, the definite integral [ f(x) dx is approx-
imated by Simpson’s rule:

S, =32M, +T,)

D=
= T2 1S () +4F (i) + 27 00) +4F (x3)
e 2f(x2) +-e 2 (x, )+ 4f(x,,__1/2) ol f(xn)}

The last equality in (4.38) follows from the fact that
M, = [f(xl/z) + f(x3/2) + f(x5/2) +--+ f(xn_l/z)]Ax

can be combined with the final expression for the trapezoidal rule in (4.37).
The next example shows the result of applying Simpson’s rule to the
definite integral given in Examples 1 and 2.
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EXAMPLE=3 Approximate J’flz 1/x dx using a regular partition with
n = 4, using Simpson’s rule S,
SOLUTION Using the results of Examples 1 and 2, we have
Sy =32M, +T)
~ %[2(0.6912198912) + 0.6970238095] ~ 0.6931545306.

Comparing this result to the correct value (to ten decimal places) of
0.6931471806, we see that Simpson’s rule gives the best approximation,
followed by the midpoint rule and then the trapezoidal rule. Alternatively,
we can compute S, directly from the last form of Simpson’s rule in (4.38):

= L1047 (5 >+2f<45_1>+4f(11)+2f(%>
+4f( )+2f<)+4f(§5)+f(2)]

=u(+F+5+F+5+5+5+5+D

1 { 35,969,064 1,498,711\
= 5 (B000s) = (24574 ~ 06931545307

The numerical integration techniques we have considered up to now
approximate the region under the graph lying over a small subinterval by a
simpler region (a rectangle or a trapezoid) whose area is found by simple
geometric formulas. Another conceptual approach to numerical integration
also leads to Simpson’s rule: We replace the function f by a simpler func-
tion ¢ whose graph closely approximates the graph of f on each subinter-
val. We then integrate the simpler function by finding its antiderivative and
approximate f f(x)dx by f 0 g(x) dx. In this perspective, note that a

rectangle rule replaces fbya constant function. The trapezoidal rule re-
places f by a linear function that matches the values of f at the endpoints
of the subinterval.

For Simpson’s rule, on each subinterval, we replace the function f by
a quadratic function g that matches the value of f at the endpoints and the
midpoint—that is, on each subinterval, the graph of g is a parabola with
three points in common with the graph of f, as shown in Figure 4.37.

A quadratic function can be written in the form g(x) = ¢ + bx + ax?
for constants c, b, and a. It will be easier to use an equivalent form

8 =gt o (x —x_y0) +opx - xk—1/2)2

on the subinterval [xp_1> X 1.

We must first determine the values of the coefficients Cg» €1, and ¢, s0
that the values of f and g are equal at the endpoints and at the midpoint of
the subinterval. To do so, we need to satisfy the conditions

gx,_) = f(xk_l)» g(xk_l/z) = f(xk_l/z), and g(xk) = f(xk)s

and then use these equations to determine Cg» €1, and c,.

4.7 Numerical Integration

417

1. At the midpoint x = x; _{ 2> We have
g(xk_l/z) =cy+¢ ©0) + C2(0)2 = Cp-
For agreement at the midpoint, we need g(x,_; /2) = fx,_, /2), SO we
have ¢, = f()g,k_l/z).
2. At the left endpoint x = x,_;, we have
1
X=Xy 1jp = Xyg — oyp = T2A%,
2
SO glx_y) = f(xk_l/z) — %cle + %cz(Ax) .
To obtain agreement with f at the left endpoint, we need g(x,_;) =
f(x,_;)—thatis,
0} FG_10) = 361 8x + 16, (A = f(x_y).
3. At the right endpoint x = x,, we have x — Xpo1/2 = %Ax, SO
1 2
g(xk) = f(x]c—l/Z) + %CIAX + ZC2(AX) .

To achieve agreement with f at the right endpoint, we must have
g(x) = f(x,) or, equivalently,

() FO_yyp) + 36 0x + Ley(Ax)? = f(xp).

Thus, in order for g and f to agree at the three points, we must solve
the equations (I) and (IT) for ¢; and c¢,. Doing so yields

{ FO) — fOx_y) } {2[f(xk) = 2f(x_yy0) + F ()] }
Sk Skell b e = _

C 1= Ax (Ax) 7
Thus, we have determined the coefficients (c,, ¢, and c,) of the quadratic
function g.

Once we have explicitly found the function g, we apProysimate
J7 f(x)dx by [* g(x)dx. The integral of the quadratic function is
K k=1

xk
j [Co +c(x — xk_l/z) +cy(x - xk—1/2)2] dx

xk—l

3%
= [Cox + 30, (x — xk—1/2)2 + 500 =Xy ) ]x

k—1
3
= [COxk + 50,05, — xk—1/2)2 + 3600 — X _12) ]
1 ‘ 3
= [COxk—l + 36, (G — xk—1/2)2 + 365X — X_1p2) ]
3
= ¢t — X,_p) + 36, (3AD) + 36, (3 A%)
—1e1(=3A%)" — fe,(—3Ax)°
= co(Ax) + £56,(Ax)’,

which becomes, after substituting the values for ¢, and c, we found above,

L[F G + 4 Gy + )| Ax,




Figure 4.38
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which are exactly the terms we have for Simpson’s rule. This result gives
an alternative justification for Simpson’s rule: We can derive Simpson’s
rule either by beginning with a weighted average of the midpoint and
trapezoidal rules or by approximating the graph of f with parabolas.

In some treatments of numerical integration, a different form of Simp-
son’s rule is used. Instead of using quadratics whose values match those
of the function f at the endpoints and the midpoint of each subinterval
[x;_y, x,], this other form uses an even value for n. It then divides the in-
terval [a, b] into n/2 subintervals and uses a quadratic for each of these n/2
subintervals. In this approach, the first quadratic matches f at x,, x,, x,,
the next quadratic matches f at x,, x5, x,, and so forth. Note that Simp-
son’s rule (4.38) can be used for an odd or an even value of #. If you use
a software package on a computer or a built-in function on a calculator for
numerical integration, consult the reference manual to determine which
form of Simpson’s rule is being used.

In the next example of numerical integration, we approximate the def-
inite integral of a function known only by a table of function values with
equally spaced x-coordinates. In applications, results obtained from an ex-
periment frequently provide only function values, rather than a formula for
the function.

EXAMPLE®=4  Aerial surveys of a tract of the Green Mountain Na-
tional Forest shown in Figure 4.38 measured the width of the forest (in
miles) at regularly spaced intervals, % mi apart. The gathered data are

shown in the following table.

x| 20 23 26 29 32 35 38 41 44 47 50 |

y 9.14 11.82 13.41 13.72 12.87 11.27 9.42 7.81 6.78 6.49 6.88

The Forest Service estimates that, on average, there are 125 mature trees
per acre. Approximate the total number of mature trees in this tract of the
forest using the rules of numerical integration.

SOLUTION We must first obtain estimates for the forest’s land area
in square miles. To do so, we use the data in the table and consider the for-
est area as the definite integral of the function y = f(x) over the interval
[2, 5].

For the left and right rectangle rules and for the trapezoidal rule, we
can choose n = 10 and Ax = (5.0 — 2.0)/10 = 0.3. Using our earlier ob-

servation that R, = Ax [ZZ;% fax)+f (xn)], we have

9

Ry = (0.3) [Z fx) + f(xlo):l

k=1
= (0.3)[(11.82 4+ 13.41 + 13.72 4 12.87 + 11.27
+ 9.4247.81 4 6.78 + 6.49) 4 6.88]
= (0.3)(93.59 + 6.88) = 30.141
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and L710 - RlO + Ax[f(a) - f(b)]
= 30.141 + (0.3)(9.14 — 6.88) = 30.819,
so that Tio = 3(Lyo + Ry) =30.48.

For the midpoint rule and Simpson’s rule, we consider every other
x-value as a midpoint so that n = 5 and Ax = 0.6. Then we compute

Ls=(9.14 + 13.41 + 12.87 + 9.42 + 6.78)(0.6) = 30.972,
Ry = (13.41 +12.87 +9.42 + 6.78 + 6.88)(0.6) = 29.616,
Mg = (11.82 +13.72 4+ 11.27 + 7.81 + 6.49)(0.6) = 30.660,
T, = (Ls+ Rg)/2 = 30.294,
and S5 = (2M; + T)/3 = 30.542.
The computed results are summarized in the following table, where we

have rounded figures to two decimal places because the given data on the
width of the forest can be assumed accurate to only two places.

n| L, | R | M 3 1

iT's

5 3097 | 2962 | 3067 | 3029 | 3054
10 | 3082 | 3014 — | 3048 _

From these figures, we estimate the tract of forest to be about 30.5 miZ.
Since there are 640 acres in a square mile, the forest is about 19,520
acres in extent. With an average of 125 trees per acre, the forest contains
approximately (19,520)(125) = 2,440,000 mature trees.

DEPENDENCE ON Ax

We noted earlier in this section that both the location for w, and the
size Ax affect the accuracy of ) y_, f(w,)Ax as an approximation for

) ab f(x) dx. We have considered several different choices for locating w
and now examine the size of Ax. Since the width Ax = (b — a)/n de-
pends on the number n of rectangles, the discussion will focus on n. In-
creasing n may increase the accuracy but it introduces more terms in the
sum to calculate. We can find the approximations using a calculator or a
computer program for different choices for n to see how increasing 7 im-
proves the accuracy. The next example shows the numerical results for a
particular definite integral using a program on a calculator that displays 12
significant digits and works internally with 14 digits.

EXAMPLE®5 Use the numerical integration rules to approximate
the definite integral fol [4/(1 + xz)] dx forn = 2,6, 18, 54, and 162.



SOLUTION
computer program:

|

162

3.6

3.30362973314

3.19663380591

2.6

2.9702963998

3.08552269480

3.16005401619

3.12301697915

3.14775914244

3.13541346343

M

n
3.16235294118
3.14390742722
3.14184985518
3.14162123155
3.14159582892
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The following table displays the results of running the

52 _J

3.1

3.14156862745

3.13696306647

3.14159264031

3.14107825036

3.14159265357

3.14153549767

3.14159265359

3.14158630293

3.14159265359

We can make several observations on the basis of an examination of the
table.

As we increase n, the values given by the midpoint, the trapezoidal,
and Simpson’s rules all seem to approach a number whose first six signif-
icant digits are 3.14159. For the left rectangle rule, increases in # produce
decreases in the values of L, . These values also get closer to 3.14159. For
the right rectangle rule, increases in n produce increases in the values of
R, , which also get closer to 3.14159.

In going from one value of # to the next value, we see that the change
in the approximated values is greater for the rectangle rules than for either
the trapezoidal or Simpson’s rule. For example, when n increases from 6
to 18, the value for L, changes by 0.10699592723, whereas the value for
S, changes by only —0.00000001326.

To gain a better understanding of the effect on the approximations of
increases in n, we can compare the results in the table of Example 5 with
the exact value of the definite integral. The next example discusses such a
comparison.

EXAMPLE=6 The definite integral fol [4/(1 + x%)] dx has a value of
7. (We will prove this fact in Chapter 6.)

(a) Using the results of Example 5, compute the errors for each approxi-
mation by finding the difference between 7 and the approximation.
(b) Investigate the ratios of error for each successive pair of values for 7.

SOLUTION

(2) Given the known value 7 for the result, we use a calculator to compute
each error, that is, the correct value 7w minus the approximated value. The
following table lists the results.

4.7 Numerical Integration
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L R

n n M, | T, Sp |
—4.584E —1 5416 E —1 _—2_07_6 E-2 4.159 E-2 2403E -5
~1620E—-1 | 1713E-1 —2315E -3 4.630_E_—3— 1.328E -8 |
—5.504E -2 . 5.607E -2 i :2 57_2 E -4 5.144E —4 | 1.82 E-11 |
—1.846 E—=2 1.858 E -2 —2.85&1:: -5 - 5716E -5 - 3 E -13 ‘
—6.166 E -3 6.179E —3_. —3.175 ]; —6 6.3;1 IE —6 - 1 E —-13 ‘

The data in the table indicate that the error decreases as n increases. We
note too that when Simpson’s rule is used, the error is extremely small
even whenn = 2.

(b) The next table shows the ratio of a column entry and the entry

below it.
‘ n,n+1 ; L /Ln+17 R,/R, . : M, /M, T/ Thiy l Su/ St
2 6 28 | 316 | 897 8.98 1809
i 6, 18 i 2.94 I 3.06_ l |— ;)0_ 9.00 729.7
| 18, 54 ‘ 2.98 | 3.02 ‘ 9. 00 9.00 _ 57
54, 162 2.99 | 3.01 ‘ 9.00 9.00 ‘ 3

Note that each successive value of # is 3 times the preceding value. The
errors for the left and right rectangle rules were approximately divided by
3 for each tripling of n, and the errors for the midpoint and trapezoidal
rules were approximately divided by 9 = 32, We see no pattern in the
errors for Simpson’s rule, which may be due to round-off errors that occur
because one very small number is being divided by another.

The patterns we observed in the table of Example 6(b) are not coinci-
dental. They follow from more general results about error estimates.

ERROR ESTIMATES

For the five numerical integration rules that we have considered in this
section, we can find error estimates, or bounds, on the size of the error
even if we do not know the exact value of the definite integral. If 7 is the
actual value of the definite integral fab f(x)dx and A, is an approximated
value using n rectangles, then the size of the error is |/ — A, |. By a bound
on the size of the error, we mean a number B such that |I —A4, | < B.We
can obtain bounds that depend on the number n of subintervals and the
maximum value of derivatives of the function f. We state without proof
the theorem describing these error estimates.




i/ TR = 1 ]

Theorem 4.39
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Let ] = fab S (x) dx be the definite integral being approximated. If f’
is continuous and if K| is a positive number such that | f'(x)| < K {
for every x in [a, b], then the error estimates for the left rectangle
rule L and the right rectangle rule R, are given by

b —a)? (b — a)*

lI_Ln!<Kl In and |I‘_Rn[§K1 21

Mo . . P @0
If f” is continuous and if K, is a positive real number such that

| f A (x)'[ < K, for every x in [a, b], then the error estimates for the
midpoint rule M, and the trapezoidal rule 7, are given by

(b - a)®

b—a)

1-M,| <K
2 12n*

If f® is continuous and if K, 4 18 a positive real number such that

| f® )| < K, for every x in [a, b], then the error estimate for
Simpson’s rule S, is given by

(b~ a)®

[Fn il gpice it
| al = 4 2880n*

The next example illustrates how the error estimates in (4.39) can be
used. If we can find values for K 1» K,, or K, then we may use the esti-
mates in (4.39) to determine how large n should be in order to ensure that
a particular approximation is within a given margin of error.

EXAMPLE®7 Determine how large n must be in order to use the
trapezoidal rule to approximate I = [ 13 1/x dx with an error less than 1073,

SOLUTION From Theorem (4.39), we have

G-1° 2K,

I-T|<K,—F =__=
I "] 2 1262 3n?’

where K, is a bound on the absolute value of the second derivative
of f(x)‘ = 1/x on the interval [1, 3]. Since f”(x) = 2/x> is positive and
decreasing on [1, 3], its maximum value is f”(1) = 2. Therefore, we have

|1 -7, <4/ (3n?). To ensure that the error is less than 10, we must
choose n so that

4 -3
>3 < 10 ,
3n
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which is equivalent to

n2 - 4000 or n> 4000
30 3
~ 36.5.

Hence we should choose n to be at least 37 in order to guarantee an error
less than 107>,

Before the availability of electronic computing devices, great efforts
were made to estimate the constants K, K,, and K. Once these numbers
were known, the inequalities in (4.39) could be solved for n, as in Example
7, to determine how many subintervals n to use in order to obtain an ap-
proximation within a prescribed error. Today with inexpensive computing
power (including hand-held programmable calculators), there is an alter-
native approach. We can obtain an approximation that is within a given
margin of error by repeatedly computing a numerical integration rule for
increasing values of n and observing the convergence of the estimates as n
grows larger. We will illustrate this approach in Example 8.

This alternative approach is based on the fact that the error estimates
(4.39) give the expected decrease in the error when we change n by a
certain multiple. To illustrate, if we compare the error estimates for the
trapezoidal rule with n and 5n subintervals, respectively, on the same defi-
nite integral, we have, by (4.39),

(b —a)’

B, = =Tl <K s e

d E,=|I-T |<K——(b—a)3
an = —_ -~ .
Sn 5n 2 12(5n)2

The ratio of these two error estimates is
E, _ Klb-a’/122°] _ 5 _

n

Es,  K,[(b—a)*/125m)*

Since Es, = %En, we expect the error to decrease by a factor of 25 when
we increase the number of subintervals from n to 5n. We obtain similar
expected decreases for the other numerical integration rules by examining
the power of n in the denominator of the error estimates. For example, if
we multiply n by 3, then, by (4.39), we expect the error in the left and right
rectangle rules to be divided by 3, the error in the midpoint and trapezoidal
rules to be divided by 3% = 9, and the error in Simpson’s rule to be divided
by 3* = 81.

EXAMPLE®=S

(a) Use Simpson’s rule to approximate the definite integral I} 112 1/x dx for
n =5, 10, 20, 40, and 80.

(b) Discuss the expected accuracy of the final result.
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SOLUTION
(a) We use Simpson’s rule (4.38) for the integrand f(x) = 1/x, and dis-
play the results in a table:

‘ n S,
5 250179046384 |
10 | 248685897261
20 | 248507069664

40 2.48491806727

80 2.48490738622

(b) Each time we double n, the error estimation in (4.39) predicts that the
error in Simpson’s rule will be divided by 2* = 16, which means that we
will add at least one correct decimal digit each time we double #. Thus,
the estimate

12 1
f —dx ~ 2.4849
i X

is correct to at least four decimal places.

For the function f(x) = 1/x, we can easily find f® (x) = 24x~>. The
largest value for this positive decreasing function on the interval [1, 12] is
f ) (1) = 24. Using the formal error estimate in (4.39) yields

12-1>
2880(80)*
A~ 3.28 x 1077,

[1— Sg| <24

In some instances, increasing the size of n does not necessarily lead to
a more accurate approximation to the value of a definite integral. When
a calculator or a computer is used to implement one of the numerical
integration rules, round-off errors can occur when the size of the numbers
becomes so small that they cannot be stored precisely in the machine.
When n is very large, the numerical integration rules add a very large
number of terms. If there are sufficiently many terms (a large value of
n), the sum of the round-off errors can be large enough to produce a less
accurate estimate for the value of the definite integral than does a smaller
value of n. Courses in numerical analysis explore such issues in greater
depth.

Exercises 4.7

- EXERCISES 4.7

425

Exer. 1—4: Use all five numerical integration rules with
an appropriate n to approximate the definite integral of
the function y = f(x) over the interval [2, 5] when the

function values are as given in the table.

(x| 20 25 30 35 40 45 50 |
38 35 46 52

Ly 32 27 41

2 x| 20 275 35 425
Ly 152 171 186 192

3| % ' ¥ ‘ 4| x |
2,00 4.12 20
2375 | 3.76 2.3
275 ‘ 321 26
3.125 | 3,58 ‘ 2.9
3.50 3.94 32

| 3875 | 415 35
4.25 4.69 3.8
| 4625 | 544 ‘ | 4.1
5.00 7.52 4.4
| 4.7

5.0

E Exer. 5-6: (a) Use Riemann sums with both left-hand
endpoints and right-hand endpoints to approximate the
definite integral of the function y = f(x) over the interval
[4, 6] when the unequally spaced function values are as
given in the table. (b) Find a trapezoidal rule estimate
for the given partition of [4,6] by averaging the two

estimates from part (a).

5 X ‘ y | 6| «x
400 0386 | 4.000
415 | 0423 4.587

| 435 0470 4.954
450 | 0.504 5.203
475 0558 5434
510 0.629 \ 5.608
530 0.668 5756
565 | 0732 | 5.886
6.00 | 0792 6.000

12.1

y

3.812
1.392
—2.250
—3.128
—2.435
—1.225
—0.029
0.950
1.637

5.0 |
204 |

Exer. 7-14: (a) Approximate the definite integral using
the indicated rule for the given values of n. (b) Evaluate
the definite integral exactly, and compute the errors
for each approximation. (c) Determine how the error
changes for successive computations.
1.6
7 (2x — D) dx; left rectangle rule for n = 3, 6,
1 and 12

right rectangle rule forn = 4, 8.

3
8 f (x2+l)dx;
1 and 16

5
9 f x3 dx; midpoint rule forn = 2, 4,
1

and 8

1
10 f (x2 + 5x + 1) dx; midpoint rule forn = 1, 4,
-1 and 16

5
I f %3 dx; trapezoidal rule forn = 2, 4,
1 and 8

i
12 f (x2 + 5x + 1) dx; trapezoidal rule forn = 1, 4,
-1

and 16
5
I3 f x3 dx; Simpson’s rule forn = 2, 4,
1 and 8
1
14 f (x2 + 5x 4+ 1) dx; Simpson’s rule forn =1, 4,
-1 and 16

IZ] Exer. 15-18: (a) Approximate the definite integral using

the indicated rule for the given values of n. (b) On the
basis of the pattern of values, determine the expected
accuracy for the approximation corresponding to the
largest n.
3
15 f Vvi1+ % dx; trapezoidal rule for n = 5, 10, 20,
1 and 40

trapezoidal rule forn = 2, 8, 32,

5 2
16 jZ‘x dx;
0 and 128

T
17 f cos(sinx) dx; Simpson’s rule forn = 2,6, 18,

0 and 54
4

18 J’ 3 dx; Simpson’s rule for n = 8, 16, 32,
0 l+x and 64
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Exer. 19-22: Use Theorem (4.39) to estimate the
maximum error in approximating the definite integral
for the given value of n, using (a) the trapezoidal rule
and (b) Simpson’s rule.

3
|9f (5528 + &gx7)dx; n=25
-2

3

2of0 —5xt+ 30 dx; n=24
51

21 — dx; n=16
1x
4

22 f A x"2 ax; n=15
1

Exer. 23-26: Using Theorem (4.39), find the least integer
n such that the error estimate in approximating ‘the
definite integral is less than the given E when using
(a) the left rectangle rule, (b) the midpoint rule, and

(¢) Simpson’s rule. E s

8
23 f 81x%3dx: E =0.05
1

21
24f—5dx; E=01
1 120x

1

1

zsf —dx; E=0.02
/2%

3
26J dx; E =0.005
o x+1

27 If f(x) is a polynomial of degree less than 4, prove that
Simpson’s rule gives the exact value of [ ab f(x)dx.

28 Suppose that f is continuous and that both f and f”

are nonnegative throughout [a, b]. Prove that ab fx)dx
is less than the approximation given by the trapezoidal
rule. :

29 The graph in the figure was recorded by an instrument
used to measure a physical quantity. Estimate y-
coordinates of points on the graph, and approximate the

Exercise 29

40
30
20 -1
10

30
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area of the shaded region by using (a) the trapezoidal
rule, with n-.= 6, and (b) Simpson’s rule, with n = 3.

An artificially created lake has the shape illustrated in
the figure, with adjacent measurements 20 ft apart. Use
the trapezoidal rule to estimate the surface area of the
lake.

Exercise 30

An important aspect of waler management is the
production of reliable data on streamflow, the number
of cubic meters of water passing through a cross section
of a stream or river per second. A first step in this
computation is the determination of the average velocity
v, at a distance x meters from the river bank. If £ is the
depth of the stream at a point x meters from the bank
and v(y) is the velocity (in meters per second) at a depth
of y meters (see figure), then

1 k
= _1 d
V=g fo v(y)dy
(see Definition (4.29)). With the six-point method, ve-
locity readings are taken at the surface; at depths
0.2k, 0.4k, 0.6k, and 0.8k; and near the river bottom.
The trapezoidal rule is then used to estimate v . Given
the data in the following table, estimate v .

| ¥y (m) | 0 0.2k 04k 06k 08k k
i v(y) (m/sec) | 028 023 0.19 0.17 0.13 0.02

Exercise 31
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32 Refer to Exercise 31. The streamflow F (in cubic meters
per second) can be approximated using the formula

L
F‘=J‘ v, h(x)dx,
0

where h(x) is the depth of the stream at a distance
x meters from the bank and L is the length of the
cross section. Given the data in the following table, use
Simpson’s rule to estimate F.

x@m 0 3 6 9 12
h(x) (m) i 0.51 0.73 1.6l 2._11
v, (m/sec) | 0 0.09 0.18 0.21 0.36

x (m) 15 18 21 24
R (m) | 202 153 064 0
| ¥, (m/sec) 032 019 011 0
!

Exer. 33-34: Use Simpson’s rule, with n=4, to
approximate the average value of f on the given interval.

1
33 f(x)=x——4+1; [0, 4]

34 f(x) =./cosx; [—1, 1]
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P

L) o/ A e T e Y\
Exer. 1-42: Evaluate.

| f8x2—4x+5

4

dx 2 f Gxd +2x3 —x)dx
X

3 flOde 4 jx3/5(2x—ﬁ)dx
(] f«3/5x+1dx
1+ Vx)?

10 j(x2+4)2dx

5 f(2x—|—1)7dx
7 J(l —2x2)3x dx

9 fil 2d)c
Va(l+/x)

1 j(3—2x'— 5x3) dx 12 f(x+x—1)2dx

13 J(4x + D(@x? +2x — 7)? dx

427

Exer. 35-36: If f is determined by the given differential
equation and initial condition f(0), approximate f(1)
using the trapezoidal rule with n = 10.

35 00 = 72%; fO =1

36 f'(x) = Vaanx; f(0) =2

Exer. 37-38: Let a regular partition of [a, b] be deter-
mined by @ = x, x;, ..., X, 15 X, = b.

37 Show that Simpson’s rule can be expressed as

n

1
=)z [f(xk_l) +4f () + f(xk)] Ax.

k=1
38 If m is an even integer, show that Simpson’s rule can be
expressed as

Sz = b—3_—[f(xo)+4f(x1)+2f(x2)+4f(x3)+.,,

a
m
F2f () +4f(x, D+ fx,))].

B vy v, S e

P
14 J4—V12(1/x)-dx Is J(Zx_3—3x2)dx
X
1
I7fx/38x7dx
0
2.2 . 1 2
|afx-7x 6 i |9f———x 5 dx
1 x+2 o (14+x°)
2 x+1

9 .

20 f 2x + 7dx 21 ——dx
1 1 Vx?+2x
2.2 2

22 f A2 23 fxzx/x3+ldx
1 0

x2

1
24 J 3Jc2\/x3 + xdx
1

16 f(x3/2 +x7 %) dx

i
25 f (2x — 3)(5x + 1) dx
0

1 4
zsf (2 + 1% dx 27 f V3x(Jx + /3) dx
—1 0




| T

1
28 f x4+ DE+2)(x +3)dx
—1

29 f sin(3 — 5x) dx 30 fx2c05(2x3)dx

3 fsin(l/x) dx

x2

31 f cos 3x sin? 3x dx

33 f 00533x dx
sin” 3x

34 f(3 cos2mt — Ssindmt) dt

/2
35 J cosx+/3 + S5sinx dx

0
0 /4
36 f (sinx + cos x)2 dx 37 f sin 2x cos? 2x dx
—n/4 0
/4
38 f (secx + tan x)(1 — sinx) dx
/6
d /2 d
39 f—ffx“+2x2+1dx 40 f = (x sin® x) dx
dx 0 dx

d ! d [*
41 —f B+x2—7dx 42 —f @+ D%
dx Jo dx Jo

Exer. 43-44: Solve the differential equation subject to
the given conditions.

d%y , .
43 d—2=6x—4; y=4andy =5ifx =2
X

44 f"x)=x =5 f(1)=2; f(1) = -8

Exer. 45-46: Let f(x) = 9 — x? for —2 < x < 3, and let P
be the regular partition of [—2, 3] into five subintervals.

45 Find the Riemann sum R, if f is evaluated at the
midpoint of each subinterval of P.

46 Find () Ap and (b) Agp.

Exer. 47 — 48: Verify the inequality without evaluating the
integrals.

1 1 2 2
47 szdxzf %3 dx 48 f xzdxff x3 dx
0 0 1 1
Exer. 49 - 50: Express as one integral.
e b b d’
49 f f(x)dx—l—f f(x)dx—j f(x)dx—f fx)dx
c a c d
d b g
50 f f(x)dx—f f(x)dx—f f(x)dx
a t 8
b a
4—f f(x)dx—}-f f(x)dx
m t

51 A stone is thrown directly downward from a height of
900 ft with an initial velocity of 30 ft/sec.
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(a) Determine the stone’s distance above the ground
after ¢ seconds.

(b) Find its velocity after 5 sec.
(c) Determine when it strikes the ground.

52 Is the following argument valid? Explain.
The function f defined by

1 if x is rational and x > 0
f(x) =1—-1 ifxisrationaland x < O
0 if x is irrational

is defined for all numbers in [—1, 1] and has the
property that f(—x) = —f(x) for all x in [-1, 1].
Thus, /1, f(x)dx = 0.

53 Find a definite integral for which

i\/;H(_Hf_O)Z(%)

k=1

is a right rectangle rule approximation.

54 Given J;'(x? + 2x — 5)dx, find

(a) a number z that satisfies the conclusion of the mean
value theorem for integrals (4.28)

(b) the average value of x> 4+2x —5o0n[l,4]

Exer. 55-58: Approximate the definite integral using the
indicated rule for the stated values of n.

.
55 f sin(xz) dx;  midpoint rule forn = 5 and 10
0

1 N
56 f cos4/xdx; trapezoidal rule for n = 10 and 20
0

4

57 j vV x% + xdx; Simpson’s rule for n = 4 and 8
2 )
S .

1
58 f ; dx; Simpson’s rule for n = 5 and 20
o x—+2

59 To monitor the thermal pollution of a river, a biologist
takes hourly temperature readings (in °F) from 9 A.M. to
5 PM. The results are shown in the following table.

Timeofday 9 10 11 12 1
| Temperature 753 77.0 83.1 84.8 865

Time of day 2 3 4 5
Temperature | 864 81.1 78.6 75.1

Use Simpson’s rule and Definition (4.29) to estimate the
average water temperature between 9 A.M. and 5 PM.
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- EXTENDED PROBLEMS AND GROUP PROJECTS

I Let f(t) = 1/(1 +2).
(a) Sketch the graph of f and discuss its symmetries.
(b) Show that f is continuous for all real numbers ¢.
(c) Prove that the function F(x) = J§ f (@) dt exists and

is differentiable for all real numbers x.

(d) Find F(0).
(e) Show that F'(x) = 1/(1 + x?).
(f) Show that Fisa strictly increasing function.

(g) Find F”(x) and determine the intervals over which
F is concave upward and concave downward. Find
all points of inflection.

(h) Use the information obtained so far to sketch a graph
of F.

(i) Show that F must have an inverse function 7.
Assuming that T is differentiable, use the identity
F(T(x)) = x, differentiation, and the chain rule to
conclude that 7/'(x) = 1 + [T,

(j) Show that the tangent function satisfies

(tanx) = 1 + [tanx]%.

(k) Discuss the similarity between the results of parts (i)

and (j).

2 Let f(t) be a continuous function and define

F(x) = foxxf(t)dt;

(a) Find F'(x) if f(t) =1.

(b) Find F'(x) if f(t) = 1%

(c) Find F’'(x) if f(¢) = cost.

(d) Formulate a general result about F "(x).
(e) Prove that

JJ‘ (J’uf(f)dt>du =Jx F)(x — u) du.
0 0 / 0

(Hint: Differentiate both sides, using the result of
part (d).)
(f) Prove that

Jox F)(x —u)? du = 2fox Uow qov f(t)dt) dv:l dw.

3 One way to measure the effectiveness of a nurr}eﬂcal
integration method is to test the method on polynomials.
A method is exact for polynomials of degree n if it
produces zero error for any polynomial of degree at most
n, but does produce error for some polynomial of degree
n+1.

(a) Show that a method is exact for polynomials of
degree n if and only if it produces zero error for
monomials, f(x) = x/ for j =0,1,...,n, but has
some error for monomials x" 1,

(b) Show that the midpoint rule and the trapezoidal rule
are exact for polynomials of degree 1.

(c) Show that Simpson’s rule is exact for polynomials
of degree 3.

(d) Show that the following numerical integration rule
(called a Gaussian rule) is exact for polynomials of
degree 3:

Lbf(x)dx%lg{f[xk_l+ (1_\@) %]
+f[xk_1+(1+\@) %“%

(e) Discuss the advantages and disadvantages of
implementing the Gaussian rule in part (d) over
implementing Simpson’s rule.

(f) Test the following numerical integration rule (called
Simpson’s 3/8 rule) to determine its polynomial
exactness:

n

b 3 A
J feoyde~) 3 [f (1) +3f (xk—l + ?x)

k=1

+3f <xk_1 +2%’f) +f (xk)] %

(g) Can a numerical integration rule that is exact for
polynomials of degree 2 be designed?




