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52 Apply the approach discussed in Exercise 51 to the

function of Example 2.

53 Suppose that f(x) = g(x)/h(x), where g and h are

CHAPTER 3  Applications of the Derivative

(a) Show that the numerator of f "(x) (before any
simplification) is a polynomial of degree m +n — 1.

(b) What is the degree of the numerator of f”(x)?

polynomials of degree m and n, respectively.

OPTIMIZATION PROBLEMS

In this section, we will examine applications in which we need to find the
maximum or minimum values of a function. For example, a physical or
geometric quantity Q is often described by means of some formula Q =
f(x), where f is a function. Thus, Q might represent the temperature ofa
substance at time x, the current in an electrical circuit when the resistance
is x, or the volume of gas in a spherical balloon of radius x. Of course, we
often use other symbols for variables, such as T for temperature, ¢ for time,
I for current, R for resistance, V for volume, and r for radius. If @ = f(x)
and f is differentiable, then the derivative d Q/dx = f'(x) can be used to
help find the maximum or minimum values of Q. In applications/, these
extreme values are sometimes called optimal values, because they are, in
a sense, the best or most favorable values of the quantity Q. The task of
finding these values is called an optimization problem.

If an optimization problem is stated in words, then it is often necessary
to convert the statement into an appropriate formula, such as Q@ = f(x),
in order to find critical numbers. In most cases, there will be only one crit-
ical number c. If, in addition, f is continuous on a closed interval [a, b]
containing c, then, by Guidelines (3.9), the extrema of f are the largest
and smallest of the values f(a), f(b), and f(c). Hence, it is often unnec-
essary to apply a derivative test. However, if it is easy to calculate f "(x),
we sometimes apply the second derivative test to verify an extremum, as
illustrated in the next example.

EXAMPLE®= | A long rectangular sheet of metal, 12 in. wide, is
to be made into a rain gutter by turning up two sides so that they are
perpendicular to the sheet. How many inches should be turned up in order
to give the gutter its greatest capacity?

SOLUTION The gutter is illustrated in Figure 3.54, where x denotes
the number of inches turned up on each side. The width of the base of

the gutter is 12 — 2x inches. The capacity of the gutter will be greatest

when the area of the rectangle with sides of lengths x and 12 — 2x has its
greatest value. Letting f (x) denote this area, we obtain

f(x) =x(12 = 2x) = 12x — 2x°.

Since 0 < 2x < 12, the domain of fis 0<x <6.If x =0, or x =6,
no gutter is formed (the area of the rectangle would be f(0) =0 = f(6)).
Differentiating yields

fl(x) =12 — 4x =43 — x);

3.6 Optimization Problems

Figure 3.55
0<x<60=<y=<20

Guidelines for Solving
Optimization Problems 3.22

thus, the only critical number of f is 3. Since f"(x) = —4 <0, f(3)isa
local maximum for f. It follows that 3 in. should be turned up to achieve
maximum capacity.

COMPUTATIONAL METHOD Once we have represented the
area as a function with a prescribed domain, we can use a graphing utility
to obtain a graph of the function and trace it to the maximum value. In
this example, when we graph f(x) = 12x — 2x2 over the interval [0, 61,
we obtain Figure 3.55. -Using the trace option, we find that the maximum
occurs at the point (3, 18).

Because the types of optimization problems are unlimited, it is difficult
to state specific rules for finding solutions. However, we can develop a
general strategy for attacking such problems. The following guidelines are
often helpful. When using the guidelines, don’t become discouraged if you
are unable to solve a given problem quickly. It takes a great deal of effort
and practice to become proficient in solving optimization problems. Keep

trying!

I Read the problem carefully several times, and think about the
given facts as well as the unknown quantities that are to be found.

2 If possible, sketch a picture or diagram and label it appropri-
ately, introducing variables for unknown quantities. Words such
as what, find, how much, how far, or when should alert you to the
unknown quantities.

3 Write down the known facts together with any relationships in-
volving the variables.

4 Determine which variable is to be maximized or minimized, and
express this variable as a function of one of the other variables.

5 Find the critical numbers of the function obtained in guideline
.

6 Determine the extrema by using Guidelines (3.9) or the first or
second derivative test. Check for endpoint extrema whenever
appropriate.

The use of Guidelines (3.22) is illustrated in the next example.

EXAMPLE®™2 An open box with a rectangular base is to be con-
structed from a rectangular piece of cardboard 16 in. wide and 21 in. long
by cutting a square from each corner and then bending up the resulting
sides. Find the size of the corner square that will produce a box having the
largest possible volume. (Disregard the thickness of the cardboard.)

SOLUTION

Guideline | Read the problem at least one more time.



Figure 3.57
0<x<8,0=<y=<475

Figure 3.56
(@)
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Guideline 2 Sketch the cardboard, as in Figure 3.56(a), introducing a vari-
able x for the length of the side of the square to be cut from each corner.

Guideline 3 If the cardboard is folded along the dashed lines in Figure
3.56(a), the base of the resulting box has dimensions 21 — 2x and 16 — 2x.

Guideline 4 The quantity to be maximized is the volume V of the box.
Referring to Figure 3.56(b), we express V as a function of x:

V = x(16 — 2x)(21 — 2x) = 2(168x — 37x2 + 2x3)

Since 0 < 2x < 16, the domainof Vis0 < x < 8.

cl,‘\
I
|
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Guideline 5 To find the critical numbers for the function in guideline (4),
differentiate V with respect to x:
dv

— =2(168 — 74x + 6x2)
dx

= 4(3x> — 37x + 84)
=403x —28)(x — 3)

Thus the possible critical numbers are 23—8 and 3. Since 23—8 is outside the

domain of V, the only critical number is 3.

Guideline 6 Since V is continuous on [0, 8], we shall use Guidelines (3.9)
to determine the extrema. The endpoints x = 0 and x = 8 of the domain
yield the minimum value V = 0. For the critical number x = 3, we obtain
V =450, which is a maximum value. Consequently, a 3-in. square should
be cut from each corner of the cardboard in order to maximize the volume
of the resulting box.

COMPUTATIONAL METHOD Using a graphing utility for
V(x) = 2(168x — 37x* + 2x7)

over the interval [0, 8] yiclds the graph shown in Figure 3.57, from which
we see that the maximum value of V occurs at x = 3.

3.6 Optimization Problems

Figure 3.58

a -

In the remaining examples, we shall not always point out the guidelines
used. You should be able to determine specific guidelines by studying the
solutions.

EXAMPLE=3 A circular cylindrical metal container, open at the
top, is to have a capacity of 24 in’. The cost of the material used for the
bottom of the container is 15 cents per in2, and that of the material used
for the curved part is 5 cents per in®. If there is no waste of material, find
the dimensions that will minimize the cost of the material.

SOLUTION  We begin by sketching a typical container, as in Figure
3.58, letting r denote the radius of the base and % the altitude (both in
inches): The quantity we wish to minimize is the cost C of the material.
Since the costs per square inch for the base and the curved part are 15
cents and 5 cents, respectively, we have, in terms of cents,

cost of container = 15(area of base) + 5S(area of curved part).
Thus,
C = 15(r?) + 5Qnrh),

or C =57 (3r* + 2rh).
We can express C as a function of one variable r by expressing 4 in
terms of r. Since the volume of the container is 247 in’, we see that
) 24
nrth =24mw, or h=-—5.
r

Substituting 24/ 2 for k in the latter formula for C gives us

24 48
C=5n(3r>+2r- = ) =57 {32+ —=].
r r

The domain of C is (0, c0). 7
Next, we find critical numbers by differentiating C with respect to r:

3
9 _ sq (6r—§> = 30 (r ‘8)
dr r2 7‘2
Since dC/dr = 0 if r = 2, we see that 2 is the only critical number. Since
dC/dr <0 if r <2, and dC/dr > 0 if r > 2, it follows from the first
derivative test that C has its minimum value if the radius of the cylinder is
2 in. The corresponding value for the altitude (obtained from A = 24/ %)

is 27:1, or 6in.

EXAMPLE=4 Find the maximum volume of a right circular cylin-
der that can be inscribed in a cone of altitude 12 cm and base radius 4 cm,
if the axes of the cylinder and cone coincide.




Figure 3.59
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SOLUTION The problem is sketched in Figure 3.59, where (b) rep-
resents a cross section through the axes of the cone and the cylinder. The
quantity we wish to maximize is the volume V of the cylinder. From geom-
etryv
V =nr’h.

Next, we express V in terms of one variable by finding a relationship
between r and 4. Referring to Figure 3.59(b) and using similar triangles,
we see that

4—r=_4_=3’ or h=34-r).

3.6 Optimization Problems

307

and finding the value of # for which f has a minimum. Since
f'(t) = —200 + 5800¢,
the only critical number for f is

f— 200 _ 1
= 3800 — 29°

Moreover, f”(t) = 5800, so the second derivative is always positive.
Therefore, f has a local minimum at ¢t = %, and f (%) = %. Since the
domain of ¢ is [0, co) and since f(0) = 4, there is no endpoint extremum,
Consequently, the automobiles will be closest at 21—9 hour (or approximately

2.07 min) after 10:00 A.M. The minimum distance is

Consequently,
V =nrih = - 1y _ /16 o '
P?h =nr?-3(4 —r) =3nr* @ —r). vV f(z5) =4/5 =~ 0.74 mi.

The domainof Vis0 <r <4.
If either » = 0 or » = 4, we see that V = 0, and hence the maximum

|

|

J (®) volume is not an endpoint extremum. It is sufficient, therefore, to search EXAMPLE®=6  Aperson inarowboat 2 mi from the nearest point on
!

- for local maxima. Since V = 37 (4r2 — r3), a straight shoreline wishes to reach a house 6 mi farther down the ‘shore. If
the person can row at a rate of 3 mi/hr and walk at a rate of 5 mi/hr, find
| ci_V — 38 — 3r2) = 37r(8 — 37). the least amount of time required to reach the house.
| 4 . , .
: 12 Thus the critical numbers for V are r = 0 and r = % Atr = %5 we have S OLUTION Figure 3.61 1111_15trates the problem: A denotes the posi-
- tion of the boat, B the nearest point on shore, C the house, D the point at
| v 8 2 A 2567 904 e which the boat reaches shore, and x the distance between B and D. By the
| I =7 3 @) = 9 & ems Pythagorean theorem, the distance between A and D is v x> + 4, where
| & which, by Guidelines (3.9), is a maximum value for the volume of the 0 = x < 6. Using the formula '
' : inscribed cylinder. time = distance
rate
we obtain
\ EXAMPLE=5 A north-south highway intersects an east-west high- time (o row from A to D — distance from Ato D vx 244
| way at a point P. An automobile crosses P at 10:00 A.M., traveling east at B rowing rate - 37
- a constant speed of 20 mi/hr. At that same instant, another automobile is dist £ DioC 6—
‘ 2 mi north of P, traveling south at 50 mi/hr. Find the time at which they time to walk from D to C = 1stance ‘rom oL _ *
| are closest to each other, and approximate the minimum distance between walking rate 5
| I|' ‘ the automobiles. Hence the total time 7 for the trip is
| |
Figure 3.60 S
I SOLUTION Typical positions of the automobiles are illustrated in =Y~ +4 + 6—x ,
B @ i T Figure 3.60. If ¢ denotes the number of hours after 10:00 A.M., then the 3 5
' % N slower automobile is 20z miles east of P. The faster automobile is 50¢ Figure 3.61
' 50¢ ¢ miles south of its position at 10:00 A.M., a/nd hence its distance from £ )
P is 2 — 50z. By the Pythagorean theorem, the distance d between the
- ) f ]@\ automobiles is
Ay

1 el i d =2 - 500 + (201)°

| d [E% — V4 — 200t + 250072 + 40012 = V4 — 200z -+ 290072
\
AY

We wish to find the time t at which d has its smallest value, which will

y P ¥
| | Srien & occur when the expression under the radical is minimal because d increases
| : if and only if 4 — 200¢ + 290072 increases. Thus, we may simplify our
(0 <207 > work by letting

il i F(t) = 4 — 200 + 29007




Figure 3.62

0<x<6 17<y<21
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or, equivalently, T=1x*+ 42 4 6 1y

We wish to find the minimum value for T. Note that x = 0 corresponds
to the extreme situation in which the person rows directly to B and then
walks the entire distance from B to C. If x = 6, then the person rows
directly from A to C. These numbers may be considered as endpoints of
the domain of 7. If x = 0, then, from the formula for 7',

4 6 28
T = £ + - — 0 = —,
3 5 15
which is 1 hr 52 min. If x = 6, then
J40 6 6 2410
T=—+4+-—=-=——=211,
3 5 3
or approximately 2 hr 7 min.
Differentiating the general formula for T, we see that

ar 11, i 1
a2z 4~120x) — 2,
3 e =g
dT x 1

or —a;: 73()‘2_{_4)1/2 —g
In order to find the critical numbers, we let d7/dx = 0, obtaining the

following equations:
X 1

362+ 425
Sx = 3(x2 + 4?2

25x2 = 9(x? + 4)

2 _ 36
X =16
—6_3
A=7273

Thus, % is the only critical number. The time 7 that corresponds to x = %
is
1,9 /2,6 3 _26
T=3G+9+5-5=%
or, equivalently, 1 hr 44 min.
We have already examined the values of T at the endpoints of the
domain, obtaining 1 hr 52 min and approximately 2 hr 7 min, respectively.

Hence the minimum time of 1 hr 44 min occurs at x = % Therefore, the

boat should land at D, l%mi from B, in order to minimize 7. For a similar
problem, but one in which the endpoints of the domain lead to minimum
time, see Exercise 12.

COMPUTATIONAL METHOD Examining the function

/.2
x*4+4 6-—x
T =
(x) 3 +—
on [0, 6] with a graphing utility produces the graph shown in Figure 3.62.

We can use the tracing operation to find that the minimum time occurs at

=3
X = 3.

3.6 Optimization Problems

We can err in solving optimization problems by formulating an appropriate
function f(x), finding where f’(x) = 0, and then declaring that we have
located the extreme point. The critical points at which the derivative is zero
may not be the extreme we are seeking. A critical point could turn out, for
example, to be the minimum of the function when we needed to find the
maximum. We may also have values ¢ where f'(c) = 0, but the real-world
constraints on the variables may put ¢ outside the acceptable domain of f.
The next two examples illustrate what can happen in such cases.

EXAMPLE=7 A farmer has 2040 ft of fencing and wishes to fence
off two separate fields. As Figure 3.63 shows, one of the fields is to be a
rectangle with the length twice as long as the width, while the other field
is to be square. Determine the dimensions of the fields if the farmer wishes
to maximize the total area of the two fields. )

Figure 3.63

SOLUTEION The total area A is the sum of the areas of the rectangle
and the square. Let x represent the width of the rectangular field. We will
write A as a function of x.

If x is the width, then the length is 2x. The area of this rectangle is
2x? square feet and its perimeter is 6x feet. The amount of fencing left
after the rectangle has been built is 2040 — 6x feet. If the 2040 — 6x feet
of fencing is used for the square, then each of its sides is (2040 — 6x)/4 =
510 — 1.5x feet. Thus, the area of the square is (510 — 1.5x)? square feet.

The total area of both fields is

Alx) = 2x% + (510 — 1.5x)2 square feet.
We find the derivative A’(x) to be
JA(x) = 4x +2(510 ~ 1.5x)(—1.5) = 8.5x — 1530.

Solving A’(x) = 0 yields a unique value x = ¢ = 180.

We may be tempted to advise the farmer to construct one rectangular
field of dimensions 180 ft by 360 ft and one square field of sides 240
ft, which will achieve a “maximum” total area of (180)(360) + 240° =
122,400 ft*.

We need to check, however, whether the critical value ¢ = 180 really
is a maximum for the function. We apply the second derivative test. Since




Figure 3.64

A y (square feet)

—260,100

122,400 T

120,000 *‘
| ] : ] I s | | e
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A”(x) = 8.5, we have A”(c) = A”(180) = 8.5, which is positive. Thus,
there is a local minimum at ¢, not a maximum. ‘

To determine where the maximum of A(x) actually occurs, we note
that A is a differentiable function, so the only other possible candidates for
the local extrema are at the endpoints of the interval of the domain of A.
We need to determine this interval.

Since x represents a length, we must have x > 0. The smallest possible
value for x is 0, which corresponds to having no rectangle and putting all
the fencing into building the square. The corresponding total area is

A(0) = 510% = 260,100 ft°.

On the other hand, since the amount of fencing available for the square
must be nonnegative, we have 2040 — 6x > 0 or, equivalently, x < 340.
The largest possible value for x is 340, which corresponds to using all the
fencing to construct the rectangle. The associated area is

A(340) = 2(340)% = 231,200 ft>.

The interval is {0, 340], and the maximum value of A occurs at x = 0. The
best advice to the farmer is to build a single square 510 ft on a side. If the
farmer insists on having two separate fields, each of positive area, then the
rectangular field should be made as small as possible. ‘

The graph of A(x) on the interval [0, 340] is shown in Figure 3.64. If
we were to fail to analyze the nature of the critical point, then we would
incorrectly find the minimum value, rather than the maximum value, and
give the farmer the worst possible advice.

EXAMPLE=8 A recycling company transports recyclable paper and
cardboard from city A to a processing plant in city B along a highway
(see Figure 3.65). Materials are carried in trucks that travel at a speed of
x miles per hour. Legal speeds on the highway are between 35 and 55
mi/hr. Assume that diesel fuel costs $1.25 per gallon and is consumed at
the rate of 4 + (x2/500) gallons per hour. The recycler pays its drivers $11
per hour and reimburses them for the cost of fuel as well. At what speed
should the trucks be driven in order to minimize the recycler’s total cost?

SOLUTION
fuel:

The total cost C is the sum of the cost of wages and of

total cost C = cost of wages + cost of fuel
We note that
cost of wages = (wages per hour)(number of hours)
and

cost of fuel = (cost per gallon)(number of gallons)
= (cost per gallon)(gallons per hour)(number of hours).

Since the trucks travel at x miles per hour, we have

distance

number of hours =

3.6 Optimization Problems

Figure 3.66
_ o= (s + 1.25x*
Y=IWEAG 500
AY
Cost per mile ($)
04+
A } 1 t T >
20 X
( 40 caifc)
Figure 3.67
(@)

Hence, total cost C(x) is given by

dist 2 i
Coo) = 11 < is ance) +125(as x° distance ’
X 500 X

which we can write as

distance . x2
Cx) = ( . ) |:11 +1.25 (4+ %>} ;

The distance traveled is not specified in the statement of the problem. We
note, however, that since the distance is a positive number, the quantity
C(x) is minimized when the function

1 - X2 1 1.25x2
=(=)|11+125l4+=—=—]|=(=])1
Fx) <x>[ + 5( +500>] (x)(6+ 500 )
is minimized.

Differentiating f and simplifying yields

125 16
! _ ——— —
F® =502

, 32
and /(1) ==

We then solve f/(x) =0 to find two roots, x = 80 and x = —80. The
negative root can be ignored since x represents the speed of a truck, which
must be positive. Thus we have a unique critical point at x = 80. We check
the second derivative, f”(80) = 32/80°, which is positive, so we indeed
have a local minimum at x = 80. Another critical point at x = 0, where the
first derivative fails to exist, can also be ignored because the trucks must
move at a positive speed. (For the purposes of this problem, the domain of
C(x) consists only of positive numbers.)

We cannot advise the company to instruct its truckers to drive at 80
mi/hr in violation of the legal speed limits, which are on the interval
[33, 55]. We thus conclude that the global minimum is not available. Ex-
amination of the derivative f'(x) shows that it is negative for all positive
x less than 80, so cost is lowest when the speed is the highest legal one,
55 mi/hr. Note that for x = 55, f(x) ~ 0.4284 (about 43 cents per mile),
so the minimum total cost is about 0.4284(distance). Figure 3.66 is a graph
of f, which shows the location of the endpoint extrema.

EXAMPLE®=9 A billboard 20 ft tall is located on top of a building,
with its lower edge 60 ft above the level of a viewer’s eye, as shown in
Figure 3.67(a). How far from a point directly below the sign should a
viewer stand to maximize the angle 6 between the lines of sight of the top
and bottom of the billboard? (This angle should result in the best view of
the billboard.)

SOLUTION The problem is sketched in Figure 3.67(b), using right
triangles AOC and BOC having common side OC of (variable) length x.
We see that

80
tane = — and tanf = @
x X



The extrema of 6 occur if df/dx = 0. Differentiating implicitly with re-

‘tanf = tan(a — B) =

CHAPTER 3 Applications of the Derivative

The angle & = o — B is a function of x and

tana — tan 8
l +tanatan 8’

Substituting for tan « and tan 8 and simplifying, we obtain

_ (80/x) — (60/x) . 20x
1+ (80/x)(60/x) ~ x% 44800

spect to x and using the quotient rule gives us

sec @

0 _ (x* +4800)(20) — 20x(2x) _ 96,000 — 20x°

(x? + 4800)> (% +4800)2

Since\sec2 8 > 0, it follows that d8/dx = 0 if and only if

96,000 —20x> =0, or x2 = 4800.

Thus the only critical number of 4 is

We may verify that the si

X = /4800 = 40+/3.

gn of df/dx changes from positive to negative at
+/4800, and hence a maximum value of 6 occurs at x — 404/3 ft A~ 69.3 ft.

- EXERCISES 3.6

Exer. 1-6: You will need to formulate a function and
find its extreme values on some interval, which you must
also determine. In addition to Guidelines (3.9) and the
first and second derivative tests, you may wish to use a
graphing utility to examine the graph of the function on
the chosen interval.

Find the maximum value of Z if Z = xw, where
x 4+ w = 30.

2 Find the maximum value of B if B = st, where
4s + 31 = 48.

3 Fir21d the minimum value of A if A =4y + x2, where
(x*+ Dy = 324.

4 Finc; the maximum value of S if § = 8x — 512y2, where
x(y“+1) = 64,

5 Find the minimum value of P if P = x2 + y?, where
x —y=40. ’

6 Find the minimum value of C if C = +/x2 + y2 where
xy =09. ,

7 If a box with a square base and an open top is to have
a volume of 4 ft*, find the dimensions that require the
least material. (Disregard the thickness of the material
and waste in construction.)

8 Work Exercise 7 if the box has a closed top.

9 A metal3cylindrical container with an open top is to
hf)ld 1 ft . If there is no waste in construction, find the
dimensions that require the least amount of material.
(Compare with Example 3.)

10 If the circular base of the container in Exercise 9 is
cut from a square sheet and the remaining metal is
discarded, find the dimensions that require the least
amount of material.

Il One thousand feet of chain link fence will be used to
construct six cages for a zoo exhibit, as shown in the
figure on the following page. Find the dimensions that
maximize the enclosed area A. (Hint: First express y as
a function of x, and then express A as a function of Xx.)

Exercises 3.6

Exercise 11 b=

12 Refer to Example 6. If the person is in a motorboat that
can travel at an average rate of 15 mi/hr, what route
should be taken to arrive at the house in the least amount

of time?

13 At 1:00 M., ship A is 30 mi due south of ship B and
is sailing north at a rate of 15 mi/hr. If ship B is sailing
west at a rate of 10 mi/hr, find the time at which the
distance d between the ships is minimal (see figure).

Exercise 13

14 A window has the shape of a rectangle surmounted by a
semicircle. If the perimeter of the window is 15 ft, find
the dimensions that will allow the maximum amount of
light to enter.

15 A fence 8 ft tall stands on level ground and runs parallel
to a tall building (see figure). If the fence is 1 ft from the

Exercise 15

building, find the length of the shortest ladder that will
extend from the ground over the fence to the wall of the
building. (Hinz: Use similar triangles.)

16 A page of a book is to have an area of 90 in?, with 1-in.
margins at the bottom and sides and a %-in. margin at
the top. Find the dimensions of the page that will allow
the largest printed area.

17 A builder intends to construct a storage shed having a
volume of 900 ft°, a flat roof, and a rectangular base
whose width is three-fourths the length. The cost per
square foot of the materials is $4 for the floor, $6 for
the sides, and $3 for the roof. What dimensions will
minimize the cost?

18 A water cup in the shape of a right circular cone is to be
constructed by removing a circular sector from a circular
sheet of paper of radius ¢ and then joining the two
straight edges of the remaining paper (see figure). Find
the volume of the largest cup that can be constructed.

Exercise 18

19 A farmer has 500 ft of fencing with which to enclose
a rectangular field. A straight riverbank will be used as
part of the fencing on one side of the field (see figure).
Prove that the area of the field is greatest when the
rectangle is-square.

Exercise 19

20 Refer to Exercise 19. Suppose the farmer wants the area
of the rectangular field to be A ft>. Prove that the least
amount of fencing is required when the rectangle is a

square.

21 A hotel that charges $80 per day for a room gives special
rates to organizations that reserve between 30 and 60
rooms. If more than 30 rooms are reserved, the charge
per room is decreased by $1 times the number of rooms
over 30. Under these conditions, how many rooms must
be rented if the hotel is to receive the maximum income

per day?



22 Refer to Exercise 21. Suppose that for each room

rented it costs the hotel $6 per day for cleaning and
maintenance. In this case, how many rooms must be
rented to obtain the greatest net income?

23 A steel storage tank for propane gas is to be constructed

in the shape of a right circular cylinder with a
hemisphere at each end (see figure). The construction
cost per square foot for the end pieces is twice that for
the cylindrical piece. If the desired capacity is 107 ft°,
what dimensions will minimize the cost of construction?

Exercise 23

24 A pipeline for transporting oil will connect two points

A and B that are 3 mi apart and on opposite banks of a
straight river 1 mi wide (see figure). Part of the pipeline
will run under water from A to a point C on the opposite
bank, and then above ground from C to B. If the cost per
mile of running the pipeline under water is four times
the cost per mile of running it above ground, find the
location of C that will minimize the cost (disregard the
slope of the river bed).

Exercise 24

c
L]

Pipeline B

25

Find the dimensions of the rectangle of maximum area
that can be inscribed in a semicircle of radius a, if two
vertices lie on the diameter (see figure).

26

27

28

29

30

31
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Exercise 25

/fi\

I [
e ———

Find the dimensions of the rectangle of maximum area
that can be inscribed in an equilateral triangle of side q,
if two vertices of the rectangle lie on one of the sides of
the triangle.

Qf all possible right circular cones that can be inscribed
in a sphere of radius «, find the volume of the one that
has maximum volume.

Find the dimensions of the right circular cylinder of
maximum volume that can be inscribed in a sphere of
radius a.

Find the point on the graph of y = x? + 1 that is closest
to the point (3, 1).

Find the point on the graph of y = x> that is closest to
the point (4, 0).

The strength of a rectangular beam is directly propor-
tional to the product of its width and the square of the
depth of a cross section. Find the dimensions of the
strongest beam that can be cut from a cylindrical log
of radius a (see figure).

Exercise 31

~ Rectan gulaf
~ beam

32 The illumination from a light source is directly propor-
tional to the strength of the source and inversely
proportional to the square of the distance from the
source. If two light sources of strengths S| and S, are
d units apart, at what point on the line segment joining
the two sources is the illumination minimal?

T

Exercises 3.6

33

34

35

36

37

38

39

40

41

42

43

A wholesaler sells running shoes at $20 per pair if fewer
than 50 pairs are ordered. If 50 or more pairs are ordered
(up to 600), the price per pair is reduced by 2 cents times
the number ordered. What size order will produce the
maximum amount of money for the wholesaler?

A paper cup is to be constructed in the shape of a
right circular cone. If the volume desired is 367 in®,
find the dimensions that require the least amount of
paper. (Disregard any waste that may occur in the
construction.)

A wire 36 cm long is to be cut into two pieces. One of
the pieces will be bent into the shape of an equilateral
triangle and the other into the shape of a rectangle whose
length is twice its width. Where should the wire be cut if
the combined area of the triangle and rectangle is to be
(2) minimized? (b) maximized? -

An isosceles triangle has base b and equal sides of length
a. Find the dimensions of the rectangle of maximum
area that can be inscribed in the triangle if one side of
the rectangle lies on the base of the triangle.

A window has the shape of a rectangle surmounted by
an equiﬁl‘%al triangle. If the perimeter of the window
is 12 ft, find the dimensions of the rectangle that will
produce the largest area for the window.

Two vertical poles of lengths 6 ft and 8 ft stand on level
ground, with their bases 10 ft apart. Approximate the
minimal length of cable that can reach from the top of
one pole to some point on the ground between the poles
and then to the top of the other pole.

Prove that the rectangle of largest area having a given
perimeter p is a square.

A right circular cylinder is generated by rotating a
rectangle of perimeter p about one of its sides. What
dimensions of the rectangle will generate the cylinder of
maximum volume?

The owner of an apple orchard estimates that if 24 trees
are planted per acre, then each mature tree will yield 600
apples per year. For each additional tree planted per acre,
the number of apples produced by each tree decreases by
12 per year. How many trees should be planted per acre
to obtain the most apples per year?

A real estate company owns 180 efficiency apartments,
which are fully occupied when the rent is $300 per
month. The company estimates that for each $10
increase in rent, 5 apartments will become unoccupied.
What rent should be charged in order to obtain the
largest gross income?

A package can be sent by parcel post only if the sum
of its length and girth (the perimeter of the base) is not
more than 108 in. Find the dimensions of the box of

44

45

46

47

maximum volume that can be sent, if the base of the box
is a square.

A north—south highway A and an east-west highway
B intersect at a point P. At 10:00 A.M., an automobile
crosses P traveling north on highway A at a speed of
50 mi/hr. At that same instant, an airplane flying east
at a speed of 200 mi/hr and an altitude of 26,400 ft is
directly above the point on highway B that is 100 mi
west of P. If the automobile and the airplane maintain
the same speeds and directions, at what time will they
be closest to each other?

Two factories A and B that are 4 mi apart emit particles
in smoke that pollute the area between the factories.
Suppose that the number of particles emitted from each
factory is directly proportional to the amount of smoke
and inversely proportional to the cube of the distance
from the other factory. If factory A emits twice as much
smoke as factory B, at what point between A and B is
the pollution minimal?

An oil field contains 8 wells, which produce a total of
1600 barrels of oil per day. For each additional well that
is drilled, the average production per well decreases by
10 barrels per day. How many additional wells should
be drilled to obtain the maximum amount of oil per day?

A canvas tent is to be constructed in the shape of a
pyramid with a square base. A steel pole, placed in the
center of the tent, will form the support (see figure). If
S ft2 of canvas is available for the four sides and x is the
length of the base, show that

(a) the volume V of the tentis V = %x\/ §2 — x*

(b) V has its maximum value when x equals V2 times
the length of the pole

Exercise 47

48 A boat must travel 100 mi upstream against a 10-mi/hr

current. When the velocity of the boat relative to the
water is v mi/hr, the number of gallons of gasoline
consumed each hour is directly proportional to V2
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(2) If a constant velocity of v mi/hr is maintained, show
that the total number y of gallons of gasoline con-
sumed is given by y = 100kv?/(v — 10) for v > 10
and for some positive constant k.

(b) Find the speed that minimizes the number of gallons
of gasoline consumed during the trip.

49 Cars are crossing a bridge that is 1 mi long. Each car is
12 ft long and is required to stay a distance of at least
d ft from the car in front of it (see figure).

(a) Show that the greatest number of cars that can be on
the bridge at one time is [5280/(12 + d)]), where []]
denotes the greatest integer function.

(b) If the velocity of each car is v mi/hr, show that the
maximum traffic flow rate F (in cars per hour) is
given by F = [5280v/(12 + d)].

(<) The stopping distance (in feet) of a car traveling v
mi/hr is approximately 0.05v2. If d = 0.025v2, find
the speed that maximizes the traffic flow across the
bridge.

Exercise 49

50 Prove that the shortest distance from a point (x;,y) to
the graph of a differentiable function f is measured
along a normal line to the graph—that is, a line
perpendicular to the tangent line.

51 A railroad route is to be constructed from town A
to town C, branching out from a point B toward C
at an angle of 6 degrees (sce figure). Because of the
mountains between A and C, the branching point B must
be at least 20 mi east of A. If the construction costs are
$50,000 per mile between A and B and $100,000 per
mile between B and C, find the branching angle 6 that
minimizes the total construction cost.
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Exercise 51

52

53

54

55

56

A long rectangular sheet of metal, 12 in. wide, is to be
made into a rain gutter by turning up two sides at angles
of 120° to the sheet. How many inches should be turned
up to give the gutter its greatest capacity?

Refer to Exercise 18. Find the central angle of the sector
that will maximize the volume of the cup.

A-square picture having sides 2 ft long is hung on a
wall such that the base is 6 ft above the floor. If a person
whose eye level is 5 ft above the floor looks at the picture
and if 6 is the angle between the line of sight and the
top and bottom of the picture, find the person’s distance
from the wall at which 6 has its maximum value.

A rectangle made of elastic material will be made into a
cylinder by joining edges AD and BC (see figure). To
support the structure, a wire of fixed length L is placed
along the diagonal of the rectangle. Find the angle @ that
will result in the cylinder of maximum volume.

Exercise 55

When a person is walking, the magnitude F of the
vertical force of one foot on the ground (see figure) can
be approximated by F = A(cos bt — a cos 3bt) for time
t (in seconds), with A > 0,5 > 0,and 0 < a < 1.

(a) Show that F =0 when t = —n/(2b) and t =
7/(2b). (The time t = —m/(2b) corresponds to the
instant when the foot first touches the ground and the
weight of the body is being supported by the other
foot.)

Exercises 3.6

57

58

59

60

(b) Show that the maximum force occurs:when ¢ = 0 or
when sin® bt = 9a — 1)/(12a).
(c)Ifa= % express the maximum force in terms of A.

(dIf0<ac< %, express the maximum force in terms

of A.

Exercise 56

A battery having fixed voltage V and fixed internal
resistance r is connected to a circuit that has variable
resistance R (see figure). By Ohm’s law, the current /
in the circuit is 7 = V/(R + r). If the power output P
is given by P =1 2R, show that the maximum power
occurs if R = r.

Exercise 57

|1

The power output P of an automobile battery is given
by P=VI-1I 2 for voltage V, current I, and internal
resistance r of the battery. What current corresponds to
the maximum power?

Two corridors 3 ft and 4 ft wide, respectively, meet at a
right angle. Find the length of the longest nonbendable
rod that can be carried horizontally around the corner, as
shown in the figure. (Disregard the thickness of the rod.)

Light travels from one point to another along the path
that requires the least amount of time. Suppose that light
has velocity v, in air and v, in water, where v; > v,. If
light travels from a point P in air to a point Q in water

P

Exercise 59
3 ft >
4 ft
0
Exercise 60
'Y |
| 0 |
a

! | Air

(see figure), show that the path requires the least amount
of time if

sin 6, _Y -
sinf, v,
(This is an example of Snell’s law of refraction.)

61 A circular cylinder of fixed radius R is surmounted by a
cone (see figure). The ends of the cylinder are open, and
the total volume is to be a specified constant V.

(a) Show that the total surface area S is given by
2V -2
S = X + 7 R? (cscG — §C0t9> .

(b) Show that S is minimized when 6 & 48.2°.

Exercise 61




62 In the classic honeycomb-structure problem, a hexag-
onal prism of fixed radius (and side) R is surmounted by
adding three identical rhombuses that meet in a common
vertex (see figure). The bottom of the prism is open, and
the total volume is to be a specified constant V. A more
elaborate geometric argument than that in Exercise 61

| establishes that the total surface area S is given by

4 vV 3 343
| S=§ﬁE—§R200t9+%_R2cs09.
Show that § is minimized when 6 ~ 54.7°. (Remark-

! ably, bees construct their honeycombs so that the
r amount of wax S is minimized.)

Exercise 62
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' Definition 3.23

VELOCITY AND ACCELERATION

In this section, we use derivatives to describe and analyze several important
types of motion that occur in physical situations. One of the greatest early
achievements in the history of calculus was Newton’s derivation in the
seventeenth century of Kepler’s laws of planetary motions (see Section
11.6 for more details). In the succeeding three hundred years, calculus
has repeatedly helped scientists study moving objects. Our focus will be
objects moving along a straight line.

RECTILINEAR MOTION

As we saw in Section 2.1, the term rectilinear motion is used to describe
movement of a point along a line. In the mathematical model of rectilinear
motion in this section, we will represent the car as a point P and the
highway as a straight line /. If / is a vertical or horizontal coordinate line
and if the coordinate of point P at time ¢ is s(¢), then s is considered the
position function of P (see Figure 3.68). Recall from Definition (2.3) that
the velocity of P at time ¢, the rate of change of P with respect to ¢, is the
derivative s'(z). The velocity is also denoted as v(z).

The acceleration a(t) of P at time ¢ is defined as the rate of change
of velocity with respect to time: a(f) = v'(t). Thus the acceleration is the
second derivative (d/dt)(s’(t)) = s”(¢). The next definition summarizes
this discussion and also introduces the notion of the speed of P.

Let s(¢) be the coordinate of a point P on a coordinate line [ at time ¢.
(i) The velocity of P is v(r) = 5s'(¢).
(i) The speed of P is |v(r)].
(iii) The acceleration of P is a(z) = v'(z) = s”(1).

3.7 Velocity and Acceleration

S |

We shall call v the velocity function of P and a the acceleration

function of P. We sometimes use the notation
' ds dv
v= o and a = I

If ¢ is in seconds and s(¢) is in centimeters, then v(¢) is in cm/sec and
a(t) is in cm/sec? (centimeters per second per second). Ifzt is 'in hours and
s(¢) is in miles, then v(¢) is in mi/hr and a(¢) is in mi/hr“ (miles per hour

hour).
> If v(?) is positive in a time interval, then s'(t) > 0, ?_Ild, by Thgorem
(3.15), s(z) is increasing—that is, the point P is moving in the‘: positive di-
rection on [. If v(¢) is negative, the motion is in the negative direction. The
velocity is zero at a point where P changes direction. If the accel'eratlon
a(r) = v'(¢) is positive, the velocity is increasing. If a(z) is negative, the
velocity is decreasing.

We make a distinction between the velocity v(t) and the speec‘i ]v(t)j of
a moving object. The speed conveys only how fast the object is moving;
it contains no information about the direction of motion. We will make
use of the speed in Chapter 5 in determining the total distapce that an
object moves. The velocity conveys not only the spt?ed of motion but also
whether the object is moving in a positive or a negative direction along the

coordinate line.

EXAMPLE®=| The position function s of a point P on a coordinate
line is given by

s(t) = 5 — 1267 + 361 — 20,
with 7 in seconds and s(7) in centimeters. Describe the motion of P during
the time interval [—1, 9].

SOLUTION Differentiating, we obtain
u(t) = s'(t) = 3t2 — 24t + 36 = 3(t — 2)(t — 6),
a(r) =v'(t) =6t —24 =6( —4).

Let us determine when v(#) > 0 and when v(t) < 0, §ince thjs will tell us
when P is moving to the right and to the left, respectively. Since v(t) =0
at# = 2 and t = 6, we examine the following time subintervals of [—1, 9]:

(-1,2), (2,6), and (6,9)

We may determine the sign of v() by using test values, as indicated in the
table (check each entry):

Time interval -2 (2.6 6,9)
k 0 3 7
Tgt.w.lalue v(k_)_ o 36 _ -9 _ 15
Sign of v(#) R + _ - _ +
Direction of motion | right left right



CHAPTER 3 Applications of the Derivative

The next table lists the values of the position, velocity, and acceleration
functions at the endpoints of the time interval [—1, 9] and the times at
which the velocity or acceleration is zero.

t —1 2 4 6
s —69 12 -4 =20 61
v(t) 63 0 —12 0 63
a® | 30 -—12 0 12 30

It is convenient to represent the motion of P schematically, as in Figure
3.69. The curve above the coordinate line is not the path of the point, but
rather a scheme for showing the manner in which P moves on the line /.

Figure 3.69

A |
-

As indicated by the tables and Figure 3.69, at t = —1 the point is 69
cm to the left of the origin and is moving to the right with a velocity of 63
cm/sec. The negative acceleration —30 cm/sec® indicates that the velocity
is decreasing at a rate of 30 cm/sec, each second. The point continues to
move to the right, slowing down until it has zero velocity at 7 = 2, 12 cm
to the right of the origin. The point P then reverses direction and moves
until, at t = 6, it is 20 cm to the left of the origin. It then again reverses
direction and moves to the right for the remainder of the time interval, with
increasing velocity. The direction of motion is indicated by the arrows on
the curve in Figure 3.69.

Since the point began at position —69 and ended at position 61, the net
change in its position is 61 — (—69) = 130 units. The total distance trav-
eled by the point, however, is more. In the time interval [—1, 2], it moved
12 — (—69) = 81 units. In the time interval [2, 6], it moved a distance of
32 units, and in the interval [6, 9], it moved an additional 81 units. The
total distance traveled was 81 + 32 + 81 = 194 units.

EXAMPLE®2 A projectile is fired straight upward with a velocity
of 400 ft/sec. From physics, its distance above the ground after ¢ seconds
is s(t) = —1612 + 400z.

(a) Find the time and the velocity at which the projectile hits the ground.
(b) Find the maximum altitude achieved by the projectile.
(c) Find the acceleration at any time .

3.7 Velocity and Acceleration

Figure 3.70

= 162 + 400

Definition 3.24

R R |

SOLUTION |
(a) Let us represent the path of the projectile on a vertical coor@inate line
! with origin at ground level and positive direction upwarzd, as illustrated
in Figure 3.70. The projectile is on the ground when —16:° + 400t = 0—
that is, when —16¢(t — 25) = 0. This gives us t = 0 and.t = 2_5. Hence
the projectile hits the ground after 25 sec. The velocity at time ¢ is

v(t) = s'(t) = =32t + 400.
In particular, at ¢ = 25, we obtain the impact velocity:
v(25) = —32(25) + 400 = —400 ft/sec.

The negative velocity indicates that the projectile is moving in the negative
direction on I (downward) at the instant that it strikes the ground. Note that

the speed at this time is
|v(25)| = |—400| = 400 ft/sec.

(b) The maximum altitude occurs when the velocity is4%%r0 —zsthat is, when
s'(t) = —32t + 400 = 0. Solving for ¢ gives us t = 35 = 5, and hence
the maximum altitude is

s(B) = —16(%)* +400(%) = 2500 ft.
(c) The acceleration at any time ¢ is
a(t) = v'(t) = —32 ft/sec’.

This constant acceleration is caused by the force of gravity.

SIMPLE HARMONIC MOTION

Simple harmonic motion takes place in waves. It involves trigonometric
functions and is defined as follows.

A point P moving on a coordinate line [ is in simp_le harmgmic
motion if its distance s(¢) from the origin at time 7 is given by either

s(t) = ksin(wt +b) or s(t) = kcos(wt +b),

where k, w, and b are constants, with @ > 0.

Simple harmonic motion may also be defined by requiring that the
acceleration a(¢) satisfy the condition

a(t) = —w®s (1)

for every 7. It can be shown that this condition is equivalent to Definition
3.24). . .

( In) simple harmonic motion, the point P oscillates between Fhe pomts
on I with coordinates —k and k. The amplitude of the motion is the



Figure 3.71
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maximum displacement |k| of the point from the origin. The period is the
time 27/ w required for one complete oscillation. The frequency w/27 is
the number of oscillations per unit of time.

Simple harmonic motion takes place in many different types of waves
S'uCh as water waves, sound waves, radio waves, light waves, and distor-’
.tlonal waves present in vibrating bodies. Functions of the type defined
in (3.24) also occur in the analysis of electrical circuits that contain an
alternating electromotive force and current.

As another example of simple harmonic motion, consider a spring with
an _attached weight that is oscillating vertically relative to a coordinate line
as illustrated in Figure 3.71. The number s () represents the coordinate o%
a fixed point P in the weight, and we assume that the amplitude |k| of the
motion 1s constant. In this case, there is no frictional force retarding the
motion. If friction is present, then the amplitude decreases with time. and
the motion is damped. ,

EX AMPLE™3 Suppose that the weight shown in Figure 3.71 is os-
cillating and

T
s(t) = 10cos —¢,
®) cos6

wh.ere ¢ is in seconds and s(¢) is in centimeters. Discuss the motion of the
weight.

SOLUTION Comparing the given equation with the general form
$(t) = k cos(wt + b) in Definition (3.24), we obtain k = 10, & = /6, and
b = 0, which gives us the following:

amplitude: &k =10cm

period: . 2—7[ = 12 sec
o /6

w 1
frequency: w12 oscillation/sec

. Let us examipe the motion during the time interval [0, 12]. The veloc-
ity and acceleration functions are given by the following:

v(t) = 5'(t) = 10 (— sinft) e
6/ 6 3°"s"
A 57 b4 T 572
aozwm=___Gm_0._=___ £
3 6/ 6 18 6"

The veldcity isOatr =0,z =6,and t = 12, since sin[(7/6)¢] = 0 for
these values of 7. The acceleration is 0 at 7 = 3 and ¢ — 9, since in these
cases, cos[(r/6)t] = 0. The times at which the velocity and acceleration
are 0 lead us to examine the time intervals (0, 3), (3, 6), (6, 9), and (9, 12).
The following table displays the main characteristics of the motion. The

sign.s of v(¢) and a(¢) in the intervals can be determined using test values
(verify each entry).

 E

3.7 Velocity and Acceleration

Figure 3.72

Time Sign of | Direction | Sign of ‘ Variation Speed

interval v(®) | ofmotion | a(®) | ofv(® | v (®)
o, 3) — downward — decreasing | increasing
(3,6) - downward + increasing decreasing
6,9) + upward + increasing increasing
(9,12) + upward — decreasing = decreasing

Note that if 0 < ¢ < 3, the velocity v(¢) is negative and decreasing;
that is, v(¢) becomes more negative. Hence the absolute value |v(#)], the
speed, is increasing. If 3 <t < 6, the velocity is negative and increasing
(v(t) becomes less negative); that is, the speed of P is decreasing in the
time interval (3, 6). Similar remarks can be made for the intervals (6, 9)
and (9, 12).

We may summarize the motion of P as follows: At 7 = 0, s(0) =10
and the point P is 10 cm above the origin O. It then moves downward,
gaining speed until it reaches the origin O at t = 3. It then slows down
until it reaches a point 10 cm below O at the end of 6 sec. The direction
of motion is then reversed, and the weight moves upward, gaining speed
until it reaches O at t = 9, after which it slows down until it returns to
its original position at the end of 12 sec. The direction of motion is then
reversed again, and the same pattern is repeated indefinitely.

FREE FALL

According to Newton’s second law of motion, the product of the mass and
acceleration of an object is equal to the sum of the forces acting on it.
Using this as a first model for the fall of an object toward the surface of
a planet from a starting position not far from the surface, we ignore all
forces except the gravitational attraction of the planet, which we take to be

constant.
With this model, Newton’s second law becomes

ma(t) = mg,

where m is the mass of the object and g is the gravitational constant. This
equation simplifies to

a(t) = g.

If we set up our coordinate line as in Figure 3.72 with 0 at the surface of
the planet and the positive side above the surface, then the force of gravity
is in the negative direction; thus g will have a negative value. A useful
convention is to assign time ¢ to be 0 at the instant the object begins to

move.
Since a(t) = v'(t) is the constant function whose value is g, the veloc-

ity function v(¢) must be of the form

vt)=gt+C
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for some constant C. If we evaluate this equation at the initial time ¢ = 0
we have

]

W) =g-0+C=C,

so we see that C is the initial velocity v(0), which we will denote as V-
Now, using the relationship that velocity is the derivative of the position
function, we have

v(t) = s'(t) = gt + v,
One possibl;: candidate for the position function is an expression of the
form (g/2)t° + Vgt since this expression has derivative gt + vy By Corol-
lary (3.14), any other function with the same derivative, gr + Vg, must dif-

fer from (g/2)1% + vyt by a constant. Hence, the position function must
have the form

s(t) = g(tz) + vyt + C

for some constant C. Evaluation again at the initial time ¢ = 0 gives s(0) =
0+ 0+ C, so the constant C is just the initial position s(0), which we will
denote by s,,.

Putting these results together, we find that the rectilinear motion of an
object falling near the surface of a planet is given by the position function

2
gt
s() = N + vt + 5.

For an object near the earth’s surface, the value of g is approximately
-32 ft/secz, or —9.8 m/sec?>.

EXAMPLE™® 4 A student accidentally drops her calculus book from
an upper-story window of her dormitory 144 ft above the ground. How fast
is the book moving when it strikes the ground?

SOLUTION Taking the instant the book is dropped to be r = 0, we
have an initial position s, = 144 and an initial velocity v, = 0 (since the
book is dropped rather than thrown downward or hurled upward). Since the
distance is measured in feet, we use g = —32. The equations for position
and velocity thus take the form

s@t) =—162+144 and v(t) = —32r.

The book hits the ground when s(z) = 0, so the value of ¢ at the instant of
impact satisfies

—161% + 144 = 0
or 12 = 11i64,
which yields t = 43,

We can ignore the negative value because all the action takes place after
t=0. Wt'a conclude that the book strikes the ground in 3 sec. At that
moment, it is traveling with a velocity of v(3) = —32(3) = —96 ft/sec.

T

3.7 Velocity and Acceleration
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EXAMPLE®=5 To practice his skill catching fly balls, a baseball
player hurls the ball straight up in the air, releasing it from his outstretched
arm at a point 8 ft above the ground. How high does the ball go if he can
impart an initial velocity of 60 mi/hr?

SOLUTION Since 60 mi/hr translates into 88 ft/sec, we have v, =

88 and s, = 8. The position and velocity functions become

s(t) =—16:>+88+8 and v() = —32r +88.

The ball reaches its maximum height when the velocity is 0, which occurs

when

—32t +883=0; thatis,t = % sec.

The height of the ball at this time is
s(H) = —16(4)% +88(4) + 8 = 129 ft.

The model we have discussed in this section, one of constant accelera-
tion, is a relatively simple one in that it ignores other forces that are often
quite important. Air resistance, for example, often plays a crucial role, es-
pecially for a relatively light object with a relatively large size. The model
also treats the gravitational force as constant; a more realistic one would
take into account that the force due to gravity varies with the distance
between the object and the center of attracting planetary mass. Still, this
simple model gives reasonably good predictions. You may wish to explore
some generalizations of our model.

CONSTANT ACCELERATION

In many situations, the motion of an object is governed by constant accel-
eration or deceleration, as the next examples illustrate.

EXAMPLE®=6 An automobile manufacturer claims that its new
model can accelerate “from O to 60 miles per hour in 11 seconds.” Find
the constant acceleration that makes this rate of speed possible.

SOLUTION Let the unknown constant acceleration be a ft Isec?. At
time ¢ = 0, the velocity v, is 0, so the velocity at time 7 is given by

v(t) = gt + vy, = at.
We are given that v(11) = 88 ft/sec. Hence,

88 = 1la, or, equivalently, a = 8ft Isec?.

EXAMPLE=7 Suppose that the automobile of Example 6 is in-
volved in an accident on a quiet residential street. Police officers in-
vestigating the incident conclude from physical evidence and reports of
witnesses that the car traveled 196 ft after the driver slammed on the brakes




Figure 3.73
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before it stoppedz(see Figure 3.73). Assuming that the car decelerated at
a rate of 8 ft/sec”, determine how fast the car was going when the brakes

were applied.

3VO LUTION Lets =0 be the moment when the brakes are applied
. hen .t}.le car comes to rest at unknown time ¢* its velocity v(t*) = 0 anci
its position s(¢*) = 196. We wish to find Vg-

If we use g = —8§, the velocity and position functions become

v(t) = -8t + Vo and s(¢) = —44? + vyt

Evaluating these functions at time 1*, we find

0=-8"+v, and 196=—4(t*)% + v r*.

From. the .ﬁrst equation, we have the relationship r* = v,/8, which we
substitute into the second equation to obtain °

Simplifying gives

=3 o (3).

2
Vo
16 =196, so vy = 56 ft/sec.

Converting to miles per hour, we find that th i
( , ec
il dbove 38t ar was traveling at a speed

- EXERCISES 3.7

Exe.r.. 1-8: A point 'moving on a coordinate line has
position function s. Find the velocity and the acceleration

6 s(t)=20-122+6; [—1, 6]

Exercises 3.7

Exer. 11-12: A projectile is fired directly upward with
an initial velocity of v, ft/sec, and its height (in feet)
above the ground after ¢ seconds is given by s(?). Find
(a) the velocity and acceleration after ¢ seconds, (b) the
maximum height, and (c) the duration of the flight.

vy = 144; s(r) = 1441 — 167
12 vy =192; s(t) =100+ 192 — 1612

Exer. 13-16: A particle in simple harmonic motion has
position function s, and ¢ is the time in seconds. Find the
amplitude, the period, and the frequency.

13 S(t)=SCOS%t 14 s(t) =4sinmt

2
15 s(t)=6sin?nt 16 s(r) = 3cos2t

17 The electromotive force V and current / in an alter-
nating-current circuit are given by

VvV = 220sin 360,
. T
I = 20sin (360m - Z)‘

|
Find the rates of change of V and I with respect to time
att = 1.

18 The annual variation in temperature 7 (in °C) in
Vancouver, B.C., may be approximated by the formula

T = 14.8sin [%(r - 3)] +10,

where ¢ is in months, with r =0 corresponding to
January 1. Approximate the rate at which the temper-
ature is changing at time ¢ = 3 (April 1) and at time
¢ = 10 (November 1). At what time of the year is the
temperature changing most rapidly?

19 The graph in the figure shows the rise and fall of the
water level in Boston Harbor during a particular 24-hr

period.

Exercise 19
A y (height of water in feet)

R

(a) Approximate the water level y by means of an
expression of the form

y =asin(bt +c¢) +d,

with ¢ = 0 corresponding to midnight.

(b) Approximately how fast is the water level rising at
12 noon?

20 A tsunami is a tidal wave caused by an earthquake
beneath the sea. These waves can be more than 100
ft in height and can travel at great speeds. Engineers
sometimes represent tsunamis by an equation of the
form y = acosbt. Suppose that a wave has a height
h = 25 ft and period 30 min and is traveling at the rate
of 180 ft/sec.

(a) Let (x, y) be a point on the wave represented in the
figure. Express y as a function of 7 if y = 25 ft when

t=0.

(b) How fast is the wave rising (or falling) when y =
10 ft?

Exercise 20

Ly 7 ft

21 A cork bobs up and down in a lake. The distance from
the bottom of the lake to the center of the cork at time
t > 0 is given by s() = cosmt + 12, where s(t) is in
inches and ¢ is in seconds (see figure).
(a) Find the velocity of the cork at # = 0, % 1, %, and 2.

(b) During what time intervals is the cork rising?

Exercise 21

at time ¢, and describe the motion of the poj i 4
P Y point during the 7 5(t) = 21" — 612, —
lnd}cated time interval. Illustrate the motion by meaﬁs of 2
a diagram of the type shown in Figure 3.69. 8 5(n) =2° — 61%; [-1, 1]
I s(t) =32 = .
! 12¢ 4+ 1; [0, 5] Exer. '9— 10: An automobile rolls down an incline,
25() =243 —6: [—2. 2] ;ravglmg s(t) feet in ¢ seconds. (a) Find its velocity at
= 3. (b) After how m ds wi i
3 5() =13 — 9 4 1. ( any seconds will the velocity be k
| ; [-3,3 ft /sec?
) ~ . ] Isec 22 A particle in a vibrating spring is moving vertically
| s(t) =24+ 6r — 17 [-2, 3 ) -+ 1 . .
3] 9 5(t) =52 +2: k=28 Ly T Y B T such that its distance s(z) from a fixed point on the line
4 8 12 4 t of vibration is given by s(r) = 4 + 5= sin 1007z, where

55(t) =20 +15/2 — 241 —6; [0, 5 8

3 0, 3] ] — 342 . _
r 0s5(t)=3t"+7; k=288 AM. Noon PM. (hours) () is in centimeters and 7 is in seconds. (
I ‘




(a) How long does it take the pai'ticle to make one
complete vibration?

(b) Find the velocity of the particle at ¢ =1, 1.005,
1.01, and 1.015.
Exer. 23 - 24: Show that s"(f) = —w?s(f).
23 s(t) = kcos(wt + b) 24 5(t) = ksin(wt + b)

25 A point P(x, y) is moving at a constant rate around the
circle x? + y> = d?. Prove that the projection Q(x, 0)
of P onto the x-axis is in simple harmonic motion.

26 1If a point P moves on a coordinate line such that

s(t) = acoswt + bsin wt,
show that P is in simple harmonic motion by
(2) using the remark following Definition (3.24)
(b) using only trigonometric methods (Hint: Show that
s(t) = A cos(wt — ¢) for some constants A and c.)

Exer. 27-28: A point moving on a coordinate line
has position s(#). (a) Graph y = s(t) for 0 <t <5,
(b) Approximate the point’s position, velocity, and
accelerationat t = 0, 1, 2, 3, 4, and 5.

10sinz Stan(it
27 5(1) = 5 28 s() = 222G0

41 2t +1
29 Emergency food supplies are dropped from a helicopter

and hit the ground 10 sec later.

(a) What is the height / of the helicopter?

Exercise 29
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(b) The box in which the supplies are packed is strong
enough to withstand a speed of 180 mi/hr on impact.
Will the supplies be intact?

(c) What is the maximum height at which the helicopter
can be positioned to guarantee that the box will not
break up when it hits the ground?

30 A golf ball projected vertically from the ground lands
back on the surface in 8 sec. What was the initial
velocity?

31 Judy’s roommate drops Judy’s car keys from the
dormitory window, which is 144 ft above the ground, to
Judy, who is standing on the ground below the window.

(2) How long must Judy wait for the keys?

(b) If Judy needs the keys in 2 ‘sec, with what initial
speed should her roommate throw the keys?

32 If a stone is hurled vertically upward, show that it takes
the same amount of time for the stone to achieve its
maximum height as it takes to drop from that spot back
to the ground.

33 A truck driver speeding down a narrow street j“’suddenly
sees a bicyclist s feet ahead. The driver slams on the
brakes, imparting a constant deceleration a to the truck.
If the bicycle is moving at a rate of v; mi/hr in the same
direction as the truck, find the maximum value for the
initial speed v, of the truck so that the vehicles will not
collide.

34 In Vermont, a straight stretch of U.S. highway 7
connects Burlington to Vergennes. A car begins in
Burlington at r = 0 and heads toward Vergennes with a
velocity given by v(r) = 607 — 1242, measured in miles
per hour. When the automobile arrives at the Vergennes
city limit, it is clocked at a speed of 48 mi/hr and it is
speeding up.

(a) How far apart are Burlington and Vergennes?

(b) What are the minimum and maximum velocities
experienced during the trip? When do they occur?

(c) How would the answer be affected if the car were
observed to be slowing down rather than speeding
up when it reached Vergennes?

3.8  APPLICATIONS TO ECONOMICS, SOCIAL SCIENCES,
AND LIFE SCIENCES

A primary focus of calculus is change in functional relationships. Since
change is a characteristic property of most natural and social systems, cal-
culus provides powerful techniques to understand these systems. In this
section, we examine some applications of the derivative to the social and

3.8 -Applications to Economics,

Social Sciences, and Life Sciences

L ative in
life sciences. We concentrate first on some applications of the cllenv:lltlvefilI
onomics. We then examine how the calculus we have deve opeh SO :
iacm help us. make some qualitative conclusions about complex mathema

cal systems that we cannot quantitatively solve.

ECONOMICS —
lus has become an im lving problems that oc

become an important tool for solvin : . !

Sj(l)fll(l)lrlrlscl;aliec?;lse of its power to analyze functional relationships. Rev

enues and profits, for example, are functions of fluctuating costs arfgr(;g;sr;
b A ml

and these in turn depend on varying supply apd demand. ltice(;g(c)ient often

face optimizing problems that involve making the mos

scarce resources to achieve societal goals. ‘
If x is the number of units of a commodity,
functions C, ¢, R, and P, defined as follows:

C(x) = cost of producing x units

economists often use the

Cost function:

jion: =Cx)/x
age cost function:  c(x) . '
reree = average cost of producing one unit

R(x) = revenue received for selling x units
= R(x) - C(x)
= profit in selling x units

Revenue function:
Profit function: P(x)

number, even
To use the techniques of calculus, we regard x as a real ,

i sume
though this variable may take on only mtege_r values. We aflwal?;sS a;as ne
thatg;c > (. since the production of a negative number of unt

practical significance.

A manufacturer of miniature tape decks has a

EXAMPLE® | duction cost of $12 per unit, and a

monthly fixed cost of $10,000, a pro

selling price of $20 per unit.

(a) Find C(x), c(x), R(x), and P(x). '

(b) Find the function values in part (a) if x = 1000. X
(c) How many units must be manufactured in order to break even’

SOLUTION -
i i its 1

The production cost of manufacturing x un
fc:?ixed rgonthly cost of $10,000, the total monthly cost o

units is

s 12x. Since there is also
f manufacturing x

C(x) = 12x + 10,000.

The remaining functions are given by
10,000
ce) =12+ —

c(x) =

R(x) = 20x,
P(x) = R(x) — C(x) = 8x — 10,000.

TR
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(b) Substituting x = 1000 in part (a) gives us the following values:
C(1000) = 22,000
c(1000) = 22
R(1000) = 20,000
P(1000) = —2000
Note that the manufacturer incurs a loss of $2000 per month if only 1000
units are produced and sold.
(c) The break-even point corresponds to zero profit— that is, when we
have 8x — 10,000 = 0. This result gives us

8x = 10,000, or x =1250.

Thus to break even, it is necessary to produce and sell 1250 units per
month.

If a function f is used to describe some economic entity, the adjective
marginal is used to specify the derivative f’. The derivatives C’, ¢/, R/,
and P’ are called the marginal cost function, the marginal average cost
function, the marginal revenue function, and the marginal profit func-
tion, respectively. The number C’(x) is referred to as the marginal cost
associated with the production of x units. If we interpret the derivative as
a rate of change, then C'(x) is the rate at which the cost changes with
respect to the number x of units produced. Similar statements can be made
for ¢’(x), R'(x), and P'(x).

If C is a cost function and » is a positive integer, then, by Definition
(2.5),

Cn+h)—Cn)
— .

C'(n)=1i
= Jim,

Hence, if & is small, then

Cn+h)—C(n)
p .

If the number n of units produced is large, economists often let 4 = 1 in
the preceding formula to approximate the marginal cost, obtaining

C'(n) ~

Cm)~Chn+1)—Cn).

In this context, the marginal cost associated with the production of n units
is (approximately) the cost of producing one more unit.

Some companies find that the cost C(x) of producing x units of a
commodity is given by a formula such as

C(x) = a+ bx +dx* + kx>.

The constant a represents a fixed overhead charge for items like rent,
heat, and light that are independent of the number of units produced. If
the cost of producing one unit were b dollars and no other factors were
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involved, then the second term bx in the formula would represent the cost
of producing x units. If x becomes very large, then the terms dx? and kx*
may significantly affect production costs.

EXAMPLE=2 An electronics company estimates that the cost (in
dollars) of producing x components used in electronic toys is given by

C(x) = 200 + 0.05x + 0.0001x2.

(a) Find the cost, the average cost, and the marginal cost of producing 500
units, 1000 units, and 5000 units.

(b) Compare the marginal cost of producing 1000 units with the cost of
producing the 1001st unit.

SOLUTION
(a) The average cost of producing x components is
C 200
cry = £~ 29 1 6,05 + 0.0001x.
X

The marginal cost is
C'(x) = 0.05 + 0.0002x.

You should verify the entries in the following table, where numbers in the
last three columns represent dollars.

Units | Cost Average cost | Marginal cost |
x| @ | @=22 | cw
[— 4 | —

500 250.00 0.50 0.15

1000 350.00 0.35 0.25
i 5000 = 2950.00 0.59 1.05

(b) Using the cost function yields

C(1001) = 200 + 0.05(1001) + (0.0001)(1001)*
~ 350.25.

Hence the cost of producing the 1001st unit is

C(1001) — C(1000) ~ 350.25 — 350.00
=0.25,

which is approximately the same as the marginal cost C'(1000).

A company must consider many factors in order to determine a selling
price for each product. In addition to the cost of production and the profit
desired, the company should be aware of the manner in which consumer
demand will vary if the price increases. For some products, there is a
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constant demand, and changes in price have little effect on sales. For items
that are not necessities of life, a price increase will probably lead to a
decrease in the number of units sold. Suppose a company knows from past
experience that it can sell x units when the price per unit is given by p(x)
for some function p. We sometimes say that p(x) is the price per unit
when there is a demand for x units, and we refer to p as the demand
function for the commodity. The total income, or revenue, is the number
of units sold times the price per unit—that is, x - p(x). Thus,

R(x) = xp(x).

The derivative p’ is called the marginal demand function.

If S = p(x), then S is the selling price per unit associated with a de-
mand of x units. Since a decrease in § would ordinarily be associated
with an increase in x, a demand function p is usually decreasing; that is,
p'(x) < 0 for every x. Demand functions are sometimes defined implicitly
by an equation involving S and x, as in the next example.,

EXAMPLE®3 The demand for x units of a product is related to a
selling price of S dollars per unit by the equation 2x + §% — 12,000 = 0.
(a) Find the demand function, the marginal demand function, the revenue
function, and the marginal revenue function. '

(b) Find the number of units and the price per unit that yield the maximum
revenue.

(¢) Find the maximum revenue.

SOLUTION

(a) Since $? = 12,000 — 2x and S is positive, we see that the demand
function p is given by

S = p(x) =+12,000 — 2x.

The domain of p consists of every x such that 12,000 — 2x > 0, or, equiv-
alently, 2x < 12,000. Thus, 0 < x < 6000. The graph of p is sketched in
Figure 3.74. In theory, there are no sales if the selling price is /12,000,
or approximately $109.54, and when the selling price is close to $0, the
demand is close to 6000.
The marginal demand function p’ is given by
) =
PR = 2000 - 25
The negative sign indicates that a decrease in price is associated with an

increase in demand.
- The revenue function R is given by

R(x) = xp(x) = x/12,000 — 2x.

Differentiating and simplifying gives us the marginal revenue function R’:

Ry = 12000 3%

V12,000 — 2x
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(b) A critical number for the revenue function R is x = 12,000/3 = 4000.
Since R'(x) is positive if 0 < x < 4000 and negative if 4000 < x < 6000,
the maximum revenue occurs when 4000 units are produced and sold. This
corresponds to a selling price per unit of

Pp(4000) = /12,000 — 2(4000) ~ $63.25.

(c)-The maximum revenue, obtained from selling 4000 units at $63.25 per
unit, is

4000(63.25) = $253,000.

A MODEL FROM SOCIOLOGY AND GEOGRAPHY

Sociologists and geographers often study a phenomenon called social dif-
fusion; that is, the spreading of a piece of information, technological inno-
vation, or cultural fad among a population. The individuals in the popula-
tion can be divided into those who have the information and those who do
not.

In a fixed population, it is reasonable to assume that the rate of diffusion
is proportional to the number who have the information and the number yet
to receive it. The rate of diffusion should be proportional to the number of
encounters between individuals of the two groups. If both populations are
large, then there will be a relatively large number of such contacts, while
if either population is small, there will be relatively few such meetings.

If x represents the number of people in a population of N individuals
who have the information, then the rate of diffusion r is the rate of change
of x—that is, r(x) = dx/dt = x’(t). A mathematical model for the rate
r(x) at which the information is spreading is the equation

(%) r(x) =kx(N —x) =kNx — kxz,

where £ is a positive proportionality constant.

If the rate of diffusion in a population of N people is given by (%),
then we may want to be able to find when the rate is zero and interpret
the result. We are also interested in determining when the information is
spreading most rapidly.

The rate of information spread is zero when r(x) = 0—that is, when
kx(N — x) = 0. The possible values of x are x = 0 and x = N. We can
draw the following conclusion: If no one has the information, it cannot
diffuse; if everyone has it, it cannot spread any further. So long as there
are some people who have the information and some who do not, the
information will continue to spread.

To determine when the information is spreading most rapidly, we com-
pute the derivative of r as

r'(x) = kN — 2kx.

Thus, r’(x) > 0 when 0 < x < N/2 and r'(x) < 0 when N/2 < x < N.
Accordingly, the rate of information spread increases until half the popu-
lation is informed, and then it begins to decrease. Information is spreading
most rapidly when x = N/2.
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A MODEL FROM EPIDEMIOLOGY

Scientists in different fields often use essentially the same mathematical
model to represent the dynamics of what appear to be widely different sit-
uations. As an example, the diffusion-of-information model that we have
just examined assumes that the rate of change of the informed population
is jointly proportional to the numbers of informed and uninformed individ-
uals. Precisely the same concept lies at the heart of many models for the
transmission of a communicable discase.

In such a model, two important subgroups of the population are the in-
fectives (those who are currently infected with the disease and are capable
of spreading it) and the susceptibles (those who are currently uninfected
but could contract the illness). One of the important equations in this model
is

§'(t) = —BS®) 1),

where B is a positive constant and S = S(¢) and [ = I(¢) are the number
of susceptibles and infectives at time ¢, respectively. Note that since the
populations of susceptibles and infectives must remain nonnegative and
B is positive, we have S$'(r) <0, so the susceptible population is non-
increasing. ,

We want to use the model to show that if the population is constant
and is made up entirely of susceptibles S and infectives I, then the rate
of change of the susceptible population has the same form as the rate of
information spread.

We let N represent the constant population size. Then

S+ I=N orequivalently, [I=N-—-S.
The equation for the rate of change of susceptibles has the form
§'=—BSI =—BS(N - S),
which has the same form as the social diffusion equation

x' =kx(N —x).

A MODEL FROM ECOLOGY

We now examine a model from ecology that uses the same central concept.
Imagine a simple ecosystem with two animal species, one of which preys
on the other. To enliven the model, think of rabbits as the prey species and

foxes as the predators. We assume that the rabbits live on clover, which-

is in abundant supply, but the foxes have only a single source of food,
the rabbits. The classic predator—prey model represents the growth rate of
both the rabbit and the fox populations over time by a linked system of
equations:

R'(1) =a R(t) — b R(t) F(t),
F'(t)=m R(t) F(t) —n F(t),
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where R(t) and F(t) are the rabbit and the fox populations at time ¢,
respectively, and a, b, m, and n are positive constants.

We write this system in a slightly condensed notation, suppressing the
explicit mention of the variable ¢:

R'=aR—bRF and F =mRF —nF.

Although the full solution of this pair of equations lies beyond our
current understanding of calculus, we can still do quite a bit of fruit-
ful analysis of the model. First, let us note that in the absence of foxes
(F = 0), the growth function for the rabbits becomes

R =aR.

Since R’/R = a in this situation, the rabbits would grow at a constant
percentage rate. We will study the consequences of such growth systemati-
cally in Chapter 6. As you might imagine, the rabbits will experience rapid
increases in numbers.

Second, if there are no rabbits (R = 0), then the dynamics of the fox
population reduces to

F' = —nF,

so the foxes would experience a constant percentage decline in numbers. It
is not surprising that the foxes would face extinction. (Chapter 6 provides
the tools for the quantitative analysis.)

Let us turn then to the more interesting case in which both rabbits
and foxes are running around. Each of the growth equations involves the
product RF. We are making the not unreasonable assumption that the
number of kills of rabbits by foxes is proportional to the frequency of
encounters between the two species, which, in turn, is proportional to the
product of the two populations. There will be few kills if there are few
rabbits or few foxes, and many kills only when both populations are large.
Each kill diminishes the rabbit population and enhances the likelihood for
growth in the number of foxes.

If we rewrite the equations as

R'=R(a—bF) and F' = F(mR —n),

then we see (since R > 0 and F > 0) that the sign of R’ is the same as
the sign of (@ — bF) and the sign of F’ is the sign of (mR — n). Since
positive signs for the derivative correspond to increases in the function and
negative signs to decreases, we have

R increases if F < a/b d F increases if R > n/m
R decreases if F > a/b F decreases if R < n/m

We can gain further insight into the dynamics of the predator-prey
relationship by constructing a Cartesian coordinate system with the rabbit
population graphed along the horizontal axis and the fox population along
the vertical axis, as in Figure 3.75 on the following page.
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We have pictured the first quadrant only since the variables R and F
represent nonnegative numbers. Along the horizontal line F = a/b, we
have R’ = 0, and along the vertical line R = n/m, we have F’ = (. The
point of intersection of these two lines ((n/m), (a/b)) represents a stable
point. If the populations were to reach this point, both rates of change
would be zero and the populations would remain at this level. At every
other point in the first quadrant, at least one of the populations would be
-changing.

What happens if the initial population levels are at some other point?
Suppose we begin in region I. Here both fox and rabbit populations are
relatively large, which is at first good for the foxes since there will be
lots of prey. The fox population will increase as the rabbit population
decreases. As time goes by, we will find that the population level has
moved to a point to the northwest of the initial point. This northwest
movement continues until we reach the critical vertical line R = n/m.
As we cross this line, the rabbits become scarcer and the fox population
also begins to decrease. For a while, there will be dwindling numbers of
both foxes and rabbits. The population level moves in a southwesterly
direction until it ultimately hits the critical horizontal line F = a/b. Now
the number of foxes has dropped and there is less danger for the rabbits.
The rabbit population begins to increase, but since it is relatively small,
the fox population will continue to decrease. The population level moves
in a southeasterly direction, continuing this path until the rabbit population
passes the vertical line R = n/m. Now there are sufficiently many rabbits
to support a growing fox population. Both species continue to prosper
and the population level moves in a northeasterly direction. Eventually,
however, it passes the horizontal line at height a/b and we are back in
region I. The process then proceeds as before.

We can see from this analysis that the population point moves in a
counterclockwise direction, visiting all four regions in turn. We wish to
determine what will happen in the long run—that is, whether the popula-
tion point will spiral in toward the stable point, spiral out, or form some
sort of elliptical closed orbit. Answering these questions must be deferred
until we have developed sufficiently powerful tools of calculus.
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Exer. 1-4: If C is the cost function for a particular
product, find (a) the cost of producing 100 units and
(b) the average and the marginal cost functions and their

values at x = 100.
I C(x) = 800 + 0.04x + 0.0002x2
2 C(x) = 6400 + 6.5x + 0.003x2
3 C(x) = 250 + 100x + 0.001x>

4 C(x) =200+ 0.01x + (100/x)

5 A manufacturer of small motors estimates that the cost
(in dollars) of producing x motors per day is given by
C(x) = 100 + 50x + (100/x). Compare the marginal
cost of producing five motors with the cost of producing
the sixth motor.

6 A company conducts a pilot test for production of a new
industrial solvent and finds that the cost of producing
x liters of each pilot run is given by the formula
C(x) =34 x + (10/x). Compare the marginal cost of
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producing 10 liters with the cost of producing the 11th
liter.

Exer. 7-8: For the given demand and cost functions,
find (a) the marginal demand function, (b) the revenue
function, (c) the profit function, (d) the marginal profit
function, (e) the maximum profit, and (f) the marginal
cost when the demand is 10 units.
7 p(x) =50-0.1x; C(x) =10+ 2x
8 px)=80—+x—1; Cx) =T5x+2/x—1
9 A travel agency estimates that, in order to sell x
package-deal vacations, it must charge a price per
vacation of 1800 — 2x dollars for 1 < x < 100. If the
cost to the agency for x vacations is 1000 + x + 0.01x>
dollars, find

(a) the revenue function
(b) the profit function
(c) the number of vacations that will maximize the profit

(d) the maximum profit

10 A manufacturer determines that x units of a product will
be sold if the selling price is 400 — 0.05x dollars for
each unit. I the production cost for x units is 500 + 10x,
find ! V
(a) the revenue function
(b) the profit function
(c) the number of units that will maximize the profit

(d) the price per unit when the marginal revenue is 300

A kitchen specialty company determines that the cost of
manufacturing and packaging x pepper mills per day is
500 + 0.02x + 0.001x2. If each mill is sold for $8.00,

CHAPTER 3 REVIEW EXERCISES

Exer. 1-2: Find the extrema of f on the given interval.
I f(x) = —x*+6x—8; [I, 6]
2 f(x) =32+ x% (—1, 0]
Exer. 3 —4: Find the critical numbers of f.
3 ) =@x+236x -1
4 f)=vx—T1(x -2
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find
(a) the rate of production that will maximize the proﬁt
(b) the maximum daily profit

A company that conducts bus tours found that when
the price was $9.00 per person, the average number
of customers was 1000 per week. When the company
reduced the price to $7.00 per person, the average
number of customers increased to 1500 per week.
Assuming that the demand function is linear, what price
should be charged to obtain the greatest weekly revenue?

Exer. 13-14: Analyze each model using the technique
developed in the investigation of the predator—prey
model.

13

The competitive-hunters model represents an ecosystem
with two species, each of which requires the same
resource for survival. If x and y are the populations of
two species at time ¢, then the model has the form

x'(t) = ax — bxy,

y'(t) = my — nxy,
where a, b, m, and n are positive constants.

The Richardson arms race model (Lewis F. Richardson,
Arms and Insecurity, Pittsburgh: Boxwood Press, 1960)
represents the arms expenditures x and y of two nations
as the system of equations

@) =ay —mx +r,
V(&) = bx —ny +s,

where a, b, m, n, r, and s are constants, the first four
of which are positive.

Exer. 5-8: Use the first derivative test to find the local
extrema of f. Find the intervals on which f is increasing
or is decreasing, and sketch the graph of f.

5 fx)= —4x3 +9x% + 12x

1
6 f()=—5—

7 f(x) =@ —x0x/3

x2+1

8 fx)=vx*—9




Exer. 9—-12: Use the second derivative test (whenever
applicable) to find the local extrema of f. Find the
intervals on which the graph of f is concave upward or
is concave downward, and find the x-coordinates of the
points of inflection. Sketch the graph of f.

9 f(x)=v8—x3

10 F(x) = —x> +4x2 — 3x

1 f(x)=szrl

12 f(x) =40x> — x°

I3 If f(x) =2sinx — cos2x, find the local extrema, and
sketch the graph of f for 0 < x < 2.

14 If f(x) =2sinx —cos2x, find equations of the tan-
gent and normal lines to the graph of f at the point

(m/6,1/2).

Exer. 15-16: Sketch the graph of a continuous function
[ that satisfies all the stated conditions.

I5 f(0)=2; f(=2) = f(D) =0;
=) =10=rf@=0
fi(x) > 0if -2 <x <0
f(x) <0ifx < —2orx > 0;
ffx)>0ifx < —lorl <x <2;
f'(x) <0if —1<x<lorx>?2

16 f(0)=4; f(=3)=f(3) =0,
£ (=3) = 0; £'(0) is undefined;
f(x)>0if =3 <x <0;
fl(x) <0ifx < —3orx >0;
f'(x)>0ifx <00r0 < x < 2;
f(x) <0ifx > 2

Exer. 17—22: Find the extrema and sketch the graph
of f.

17 3" 8 =
= - I = ——
T =575 TO=GTy
9 f(x)_x2+2x—8 20 _x'-16

- x+3 f(x)_ x3

P
21 - 22 =

0 x*+2x—8 F@ /x +4

23 If f(x) = x> +x*+x+ 1, find a number ¢ that satis-
fies the conclusion of the mean value theorem on the
interval [0, 4].

24 The posted speed limit on a 125-mi toll highway is
65 mi/hr. When an automobile enters the toll road, the
driver is issued a ticket on which is printed the exact
time. If the driver completes the trip in 1 hr 40 min or

25

26

27

28

29

30

31
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less, a speeding citation is issued when the toll is paid.
Use the mean value theorem to explain why this citation
is justified.

A man wishes to put a fence around a rectangular
field and then subdivide this field into three smaller
rectangular plots by placing two fences parallel to one
of the sides. If he can afford only 1000 yd of fencing,
what dimensions will give him the maximum area?

An open rectangular storage shelter 4 ft deep, consisting
of two vertical sides and a flat roof, is to be attached to
an existing structure, as illustrated in the figure. The flat
roof is made of tin and costs $5 per £t2. The two sides are
made of plywood costing $2 per ft>. If $400 is available
for construction, what dimensions will maximize the
volume of the shelter?

Exercise 26

4 fi

A V-shaped water gutter is to be constructed from two
rectangular sheets of metal 10 in. wide. Find the angle
between the sheets that will maximize the carrying
capacity of the gutter.

Find the altitude of the right circular cylinder of
maximum curved surface area that can be inscribed in
a sphere of radius a.

The interior of a half-mile race track consists of a
rectangle with semicircles at two opposite ends. Find the
dimensions that will maximize the area of the rectangle.

A cable television firm presently serves 5000 households
and charges $20 per month. A marketing survey
indicates that each decrease of $1 in monthly charge will
result in 500 new customers. Find the monthly charge
that will result in the maximum monthly revenue.

A wire 5 ft long is to be cut into two pieces. One piece
is to be bent into the shape of a circle and the other into
the shape of a square. Where should the wire be cut so
that the sum of the areas of the circle and square is

(a) a maximum (b) a minimum

Chapter 3 Review Exercises

32 In biochemistry, the general threshold-response curve
is given by R = kS"/(S" +a"), where R is the chem-
ical response that corresponds to a concentration § of a
substance for positive constants k, n, and a. An example
is the rate R at which the liver removes alcohol from
the bloodstream when the concentration of alcohol is
S. Show that R is an increasing function of S and that
R = k is a horizontal asymptote for the curve.

33 The position function of a point moving on a coordinate
line is given by s(t) = (t% + 3t + 1)/(z*> + 1). Find the
velocity and the acceleration at time ¢, and describe the
motion of the point during the time interval [—2, 2].

34 The position of a moving point on a coordinate line is
given by

s(t) = asin(kt + m) + bcos(kt + m)

for constants a, b, k, and m. Prove that the magnitude of
the acceleration is directly proportional to the distance
from the origin.

35 A manufacturer of microwave ovens determines that the
cost of producing x units is given by

C(x) = 4000 + 100x + 0.05x% 4 0.0002x>.

Compare the marginal cost of producing 100 ovens with
the cost of producing the 101st oven.

36 The cost function for producing a microprocessor
component is given by C(x) = 1000 + 2x + 0.005x2.
If 2000 units are produced, find the cost, the average
cost, the marginal cost, and the marginal average cost.

37 An electronics company estimates that the cost of
producing x calculators per day is

C(x) = 500 + 6x + 0.02x2.

If each calculator is sold for $18, find
(a) the revenue function
(b) the profit function
(c) the daily production that will maximize the profit
(d) the maximum daily profit

38 A small office building is to contain 500 ft* of floor
space. Simplified floor plans are shown in the figure. If

the walls cost $100 per running foot and if the wall space
above the doors is disregarded,

(a) show that the cost C(x) of the walls is
C(x) = 100[3x — 6 + (1000/x)]

(b) find the vertical and oblique asymptotes, and sketch
the graph of C(x) for x > 0

(<) find the design that minimizes the cost

Exercise 38
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39 A NASA rocket is propelled straight upward from the
ground. If the acceleration is constant and the rocket
achieves a height of 49 ft in 1 sec, what is the rate of
acceleration?

40 The “Alpine Slide” is a way to enjoy sledding when
there is no snow. The slide itself is a long concrete
trough that runs downhill parallel to a ski trail. The rider
takes a chair lift to the top of the slide and then races
down the slide on a small sled. The sled has metal rollers
on the bottom and a control stick that permits the rider
to slow down while moving along the track.

A sled is initially moving at a rate of 44 ft/sec. It
decelerates to 32 fi/sec over a distance of 114 ft at an
unknown constant rate. It continues to decelerate at that
same rate until it comes to a full stop.

(a) How long does it take to reduce the speed to 32
ft/sec?

(b) What is the acceleration of the sled?

(c) How long does it take before the sled comes to a
complete stop?

(d) How many feet does the sled travel before it comes
to a stop?

Exercise 40

44 ft/sec



[ c | Exer. 41-44: Approximate a number c that satisfies the

conclusion of the mean value theorem on the interval
given.

4 f=x"+x2+x+1; [0,4]

42 f(x)=x>+2x>=3x—4; [-3,2]

43 f(x) = sin(sin x); [—m/2, 7/2]
44 f(x) = sin{cos x); [0, =]

IEI Exer. 45-50: Graph f on the given interval and

approximate the extrema and the points of inflection to
four decimal places.

45 f)=x2—3/3i-Vx =7 [0,7]
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46 f(x) =sinx —xcosx; [—5, 10]
47 f(x) = |x +24x% — 18x +3]; [-7, 5]
48 f(x)=x> —5x°+3x +4 [—25, 2.5]
49 f(x) =5 cos(cosx) — 2x; [—2, 2]
50 f(x) =2 sinx + 3 sinnx; [—2, 2]

- EXTENDED PROBLEMS AND GROUP PROJECTS

I Here is an important generalization of the mean value
theorem: If f and g are continuous on [a,b] and
differentiable on (a, b), then there is a number c in (a, b)
such that [f (b) — f(@)]/[g(b) — g(@] = f'(c)/g (©).
(a) Show that the mean value theorem is a special case

of this generalization. (Hint: Use g(x) = x.)

(b) Prove this theorem by applying the mean value
theorem to the function k(x) defined by h(x) =
Lf ) — f(@)]gx) — [g(b) — g(@)]f (x).

E (c) Suppose that f and g are differentiable on an open
interval (a, b) containing ¢, except possibly at ¢
itself. If lim,_, _f(x) =0=1Im,_  g(x), then

show that
o fx
lim = lim —/——=,
x->C g(x) x—>c g (x)
7
provided lim ———exists.
x—>c g (_x)

Obtain first some numerical and graphical evidence
that this result is true by examining various examples
of ‘pairs of functions f and g. Then use the
generalization of the mean value theorem to prove
the result.

2 Suppose that f is a function with the property that
f'(x)=1/x for all x>0 and f(1) =0. (We have
not yet seen this function, but in this problem, we
will investigate what the mean value theorem and its
consequences imply about such a function.)

(a) Show that f is a strictly increasing function.

(b) Find f”(x) and show that the graph of f is concave
downward.

(¢) Let ¢ be any positive number. Define the function
g(x) by g(x) = f(cx). By the chain rule, show
that g’(x) = 1/x. Why does this result imply that
g(x) = f(x) + C for some constant C? Use'the fact
that f£(1) = 0 to find C.

(d) Show that f satisfies one of the properties of loga-
rithmic functions—namely, f(cx) = f(c) + f(x)
for all positive numbers ¢ and x.

(e) Let n be a nonzero rational number. Use the
chain rule to show that the functions g(x) = f(x™)
and h(x) = nf(x) have the same derivative. Thus,
g(x) = h(x) + C for some constant C. Use the fact
that f(1) = 0 to determine C.

(f) Show that f satisfies another property of logarithmic
functions: f(x") = nf(x).

(g) Show that if 1 < ¢ < 2, then f’(c) > 1/2. Use the
mean value theorem to show that f(2) > 1/2. By
part (f), show that this implies that £(2") > n/2ifn
is a positive integer. Conclude that

im0 = o

(h) Determine lim, _, o+ f(x).
(i) Using the properties of f derived above, sketch a
graph of f.

3 Suppose that f is a function with the property that
Fl(x) = f(x) for all x and £(0) = 1. (We have not
yet seen this function, but in this problem, we will
investigate what the mean value theorem and its
consequences imply about such a function.)

(a) Show that f is a strictly increasing function.
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(b) Find f”(x) and show that the graph of f is concave
upward.

(c) Use the chain rule to show that if 2 (x) = f(x + ¢),
then h'(x) = h(x). Apply the quotient rule to
the function g(x) = f(x +¢)/f(x) to show that
g'(x) = 0 for all x. Conclude that f has an impor-

tant property of exponential functions: ¢ + ¢) =

J(x) f(c), for all numbers x and c.

(d) Show that f also has another important property of
exponential functions: (f(x))" = f(xn).

(e) Use the mean value theorem to conclude that
S@)>1+n if n>0 and hence show that
lim,  _ f(x) =o0.

(f) Determine lim,_,_ __ f(x).

(g) Using the properties of f derived above, sketch a
graph of f.



