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CHAPTER 5 Applications of the Definite Integral

MOMENTS AND CENTERS OF MASS

In this section, we consider some topics involving the mass of an ob-
ject. The terms mass and weight are sometimes confused with each other.
Weight is determined by the force of gravity. For example, the weight of an
object on the moon is approximately one-sixth its weight on earth, because
the force of gravity is weaker. However, the mass is the same. Newton used
the term mass synonymously with quantity of matter and related it to force
by his second law of motion, F = ma, where F denotes the force acting
on an object of mass m that has acceleration a. In the British system, we
often approximate a by 32 ft/sec® and use the slug as the unit of mass. In
SI units, a ~ 9.81 m/sec2, and the kilogram is the unit of mass. It can be
shown that

1slug ~ 14.6kg and 1kg~ 0.07slug.

In applications, we generally assume that the mass of an object is con-
centrated at a point, and we refer to the object as a point-mass, regardless
of its size. For example, using the earth as a frame of reference, we may
regard a human being, an automobile, or a building as a point-mass. |

In an elementary physics experiment, we consider two point-masses
m, and m, attached to the ends of a thin rod, as illustrated in Figure 5.61,
and then locate the point P at which a fulcrum should be placed so that the
rod balances. (This situation is similar to balancing a seesaw with a person
sitting at each end.) If the distances from m, and m, to P are d, and d,,
respectively, then it can be shown experimentally that P is the balance
point if

m,d, = m,d,.

In order to generalize this concept, let us introduce an x-axis, as illus-
trated in Figure 5.62, with m; and m, located at points with coordinates x,
and x,. If the coordinate of the balance point P is X, then using the formula
m,dy = m,d, yields

m(x —x;) = my(x, — X)
m X +myxX =mx; +m,x,
P mix; + mzxz_‘
iy +m,
This gives us a formula for locating the balance point P.

If a mass m is located at a point on the axis with coordinate x, then
the product mx is called the moment M, of the mass about the origin. Our
formula for x states that to find the coordinate of the balance point, we
may divide the sum of the moments about the origin by the total mass. The
point with coordinate X is called the center of mass (or center of gravity) of
the two point-masses. The next definition extends this discussion to many
point-masses located on an axis, as shown in Figure 5.63.
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Definition 5.23
Let § denote a system of point-masses my, my, ..., m, located at

n
Xy, Xy,...,%, on a coordinate line, and let m = Zm ¢ denote the

k=1
total mass.

() The moment of S about the origin is M, = Z m X,
k=1
(i) The center of mass of S is given by ¥ = My/m.

The point with coordinate X is the balance point of the system S in the
same sense as in our seesaw illustration.

EXAMPLE®| Three point-masses of 40, 60, and 100 kg are located
at —2, 3, and 7, respectively, on an x-axis. Find the center of mass.

Figure 5.64 SOLUTION If we denote the three masses by my, m,, and m,, we
m=40  my, =60 my = 100 have the situation illustrated in Figure 5.64, with X, =-2, x, =3, and
4+ » X3 =7. Applying Definition (5.23) gives us the coordinate ¥ of the center
-2 90 3 7 X of mass:
P 40(=2) +60(3) + 100(7) _ 800 _
40 + 60 + 100 © 200
Figure 5.65 Let us next consider a point-mass m located at P(x, y) in a coordinate

Ay plane (see Figure 5.65). We define the moments M, and M, of m about
the coordinate axes as follows:

\__x_ _’;”P . ) moment about the x-axis: M, = my
P moment about the y-axis: M, = mx

[
|V In words, to find M, we multiply m by the y-coordinate of P, and to find
, M, we multiply m by the x-coordinate. To find M and M for a system of

=Y

point-masses, we add the individual moments, as in (i) and (ii) of the next
definition.

Definition 5.24 -
Let S denote a system of point-masses m,, m,, ..., m, located

at (xy, 1), (x3,¥),...,(x,,y,) in a coordinate plane, and let
n

m = Z m,, denote the total mass.
k=1

L]
(i) The moment of S about the x-axis is M = Z MYy
k=1

{continued)
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n
(ii) The moment of S about the y-axis is M, = Z M X
k=1
(iii) The center of mass of § is the point (X, ¥) such that

M M
i=—2, y=-—=
m

nt

Figure 5.66

From (iti) of this definition,

mx = M, and my=M,.
L

Since mx and my are the moments about the y-axis and x—gxis, respec-
tively, of a single point-mass m located at (X, y), we may interpret the
center of mass as the point at which the total mass can be concentrated to
obtain the moments M y and M, of S.
| We might think of the »n point-masses in (5.24) as being fastened to the
w‘ center of mass P by weightless rods, as spokes of a Whgel are attached
| i m to the center of the wheel. The system S would balance if supported by
| m> ) a cord attached to P, as illustrated in Figure 5.66. The appearance 'would
P

be similar to that of a mobile having all its objects in the same horizontal
| m,e plane.

M
| EXAMPLE®2 Point-masses of 4, 8, 3, and .2 kg are located at
| (=2,3), (2, -6), (7, =3), and (5, 1), respectively. Find M, My, and the

\ Figure 5.67 center of mass of the system.
| Ay o
| -+ SOLUTION The masses are illustrated in Figure 5.67, in ‘WhICh we
I my =4+ have also anticipated the position of (X, ¥). Applying Definition (5.24)
I ( 2,.3) il m, = gives us
! T °(5. 1 | M, =@#3)+ @)(—=6) + (3)(=3) + 2)(1) = —43

e

M, =H(=2) + @)D+ )T+ 2)(5) =39.

‘ 1 (70 3 Sincem =4+8+3+2=17,

l tm=8 M, 39 s=Me_ B s
4L o X = =—~23 and y

| L. -6) m 17 mo

-39 43
Thus, the center of mass is (3 —7)-

i Later in the text we shall consider solid objects that are homogeneous
in the sense that the mass is uniformly distributed throughout the solid.
In physics, the density p (rho) of a homogeneous solid of mass m and
volume V is defined by p = m/V. Thus, density is mass per unit volume.
The SI unit for density is kg/m>; however, g/cm? is also used. The British
unit is 1b/ft or Ib/in®.
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Figure 5.68
(@)

In this section, we restrict our discussion to homogeneous laminas
(thin flat plates) that have area density (mass per unit area) p. Area density
is measured in kg/mz, lb/ftz, and so on. If the area of one face of a lamina
is A and the area density is p, then its mass m is given by m = pA.
We wish to define the center of mass P such that if the tip of a sharp
pencil were placed at P, as illustrated in Figure 5.68, the lamina would
balance in a horizontal position. As in Figure 5.68(b), we shall assume
that the center of mass of a rectangular lamina is the point C at which
the diagonals intersect. We call C the center of the rectangle. Thus, for
problems involving mass, we may assume that a rectangular lamina is a
point-mass located at the center of the rectangle. This assumption is the
key to our definition of the center of mass of a lamina.

Consider a lamina that has area density p and the shape of the R,
region in Figure 5.69. Since we have had ample experience using limits of
Riemann sums for definitions in Sections 5.1-5.6, let us proceed directly

to the method of representing the width of the rectangle in the figure by dx
(instead of Ax,), obtaining '

area of rectangle: [f(x) — g(x)]dx.

Figure 5.69
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Since the area density of the lamina is p, we may write

mass of rectangular lamina: p[ f(x) — g(x)] dx.

If, as in previous sections, we regard [ ab as an operator that takes limits of
sums, we arrive at the following definition for the mass m of the lamina:

b
m =J pLf (x) — g(x)]dx

a
We next assume that the rectangular lamina in Figure 5.69 is a
point-mass located at the center C of the rectangle. Since, by the mid-
point formula (5), on page 11, the distance from the x-axis to C is
%[ J(x) + g(x)], we obtain the following result for the rectangular lamina:

moment about the x-axis: L[ f(x) + g(x)]- p[f(x) — g(x)]1dx
Similarly, since the distance from the y-axis to C is x,

moment about the y-axis: x - p[f(x) — g(x)]dx.

Taking limits of sums by applying [ ab leads to the next definition.

Let a lamina L of area density p have the shape of the R region in
Figure 5.69.

(i) The mass of Lism = fab olf(x) — g(x)]dx.
(iiy The moments of L about the x-axis and y-axis are

b
Ve f L fG) + 8001 pLFGx) — g(0)]dx

b
and M, = f x - pLf (@) — g()]dx.

(iii) The center of mass of L is the point (X, ¥) such that

M)’ Mx

X = and y =

m m

An analogous definition can be stated if L has the shape of an R,
region and the integrations are with respect to y. We could also obtain
formulas for moments with respect to lines other than the x-axis or y-axis;
however, it is advisable to remember the technique for finding moments—
multiplying a mass by a distance from an axis—instead of memorizing
formulas that cover all possible cases.

EXAMPLE =3  Alamina of area density p has the shape of the region
bounded by the graphs of y = x>+ 1, x =0, x = 1, and y = 0. Find the
center of mass.

5.7 Moments and Centers of Mass

Figure 5.70

SOLUTION The region and a typical rectangle of width dx and
height y are sketched in Figure 5.70. As indicated in the figure, the dis-
tance from the x-axis to the center C of the rectangle is % y, and the distance
from the y-axis to C is x. Hence, for the rectangular lamina, we have the
following:
mass: pydx = /o(x2 + 1) dx
moment about x-axis: %y -pydx = %,o(x2 + 1)%dx

moment about y-axis: x - pydx = px (x> + 1) dx

We now take a limit of sums of these expressions by applying the operator

fy:

1
1
m=f0 p(x2+1)dx=p[%x3+x]0: ‘3-‘,0

X

1 1
M =| 3o+ 1D)?%dx=1p| G*+ 222+ Ddx
0 : 2 0

1
14
5P
0 15

fl
I}

%p [%xs + %x3 -l—x]
1 1
My:J px(x2+1)dx=pj(x3+x)dx
0 0
_ 1.4, 1210 _3
=plax*+ 57 =1p

To find the center of mass (x, ¥), we use Definition (5.25)(iii):

My

X =—" =

m

_9 M, 0 1
16 m — 4p 10

L%AIJ%L»

When we found (x, y) in Example 3, the constant p in the numerator
and the denominator canceled. This will always be the case for a homoge-
neous lamina. Hence, the center of mass is independent of the area density
p; that is, X and y depend only on the shape of the lamina. For this reason,
the point (¥, y) is sometimes referred to as the center of mass of a region
in the plane, or as the centroid of the region. We can obtain formulas for
moments of centroids by letting o = 1 and m = A (the area of the region)
in our previous work.

EXAMPLE =4 Find the centroid of the region bounded by the graphs
ofy=6—x%andy =3 — 2x.

SOLUTION The region is the same as that considered in Example 2
of Section 5.1 and is resketched in Figure 5.71 on the following page. To
find the moments and the centroid, we take p = 1 and m = A. Referring




Figure 5.72
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CHAPTER 5 Applications of the Definite Integral

to the typical rectangle with center C shown in Figure 5.71, we obtain the
following:

area of rectangle: [(6 — x2) — (3 —2x)]dx
distance from x-axis to C: %[(6 — x5+ (3 —2x)]
moment about x-axis: %[(6 —x3) 4+ (3 —-2x)] x
[(6 — x%) — (3 —2x)]dx
distance from y-axisto C: x

moment about y-axis: x[(6 — xz) — (3 —2x)]dx

We now take a limit of sums by applying the operator | 31:

3
M= [ 6=+ =201 16— 5%~ G =201ds
-1

X

3
=1 f [(6 — xH)* — (3 —2x)*]dx
-1
3
= %J’ (* = 16x2 + 12x +27) dx = 42
-1
3
M =f x[(6 — x?) — (3 — 2x)]dx
~1
3
=f (3x+2x2—x3)dx = %
-1

Using A = 33—2 and Definition (5.25)(iii), we determine the centroid:

. M, 32/3 M, 416/15 13
Xr=——=——= an y = — = = —
m 32/3 m 32/3 5
We could have found the centroid by using Definition (5.25) with
fx)=6- x2, g(x) =3—2x,a=—1, andb =3, but that would
merely teach you how to substitute and not how to think.

If a homogeneous lamina has the shape of a region that has an axis of
symmetry, then the center of mass must li¢ on that axis. This fact is used
in the next example.

EXAMPLE®5 Find the centroid of the semicircular region bounded
by the x-axis and the graph of y = Va? — x? witha > 0.

SOLUTION The region is sketched in Figure 5.72. By symmetry,
the centroid is on the y-axis; that is, ¥ = 0. Hence, we need find only y.
Referring to the rectangle in Figure 5.72 and using p =1 gives us the

5.7 Moments and Centers of Mass

following result:
moment about x-axis: %y cydx = %yz dx = %(a2 —x%)dx

We now take a limit of sums by applying the operator [ fa:

a a
M =| i@ —x%dx =2f0 1@ - x?) dx
—a
2 1,314 _ 2.3
=[ x—§x ]0—§a

Using m = A = Lwa? gives us
4 2

2.3
M,  3a 4a

y = —% = = — ~0.42a.
Y m %naz 3 ¢

4
Thus, the centroid is the point (0, 3—a>.
T

We conclude this section by stating a useful theorem about solids of
revolution. To illustrate a special case of the theorem, consider an R,
region R of the type shown in Figure 5.69. Using p = 1 and m = A (the
area of R), we find that the moment of R about the y-axis is given by

b
M, = [ st - gwona.

If R is revolved about the y-axis, then using cylindrical shells, we find that
the volume V of the resulting solid is given by-s=+

b
V= f 2rx[f(x) — g(x)]dx.
a
Comparing these two equations, we see that
M o= Vv
Y 2w’
If (x, y) is the centroid of R, then, by Definition (5.25)(iii),
)?:_A{X:(V/Zn)z Vv
m A 2T A
V =2nxA.

and hence,

Since x is the distance from the y-axis to the centroid of R, the last formula
states that the volume V of the solid of revolution may be found by multi-
plying the area A of R by the distance 2 x that the centroid travels when
R is revolved once about the y-axis. A similar statement is true if R is re-
volved about the x-axis. In Chapter 13, we shall prove the following more
general theorem, named after the mathematician Pappus of Alexandria (ca.
A.D. 300).
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CHAPTER 5 Applications of the Definite Integral 5.8  Other Applications
m
|
i Exer. 21-24: Use the th f P .
’ | Theorem of Pappus 5. 26 ol . f ' ] ' Exercise 16 Xer. se the theorem of Pappus.
Let R be a region in a plane that lies entirely on one side of a line [ in Jr y 21 Let R be the rectangular region with vertices (1, 2),
||| | the plane. If R is revolved once about /, the volume of the resulting (2, 1), (5, 4), and (4, 5). Find the volume of the solid
il solid is the product of the area of R and the distance traveled by the generated by revolving R about the y-axis.
’| Figure 5.73 centroid of R. 2 _ oy 22 Let R be the triangular region with vertices (1, 1),
' Y (a, b) (2,2), and (3, 1). Find the volume of the solid
generated by revolving R about the y-axis.
EXAMPLE®6 Theregion bounded by acircle of radius a is revolved R 23 Find the centroid of_the region in the first quadrant
' about a line /, in the plane of the circle, that is a distance b from the > bounded by the graph of y = v/a? — x* and the coor-
' center of the circle, where b > a (see Figure 5.73). Find the volume V of dinate axes.
| the resulting solid. (The surface of this doughnut-shaped solid is called a 24 Find the centroid of the triangular region with vertices
: torus.) 17 A region has the shape of a square of side 24 surmounted 0(0, 0), A(0, a), and B(b, 0) for positive numbers a
‘ by a semicircle of radius a. Find the centroid. (Hint: and b.
| SOLUTION The region bounded by the circle has area wa?, and the Use Example 5 and the fact that the moment of the 25 A laming of densitv » has the sh ¢ th i
distance traveled by the centroid is 27 b. Hence, by the theorem of Pappus, region is the sum of the moments of the square and the [<] amina of area densily o has the shape ot the region
' semicircle.) bounded by the graphs of f(x) = ,/|cosx| and g(x) =
| V = Qub)(wa®) = 27%a’b ' 2, Graph £ and g on th dinat
‘ ( Ywa?) a0 18 Let the points P, Q, R, and S have coordinates x". Graph f a1-1 g on The same coordinate axes. .
| (—b, 0), (—a, 0), (a, 0), and (b, 0), respectively, with (a) Set up an integral Fhat can be used to approximate
| 0 < a < b. Find the centroid of the region bounded by the mass of the lamina.
: : the graphs of y = /p? — x2, y = /a? — x2, and the (b) Use Simpson’s rule, with n = 2, to approximate the
“ ‘ line segments PQ and RS. (Hint: Use Example 5.) integral in part ().
111118 - EXERCISES 5.7 19 Prove that the centroid of a triangle coincides with the IZ' 26 Use Simpson’s rule, with n =2, to approximate the
| l . intersection of the medians. (Hint: Take the vertices at centroid of the region bounded by the graphs of y =
. the points (0, 0), (a, b), and (0, ¢), with a, b, and ¢ 0, y=(sinx)/x, x=1, and x = 2.
positive.)
Exer. 1-2: The table lists point-masses (in kilograms) and Exer. 5—}4: Sketch the region bounded by the graphs of 20 A region has the shape of a square of side @ surmounted
their coordinates (in meters) on an x-axis. Find m, M, the equations, and find m, M,, My, and the centroid. by an equilateral triangle of side . Find the centroid.
i and the center of mass. 5 y=x, y =0, =1 (11"711)111‘ See Exercise 19 and the hint given for Exercise
| .
';‘ I | Mass 100 80 70 6 y=4x y=0 x=9
" e \ — 1 _ 2 _
K I Coordinate = -3 2 4 | 7y=4-x7, y=0
| | I— 8 2x+3y=6, y=0, x=0
) _ ,
| 9= 2y=x 5.8  OTHER APPLICATIONS
. 2| Mass 50 100 50 5 5
| Coordinate | —10 2 3 10 y=x s |
ordinate - . : . . . . .
! | S I y=1—-2x% x—y=1 Ve g It should be evident from our work in this chapter that if a quantity can
' —— ' 12y = 2 — b be approximated by a sum of many terms, then it is a candidate for repre-
' Exer. 3—4: The table lists point-masses (in kilograms, r= xz, rty= sentation.as a definite integral. The main r.eq_uiremer}t is th?t as the number
| | and their locations (in meters) in an xy-plane. Find 13 x =y~ x—y=2 of terms increases, the sums approach a limit. In this section, we consider
m, M, M, and the center of mass of the system. 14 x=9—y% x+y=3 several miscellaneous applications of the definite integral. Let us begin
' with the force exerted by a liquid on a submerged object.
3 M 2 7 5 I5 Find the centroid of the region in the first quadrant : In physics, the pressure p at a depth # in a fluid is defined as the
e - — | bounded by the circle x? + y? = 4 and the coordinate weight of fluid contained in a column that has a cross-sectional area of one
e Location  (4,-1) (=2,0) (-8,-5) axes. square unit and an altitude 4. Pressure may also be regarded as the force
| | B . . . .
\ | —— 16 Let R be the region in the first quadrant bounded by part pe;tuél: ?}:e; izxeg::crll ll))y the fluid. If a fluid has density p, then the pressure
i - — — of the parabola y2 = c¢x with ¢ > 0, the x-axis, and the p P g y
| ?; 4| Mass | 10 3 4 1 8 vertical line through-the point (a, ») on the parabola, p = ph.
!
[

i o
| Location | (—5,-2) (3, 7) (0, —3) (—8,-3) (0, 0) as shown in the figure on the following page. Find the ) 3
| centroid of R. The following illustration is for water, with p = 62.5 Ib/ft’.
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Density p (lb/ft3 ) Depth h (ft) Pressure p = ph ﬂb/ftz)
62.5 2 125
62.5 4 250
62.5 6 375

Pascal’s principle in physics states that the pressure at a depth 4 in
a fluid is the same in every direction. Thus, if a flat plate is submerged
in a fluid, then the pressure on one side of the plate at a point that is A
units below the surface is ph, regardless of whether the plate is submerged
vertically, horizontally, or obliquely (see Figure 5.74, where the pressure
at points A, B, and C is ph).

If a rectangular tank, such as a fish aquarium, is filled with water (see
Figure 5.75), the total force exerted by the water on the base may be
calculated as follows:

force on base = (pressure at base) - (area of base)
For the tank in Figure 5.75, we use p = 62.5 1b/ft> and h = 2 ft to obtain
force on base = (125 Ib/ft?) - (12 ft*) = 1500 Ib.

This corresponds to 12 columns of water, each having cross-sectional area
1 ft? and each weighing 125 Ib.

It is more complicated to find the force exerted on one of the sides
of the aquarium, since the pressure is not constant there but increases as
the depth increases. Instead of investigating this particular problem, let us
consider the following more general situation.

Suppose a flat plate is submerged in a fluid of density o such that the
face of the plate is perpendicular to the surface of the fluid. Let us introduce
a coordinate system as shown in Figure 5.76, where the width of the plate
extends over the interval [c, d] on the y-axis. Assume that for each y in
[c, d], the corresponding depth of the fluid is A(y) and the length of the
plate is L(y), where h and L are continuous functions.

We shall use our standard technique of considering a typical horizontal
rectangle of width dy and length L(y), as illustrated in Figure 5.76. If dy
is small, then the pressure at any point in the rectangle is approximately
ph(y). Thus, the force on one side of the rectangle can be approximated
by

force on rectangle =~ (pressure) - (area of rectangle),

or force on rectangle =~ ph(y) - L(y) dy.

Taking a limit of sums of these forces by applying the operator || Cd Jeads to
the following definition.

The force F exerted by a fluid of constant density p on one side of
a submerged region of the type illustrated in Figure 5.76 is

d
F= f R G )

(2

5.8 Other Applications

x = 45,/3/60

(—45, 60)

\ Yy

(45, 60)

If a more complicated region is divided into subregions of the type illus-
trated in Figure 5.76, we apply Definition (5.27) to each subregion and add
the resulting forces.

The coordinate system may be introduced in various ways, as the next
two examples illustrate. In Example 1, we choose the x-axis at the base
of the liquid and the positive direction of the y-axis upward. In Example
2, we choose the x-axis along the surface of the liquid and the positive
direction of the y-axis downward.

EXAMPLE®=1 One end of a reservoir presses against the wall of a
small dam. The wall follows the depth contours of the reservoir and is
generally in the shape of a parabola. If the wall of the dam is 60 ft deep
at its center and 90 ft across at the water level, find the total force of the
water in the reservoir against this wall of the dam.

SOLUTION Figure 5.77 illustrates the end of the dam superimposed
on a rectangular coordinate system. An equation for the parabola is y =

(60/45%)x2, or, equivalently, x = +45,/y/60. Referring to Figure 5.77
gives us the following, for a horizontal rectangle of width dy:
length: 2x =2-45,/y/60 = 90,/y/60

area: 90./y/60dy
depth: 60—y
pressure:  62.5(60 — y)

force: 62.5(60 — y)90,/y/60dy

Taking a limit of sums by applying the operator f06 0, we obtain, as in
Definition (5.27),

60 y
F= J 62.5(60 — y) 90,/ = dy
o 60

62.5)(90) 90
=(—¢%) jo [(60 — y)y"/21dy

60
_ (6252_290) L 60572 — /2] dy

(62.5)90) [2 35 2 5/2]60
=" 60 _z
/60 _3( =3y .
_(62.5)90) [ 4/, (40 2 2>]60
- «\/66 _y y Sy 0
(62.5)(90) J—[ 2 2]}
= =77 1/60 | (40)(60) — <(60
760 (40)(60) 5( )

= (62.5)(90)[(40)(60) — (24)(60)]
= (62.5)(90)(16)(60) = 5,400,000 Ib.
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In the preceding example, the length of the reservoir is irrelevant when
we consider the force on the dam. The same is true for the length of the oil
tank in the next example.

EXAMPLE®=2 A cylindrical oil storage tank 6 ft in diameter and
10 ft long is lying on its side. If the tank is half full of oil that weighs 58

1b/ft3, set up an integral for the force exerted by the oil on one end of the
tank.

SOLUTION Letus introduce a coordinate system such that the end
of the tank is a circle of radius 3 ft with the center at the origin. The
equation of the circle is x2 + y% = 9. If we choose the positive direction of
the y-axis downward, then referring to the horizontal rectangle in Figure
5.78 gives us the following:

length: 2x =2,/9 — y?

area: 2,/9 — y>dy
depth: y
pressure: 58y

force: 58y -24/9 — y2 dy

Taking a limit of sums by applying f03 , we obtain

3
F :f 116y+/9 — y* dy.
0

Evaluating the integral by using the method of substitution gives us

F =10441b.

Definite integrals can be applied to dye-dilution or tracer methods used
in physiological tests and elsewhere. One example involves the measure-
ment of cardiac output—that is, the rate at which blood flows through the
aorta. A simple model for tracer experiments is sketched in Figure 5.79,
where a liquid (or gas) flows into a tank at A and exits at B, with a constant
flow rate F' (in liters per second). Suppose that at time ¢ = 0, Q, grams of
tracer (or dye) are introduced into the tank at A and that a stirring mecha-
nism thoroughly mixes the solution at all times. The concentration c(¢) (in
grams per liter) of tracer at time ¢ is monitored at B. Thus, the amount of
tracer passing B at time ¢ is given by

(flow rate) - (concentration) = F - c(t) g/sec.

If the amount of tracer in the tank at time ¢ is Q(¢), where Q is a
differentiable function, then the rate of change Q'(¢) of Q is given by

Q@)=—F-c(@

(the negative sign indicates that Q is decreasing).

5.8 Other Applications
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If T is a time at which all the tracer has left the tank, then Q(T) =0
and, by the fundamental theorem of calculus,
T T
J Q'(t)dt = Q(t)] = Q(T) - Q)
0 0
=0-Qy,=—0,

We may also write

T T T
J Q'tdt = J [—F-c@®)]dr = —FJ c(t) dt.
0 0

0

Equating the two forms for the integral gives us the following formula.

T
Qp = FL c(t)dt

Usually an explicit form for ¢(t) will not be known, but, instead, a table of
function values will be given. By using numerical integration, we may find
an approximation to the flow rate F (see Exercises 11 and 12).

Let us next consider another aspect of the flow of liquids. If a liquid
flows through a cylindrical tube and if the velocity is a constant v, then
the volume of liquid passing a fixed point per unit time is given by vyA,
where A is the area of a cross section of the tube (see Figure 5.80).

A more complicated formula is required to study the flow of blood in
an arteriole. In this case, the flow is in layers, as illustrated in Figure 5.81.
In the layer closest to the wall of the arteriole, the blood tends to stick to
the wall, and its velocity may be considered zero. The velocity increases
as the layers approach the center of the arteriole.

For computational purposes, we may regard the blood flow as consist-
ing of thin cylindrical shells that slide along, with the outer shell fixed and
the velocity of the shells increasing as the radii of the shells decrease (see
Figure 5.81). If the velocity in each shell is considered constant, then from
the theory of liquids in motion, the velocity v(r) in a shell having average
radius r is

P
u(r) = m(Rz — ),

where R is the radius of the arteriole (in centimeters), [ is the length of
the arteriole (in centimeters), P is the pressure difference between the
two ends of the arteriole (in dyn/cmz), and v is the viscosity of the blood
(in dyn—sec/cmz). Note that the formula gives zero velocity if » = R and
maximum velocity PR?/(4vl) as r approaches 0. If the radius of the kth
shell is r, and the thickness of the shell is Ar,, then, by (5.10), the volume
of blood in this shell is

2rru(r)Arn =
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If there are n shells, then the total flow in the arteriole per unit time may
be approximated by

= 2mr, P
P G Vi
= Ml

To estimate the total flow F (the volume of blood per unit time), we
consider the limit of these sums as n increases without bound. This leads
to the following definite integral:

R 2mrp
sz o (R: - ) dr
0

4vl
27P (R
= f(Rzr—r3)dr
4yp] 0
R
_TP L L
2vl |2 4 |
nPR*
= cm
8vl

This formula for F is not exact, because the thickness of the shells cannot
be made arbitrarily small. The lower limit is the width of a red blood
cell, or approximately 2 x 10™* cm. We may assume, however, that the
formula gives a reasonable estimate. It is interesting to observe that a small
change in the radius of an arteriole produces a large change in the flow,
since F is directly proportional to the fourth power of R. A small change
in pressure difference has a lesser effect, since P appears to the first power.

In many types of employment, a worker must perform the same as-
signment repeatedly. For example, a bicycle shop employee may be asked
to assemble new bicycles. As more and more bicycles are assembled, the
time required for each assembly should decrease until a certain minimum
assembly time is reached. Another example of this process of learning by
repetition is that of a data processor who must keyboard information from
written forms into a computer system. The time required to process each
entry should decrease as the number of entries increases. As a final illus-
tration, the time required for a person to trace a path through a maze should
improve with practice.

Let us consider a general situation in which a certain task is to be
repeated many times. Suppose experience has shown that the time required
to perform the task for the kth time can be approximated by f (k) for a
continuous decreasing function f on a suitable interval. The total time
required to perform the task n times is given by the sum

Y fl=fD)+fQ+ -+ fn).
k=1

If we consider the graph of f, then, as illustrated in Figure 5.82, the pre-
ceding sum equals the area of the pictured inscribed rectangular polygon
and, therefore, may be approximated by the definite integral fO" fx)dx.
Evidently, the approximation will be close to the actual sum if f decreases
slowly on [0, n]. If f changes rapidly per unit change in x, then an integral
should not be used as an approximation.

5.8 Other Applications

Figure 5.83
AP

p=f)
Q(x]’pl)

w Y

EXAMPLE=3 A company that conducts polls via telephone inter-
views finds that the time required by an employee to complete one inter-
view depends on the number of interviews that the employee has com-
pleted previously. Suppose it is estimated that, for a certain survey, the
number of minutes required to complete the kth interview is given by
k) = 6(1 +k)~/3 for 0 < k < 500. Use a definite integral to approx-
imate the time required for an employee to complete 100 interviews and
200 interviews. If an interviewer receives $4.80 per hour, estimate how
much more expensive it is to have two employees each conduct 100 inter-
views than to have one employee conduct 200 interviews.

SOLUTION From the preceding discussion, the time required for
100 interviews is approximately

100

100
J 6(1+x)"dx =6-3(1 +x)4/5] A 293.5 min.
0 0

The time required for 200 interviews is approximately

200
j 6(1 4+ x)~ '3 dx ~ 514.4 min.
0

Since an interviewer receives $0.08 per minute, the cost for one employee
to conduct 200 interviews is roughly ($0.08)(514.4), or $41.15. If two
employees each conduct 100 interviews, the cost is about 2($0.08)(293.5),
or $46.96, which is $5.81 more than the cost of one employee. Note,
however, that the time saved in using two people is approximately 221 min.

Using a computer, we have

100
26(1 + k)75 ~291.75
k=1

200
and 26(1 + k)5 ~ 512,57,
k=1

Hence, the results obtained by integration (the area under the graph of f)
are roughly 2 min more than the value of the corresponding sum (the area
of the inscribed rectangular polygon).

In economics, the price p at which there is a demand for x units of
a particular product may be given by a function, p = f(x). Figure 5.83
illustrates the graph of such a function, which is called the price-demand
curve. It reflects the assumption that decreases in price correspond to in-
creases in demand. Point P(x,, p,) represents the current price p,. (in
dollars) at any point in time and the corresponding current demand of x,
units. Point Q(x,, p,) is the higher price (p; > p_) consumers are hypo-
thetically willing to pay for the same product when the demand is smaller
(xy < x,).

We can use a definite integral to determine the consumer’s surplus,
which is the savings or total difference between what they are willing
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to pay at higher prices and what they actually pay at the current price. We
need to consider all possible prices greater than p . dollars. From the price—
demand curve, we see that the prices exceeding p . dollars correspond to
demands for fewer than x, units. We partition the interval [0, x ] into n
equal subintervals of width Ax and choose a point w, in each s,ubcinterval.
The corresponding price is f(w,), so the savings per unit is [ f (w) — p,l.
If the price remained constant on the kth subinterval, then the savings Cto
consumers over this subinterval would be

(savings per unit) - (number of units) = [ f (wy) — p.]Ax.

Thus, we can approximate the total savings by

Y [fwy) = plAx.
k=1

This approximation improves as Ax approaches zero. But this sum is
. X
also a Riemann sum for [;°[f(x) — p.dx and so its limit as Ax ap-

proaches zero is the definite integral. We summarize our discussion in the
next definition.

If (er, p.) is a point representing current demand of x . units of a
pampular good or service and current price p,. on the graph of a
continuous price-demand function p = f(x), then the consumers’
surplus is given by

xC
fe [F () — p,1dx,

which represents the consumers’ savings or total difference between
what they are hypothetically willing to pay and what they actually
pay.

F X‘A MPLE=4 The price-demand function for a particular product
is given by p= f(x) =50 — %x. Determine the consumers’ surplus for
this price-demand function at a price level of $10.

SOLUTION For the price~demand function p = 50 — (x/10), we
note that when x = 0, p = 50. Thus, at a price of $50, there is no demand
for the product. When x = 200, p = £(200) = 50 — (200/10) = 30. At
$30 per unit, there is a demand for 200 units. To find the consumers’

surplus, we first determine the demand x . at the current price p_ = 10:
Solving ‘

10 =50 — 4x,

for x, yields x, = 400. Thus, the consumers’ surplus is given by the defi-
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400 400
f [(50 — §5x) — 10]dx = f (40 — Lx) dx
0

0
5 7400
X
= [40x — —:| = 8000,

20
0

and the consumers’ surplus is $8000.

Note that by Theorem (4.23)(ii), the consumers’ surplus is equal to

XC )CC xv
f [f(x)_Pc]dx:J f(x)dx—f p.dx.
0 0 0
By Theorem (4.21),
X
J;) pc d‘x = prC'

The product p_x, is the total amount paid by consumers for x, units at the
current price of p.. Since f(x) > 0for0 < x < x,, the definite integral

fo E f(x)dx

is the area under the price-demand curve between 0 and x_, and we can
interpret the consumers’ surplus at a price level of p, to be the amount
by which the area under the price—demand curve exceeds the total amount
paid for demanded goods at the current price level. The area of the shaded
region in Figure 5.84 represents the consumers’ surplus.

Any quantity that can be interpreted as an area of a region in a plane
may be investigated by means of a definite integral. Conversely, definite
integrals allow us to represent physical quantities as areas. In the following
illustrations, a quantity is numerically equal to an area of a region; that is,
we disregard units of measurement, such as centimeter, foot-pound, and
SO On.

Suppose v(?) is the velocity, at time ¢, of an object that is moving on a
coordinate line. If s is the position function, then §'(t) = v(¢) and

b b b

f v()dt = j s'(0)dt = s(t):l = s(b) — s(a).

a a a
If v(t) > 0 throughout the time interval [a, b], this tells us that the area
under the graph of the function v from a to b represents the distance that
the object travels, as illustrated in Figure 5.85. This observation is useful
to an engineer or physicist, who may not have an explicit form for v(z)
but merely a graph (or table) indicating the velocity at various times. The
distance traveled may then be estimated by approximating the area under
the graph.

If v(t) < O at certain times in [a, b], the graph of v may resemble that
in Figure 5.86. The figure indicates that the object moved in the negative
direction from ¢ = ¢ to ¢ = d. The distance that it traveled during that time
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is given by [ Cd |v(#)| dt. It follows that [ ab |v(2)| dt is the total distance
traveled in [a, b], whether v(¢) is positive or negative.

EXAMPLE®=5 Asan object moves along a straight path, its velocity
v(t) (in feet per second) at time ¢ is recorded each second for 6 sec. The
results are given in the following table.

Approximate the distance traveled by the object.

SOLUTION The points (¢, v(t)) are plotted in Figure 5.87. If we
assume that v is a continuous function, then, as in the preceding discussion,

the distance traveled during the time interval [0, 6] is f06 v(t)dt. Let us
approximate this definite integral by means of Simpson’s rule, with n = 3:

6 —
J v(t) dt ~ 66 30[1)(0) +4v(1) + 2v(2) 4+ 4v(3)
o .

4+ 2v(4) + 4v(5) + v(6)]
=1[14+4-342-444.6+2-5+4-5+3]=26ft

1

In (5.21), we defined the work W done by a variable force f(x) that
acts along a coordinate line from x =a to x =b by W= [ ab f(x)dx.
Suppose that f(x) > 0 throughout [a, b]. If we sketch the graph of f as
illustrated in Figure 5.88, then the work W is numerically equal to the area
under the graph from a to b.

EXAMPLE®=6 An engineer obtains the graph in Figure 5.89, which
shows the force (in pounds) acting on a small cart as it moves 25 ft along
horizontal ground. Estimate the work done.

SOLUTION If we assume that the force is a continuous function f
for 0 < x < 25, then the work done is
25

W= f(x)dx.
0

We do not have an explicit form for f(x); however, we may estimate
function values from the graph and approximate W by means of numerical
integration.

Let us apply the trapezoidal rule with @ = 0, b = 25, and n = 5. Re-
ferring to the graph to estimate function values gives us the table on the
following page.

5.8 Other Applications
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k| x | &) ‘
0 45
1 5 35

2 | 10 30

3| 15 40

4 | 20 25

5

Since (b — a)/(2n) = (25 — 0)/10 = 2.5, the trapezoidal rule (4.37) gives
Ty = 5 f(x) +2f(x) +2f(x) +2f(x3) +2F(xy) + fx5)]
= (2.5)[45 + 70 + 60 + 80 4 50 + 10] = (2.5)(315) = 790.

It follows that
25
W= f(x)dx ~ 790 ft-1b.
0

Suppose that the amount of a physical entity, such as oil, water, elec-
tric power, money supply, bacteria count, or blood flow, is increasing or
decreasing in some manner, and that R(¢) is the rate at which it is chang-
ing at time z. If Q(¢) is the amount of the entity present at time ¢ and
if Q is differentiable, then Q'(¢r) = R(¢). If R(¢) > 0 (or R(t) < 0) in a
time interval [a, b], then the amount that the entity increases (or decreases)
betweent =aandt = b is

b b
o) — 0a) = f O/ (tydi = f R(?) dr.

a
This number may be represented as the area of the region in a zy-plane
bounded by the graphs of R, t =a, t =b,and y = 0.

EXAMPLE®=7 Starting at 9:00 AM., oil is pumped into a storage

tank at a rate of (150t1/ 2 425) gal/hr, for time ¢ (in hours) after 9:00 A.M.
How many gallons will have been pumped into the tank at 1:00 P.M.7

SOLUTION Letting R(?) = 150¢1/2 4+ 25 in the preceding discus-
sion, we obtain the following:

4 4
f (15062 4+ 25) dr = [100t3/2 n 25z]0
0

= 900 gal




- EXERCISES 5.8

I A glass aquarium tank is 3 ft long and has square ends of

width 1 ft. If the tank is filled with water, find the force
exerted by the water on

(a) oneend  (b) one side

If one of the square ends of the tank in Exercise 1 is
divided into two parts by means of a diagonal, find the
force exerted on each part.

The ends of a water trough 6 ft long have the shape of
isosceles triangles with equal sides of length 2 ft and the
third side of length 2+/3 ft at the top of the trough. Find
the force exerted by the water on one end of the t

if the trough is

(a) full of water  (b) half full of water

The ends of a water trough have the shape of the region
bounded by the graphs of y = x% and y = 4, with x and
y measured in feet. If the trough is full of water, find the
force on one end.

A cylindrical oil storage tank 4 ft in diameter and 5 ft
long is lying on its side. If the tank is half full of oil
weighing 60 1b/te%, find the force exerted by the oil on
one end of the tank.

A rectangular gate in a dam is 5 ft long and 3 ft high.
If the gate is vertical, with the top of the gate parallel to
the surface of the water and 6 ft below it, find the force
of the water against the gate.

A plate having the shape of an isosceles trapezoid
with upper base 4 ft long and lower base 8 ft long is
submerged vertically in water such that the bases are
parallel to the surface. If the distances from the surface
of the water to the lower and upper bases are 10 ft and
6 ft, respectively, find the force exerted by the water on
one side of the plate.

A circular plate of radius 2 ft is submerged vertically in
water. If the distance from the surface of the water to the
center of the plate is 6 ft, find the force exerted by the
water on one side of the plate.

CHAPTER 5 Applications of the Definite Integral

We have given only a few illustrations of the use of definite integrals.
The interested reader may find many more in books on the physical and
biological sciences, economics, and business, and even such areas as polit-
ical science and sociology.

9 A rectangular plate 3 ft wide and 6 ft long is submerged

EII

vertically in oil weighing 50 Ib/ft®, with its short side
parallel to, and 2 ft below, the surface.

(a) Find the total force exerted on one side of the plate.

(b) If the plate is divided into two parts by means of a
diagonal, find the force exerted on each part.

A flat, irregularly shaped plate is submerged vertically
in water (see figure). Measurements of its width, taken
at successive depths at intervals of 0.5 ft, are cdmpiled
in the following table.

Waterdepth(f) | 1 15 2 25 3 35 4

Widthof plate(ffy | 0 2 3 55 45 35 0

Estimate the force of the water on one side of the
plate by using (a) the trapezoidal rule, with n = 6, and
(b) Simpson’s rule, with n = 3.

Exercise 10

Refer to (5.28). To estimate cardiac output F (the
number of liters of blood per minute that the heart
pumps through the aorta), a 5-mg dose of the tracer
indocyanine-green is injected into a pulmonary artery,
and dye concentration measurements c(¢) are taken
every minute from a peripheral artery near the aorta. The

Exercises 5.8

results are given in the following table. Use Simpson’s
rule, with n = 6, to estimate the cardiac output.

t(min) | o) (mglL)
0 0
1 0
2 0.15
3 0.48
! 4 0.86
5 0.72
| 6 0.48
| 7 0.26
L8 0.15
‘ 9 0.09
10 0.05
11 0.01
12 0

IE‘ 12 Refer to (5.28). Suppose that 1200 kg of sodium

dichromate is mixed into a river at point A, and sodium
dichromate samples are taken every 30 sec at a point B
downstream. The concentration ¢(¢) at time ¢ is recorded
in the following table. Use the trapezoidal rule, with
n = 12, to estimate the river flow rate F.

0 0
30 2.14
60 3.89
90 5.81

120 8.95
150 7.31
180 6.15
210 4.89
240 2.98
270 1.42
300 0.89
330 0.29
360 0

13 A manufacturer estimates that the time required for

a worker to assemble a certain item depends on
the number of this item the worker has previously

assembled. If the time (in minutes) required to assemble
the kth item is given by f(k) = 20(k + 1)~>* + 3, use
a definite integral to approximate the time, to the nearest
minute, required to assemble

(a) litem  (b) 4 items

(c) 8items  (d) 16 items

A data processor keyboards registration data for
college students from written forms to electronic files.
The number of minutes required to process the kth
registration is estimated to be approximately f(k) =
6(1+ k)_l/ 3, Use a definite integral to estimate the time
required for

(a) one person to keyboard 600 registrations

(b) two people to keyboard 300 registrations each

The number of minutes needed for a person to trace a
path through a certain maze without error is estimated
to be f(k) =51+ k)_l/z, where k is the number of
trials previously completed. Use a definite integral to
approximate the time required to complete 10 trials.

Anne has found that if she is making string necklaces,
it takes her 7(2 + k)_z/ 3 minutes to complete the kth
necklace. Use a definite integral to estimate the time that
she needs to finish 10 necklaces.

Exer. 17-18: Use a definite integral to approximate the
sum, and round the answer to the nearest integer.

17

18

19

100

> k(@ + 7

k=1
200

> Sk(k* + 10)71/3

k=1

The velocity (in miles per hour) of an automobile as
it traveled along a freeway over a 12-min interval is
indicated in the figure. Use the trapezoidal rule to
approximate the distance traveled to the nearest mile.

Exercise 19
A Velocity (mi/hr)

40| ’

20

I

8 10 12 Time
(minutes)




20 The acceleration (in feet per second per second) of an

automobile over a period of 8 sec is indicated in the
figure. Use the trapezoidal rule to approximate the net
change in velocity in this time period.

T Acceleration (ft/sec?)

|

25
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A simple thermocouple, in which heat is transformed
into electrical energy, is shown in the figure. To deter-
mine the total charge Q (in coulombs) transferred to the
copper wire, current readings (in amperes) are recorded
every % sec, and the results are shown in the following
table.

f(sec) 0 05 10 1.5 20 25 30

Chapter 5 Review Exercises

(a) Use the trapezoidal rule to estimate the thickness of
the ozone layer between the altitudes of 6 and 42 km
during both spring and autumn.

(b) Work part (a) using Simpson’s rule.

27 Radon gas can pose a serious health hazard if inhaled.

If V(¢) is the volume of air (in cubic centimeters) in
an adult’s lungs at time ¢ (in minutes), then the rate of
change of V can often be approximated by

29 The rate of growth R (in centimeters per year) of an
average boy who is ¢ years old is shown in the following
table for 10 <t < 15.

t_(yr) | 10 11 12 13 14 15
R (cmlyr) 53 52 49 65 93 70

Use the trapezoidal rule, with n = 5, to approximate the
number of centimeters the boy grows between his tenth

Fom .
25 I@mp) 0 02 06 07 08 05 02 V'(t) = 12,4507 sin(3071). and fifteenth birthdays.
20 | \ o o o Inhaling and exhaling correspond to V'() > 0 and 30 To determine the number gf zos)plan.kton in-a portion of
| 15 ) ) V/(t) < 0, respectively. Suppose an adult lives in a an ocean 80 m deep, marine biologists take samples at
10 Use the fact that I = dQ/ds and the trapezoidal rule, home that has a radioactive energy concentration due successive depths of 10 m, obtaining the following table,
' 5 with n = 6, to estimate the total charge transferred to to radon of 4.1 x 10~12 joule/cm3. where p(x) is the density (in number per cubic meter)

[

12345678  Time
(seconds)

the copper wire during the first 3 sec.

Ammeter

(a) Approximate the volume of air inhaled by the adult
with each breath.

(b) If inhaling more than 0.02 joule of radioactive
energy in one year is considered hazardous, is it safe
for the adult to remain at home?

of zooplankton at a depth of x meters.

Tz 0 10 20 30 40 50 60 70 80
@ 0 10 25 30 20 15 10 5 0

I| 21 The following table was obtained by recording the force m |
S @) (in Newt.ons) ac ting on a particle as it move(.i 6m Copper 28 A stationary exercise bicycle is programmed so that it Use Simpson’s rule, with n = 4, to estimate the total
| along a coordinate line from x =1 to x = 7. Estimate T can be set for different intensity levels L and workout number of zooplankton in a water column (a column of
: the work done using p Tr on \ times 7. It displays the elapsed time ¢ (in minutes), water) having a cross section 1 m square extending from
(a) the trapezoidal rule, withn = 6 Bunsen for 0 <t < T, and the number of calories C(¢) that are the surface to the ocean floor.
(b) Simpson’s rule, withn =3 T flame being burned per minute at time ¢, where Exer. 31-34: Find the consumers’ surplus for the given
- .t.:{ L 1 demand function f(x) and the given price level p,..
& i
- p L. C#)=543L—-6|t—=T|.
x 1 2 3 4 5 6 7 ‘ . Iee and ® T 2 ‘ 31 f(x)=20—%x; pc=4
fx | 20 23 25 22 26 30 28 Suppose that an individual exercises for 16 min, with 32 f(x) =30-3x p =10
L=3for0<t<8and with L =2 for 8§ <t < 16. 3
= = =, - 3 =400 — 3 x; = 100
Find the total number of calories burned during the 3 f) Y Pe
22 A bicyclist pedals directly up a hill, recording the 26 Suppose that p(x) is the density (in centimeters per workout. 34 f(x) =60~ %x; p. =40
. - ’ kilometer) of ozone in the atmosphere at a height of
| velocity v(z) (in feet per second) at the end of every 2 Kilomet bove th A F le. if p(6) =
sec. Referring to the results recorded in the following X Xtlometers above the ground. ror exampie, 1t £ ©) =
! table. use the trapezoidal rule to approximate the 0.0052, then at a height of 6 km there is effectively a
dis tar,me traveled P PP thickness of 0.0052 cm of ozone for each kilometer of
' atmosphere. If p is a continuous function, the thickness ‘
| of the ozone layer between heights a and & can be CHAPTER 5 REVIEW EXERCISES
| P 0 2 4 6 8 10 found by evaluating [ ab p(x) dx. Values for p(x) found. it ] ¥ 2 WL §l
' ! experimentally are shown in the following table.
| Wy | 242 16 10 2 0 ) ,
| : ; Exer. 1-2: Sketch the region bounded by the graphs of the 5 Find the area of the region between the graphs of the
i equations, and find the area by integrating with respect i = 1 d y =sinx, fi =na/3t
| x(m) | p()(Gpring | p(x) (autumn) o (o) x and (b) y y ieerating P cquations y = casgx #C y = S, HOM X /3 1o
| ; =T7.
23 A motorboat uses gasoline at the rate of 1v/9 — 1% gal/hr. 0 0.0034 0.0038 | 2 _ .2 . — T T oosx
If the motor is started at + = 0, how much gasoline is 6 | 0.0052 0.0043 ly=—x% y=x-8 6 The region bgunded by the graph of y = ‘/.‘1 Tcos2x
din 2 hr? 12 0.0124 0.0076 2 4y x4+2y=1 and the x-axis, from x =0 to x = /2, is revolved
used.1n ) 18 | 0.0132 0.0104 Y= ’ Y= about the x-axis. Find the volume of the resulting solid.
o e+ D000 o ek e | e | o e oy A
. ) . . ’ ) : ) the equations, and find the volume of the solid generate
where ¢ is the number of years after 1985. Assuming that 36 0.0034 0.0034 3 x = y2 x+y=1 by re?zolving R about the indicated axis.
this rate continues and that the population was 50,000 in 42 0.0017 0.0016 ' ’

4y=—x y=x, Tx+3y=10 7y=+4x+1, y=0, x=0, x=2; x-axis

1985, estimate the population in 1994.




8 y=x4, y =0, x =1; y-axis

9 y:x3+1, x=0, y=2; y-axis

10 y = x, y = J/x; x-axis

Exer. 11-12: The region bounded by the x-axis and
the graph of the given equation, from x = 0 to x = b,
is revolved about the y-axis. Find the volume of the
resulting solid. -

Il y=cosx? b= Vr/2

12 y=xsinx3; =1

I3 Find the volume of the solid generated by revolving the
region bounded by the graphs of y = 4x? and 4x + y =
8 about

(a) the x-axis (byx =1 (c)y=16

14 Find the volume of the solid generated by revolving the
region bounded by the graphs of y = x>, x =2, and
y = 0 about
(a) the x-axis (b) the y-axis (c)x=2
(d)x=3 (e)y=28 ) y=-1

I5 Find the arc length of the graph of (x + 3)? = 8(y — 1)3
from A(-2, 3)to B, 3).

16 A solid has for its base the region in the xy-plane
bounded by the graphs of y* = 4x and x = 4. Find the
volume of the solid if every cross section by a plane
perpendicular to the x-axis is an isosceles right triangle
with one of its equal sides on the base of the solid.

17 An above-ground swimming pool has the shape of a
right circular cylinder of diameter 12 ft and height 5 ft.
If the depth of the water in the pool is 4 ft, find the work
required to empty the pool by pumping the water out
over the top.

18 As a bucket is raised a distance of 30 ft from the bottom
of a well, water leaks out at a uniform rate. Find the
work done if the bucket originally contains 24 1b of
water and one-third leaks out. Assume that the weight
of the empty bucket is 4 Ib, and disregard the weight of
the rope.

19 A square plate of side 4 ft is submerged vertically in
water such that one of the diagonals is parallel to the
surface. If the distance from the surface of the water to
the center of the plate is 6 ft, find the force exerted by
the water on one side of the plate.

20 Use differentials to approximate the arc length of
the graph of y = 2sin %x between the points with x-
coordinates 7 and 917/90.

Exer. 21-22: Sketch the region bounded by the graphs of
the equations, and find m, M, My, and the centroid.

2Iy:x3+1, x+y=-1, x=1

CHAPTER 5  Applications of the Definite Integral

22y:x2+1, y =X, x=-1, x=2

23 The graph of the equation 12y = 4x> + (3/x) from
A(l, %) to B(2, S—Z) is revolved about the x-axis. Find
the area of the resulting surface.

24 The shape of a reflector in a searchlight is obtained by
revolving a parabola about its axis. If, as shown in the
figure, the reflector is 4 ft across at the opening and 1 ft
deep, find its surface area.

Exercise 24

25 The velocity v(z) of a rocket that is traveling directly
upward is given in the following table. Use the
trapezoidal rule to approximate the distance that the
rocket travels fromt = Otot = 5.

| t(sec) 0 1 2 3 4 5

v(t) (ft/sec) 106 120 150 190 240 300

26 An electrician suspects that a meter showing the total
consumption Q in kilowatt hours (kWh) of electricity
is not functioning properly. To check the accuracy, the
electrician measures the consumption rate R directly
every 10 min, obtaining the results in the following
table.

t (min) | 0 10 20 30

| R (kWh/min) i 131 143 145 139

t (min) [ 40 50 60
R (kWh/min) 136 147 1.29

(a) Use Simpson’s rule to estimate the total consump-
tion during this 1-hr period.
(b) If the meter read 48,792 kWh at the beginning of the

experiment and 48,953 kWh at the end, what should
the electrician conclude?

Chapter 5 Review Exercises

27 Interpret fol 27 x* dx in the following ways:
(a) as the area of a region in the xy-plane

(b) as the volume of a solid obtained by revolving a
region in the xy-plane about
(i) the x-axis
(i) the y-axis
(c) as the work done by a force
28 Let R be the semicircular region in the xy-plane with
endpoints of its diameter at (4, 0) and (10, 0). Use

the theorem of Pappus to find the volume of the solid
obtained by revolving R about the y-axis.

E Exer. 29-32: Plot the graphs of the equations. (a) Ap-

proximate the points of intersection. (b) Approximate the
area bounded by the graphs of the equations.

29 y=+1+1x%; y = x*

30 y=5e % ; y =In(x +4)
31 y=x>—4x> —x+3; y=+20x

y = sin{cos x);
7

x:—T, x='4_

32 y = sin(sinx);
3

- EXTENDED PROBLEMS AND GROUP PROJECTS .

| Explore an alternative approach to determining the
length of the graph of a function between points A and
B using the notation that we developed in Section 5.5. In
particular, 0, is the point with coordinates (x;, f (x)).
Now let P, be the point (x, f(x; ), and let

n

Tp =) [d(Q,_;, B) +d(P, Q.

k=1
(a) Show that P, lies on a vertical line through @, _,
and a horizontal line through Q, (see figure).

(b) Discuss why T, appears to be a good approximation
for the length of the graph between A and B. In
particular, show that as || P|| decreases, the distance
between each P, and the curve approaches zero.

(c) Discuss why T}, is not a good approximation for the
length of the graph.

Problem |
LY

IZ‘ 2 The model for a football using the approximate shape
of the solid generated by revolving the arc of a circle
x2-|-(y—|-k)2 =r2, where y >0 and 0 < k < r, does
not quite match measurable dimensions. For a full-
sized football, the distance from endpoint to endpoint
along the axis of revolution is about 11 in. and the
arc on the surface from endpoint to endpoint along
a seam is about 14 in. long. Around the widest part,
the circumference measures about 22 in. Explore using
the shape of the solid generated by revolving the arc
of an ellipse a’x®> +(y +k)? =r?, where y > 0 and
0 < k < r. Approximate

(a) the volume
(b) the surface area for this new model for a football

3 Let f be a smooth function with f(x) > 0 on [a, b].
Partition the interval [a, b] into n subintervals of equal
width, and inscribe a rectangle under the graph of f over
each subinterval. Then revolve each rectangle about the
x-axis. Determine the surface area of the resulting solid,
and let R, be the sum of these surface areas. Let S
be the area of the surface generated by revolving the
graph of f about the x-axis. In what sense is R, a good
approximation to §? Will the limit of R, as n — oo be
equal to §? Will we do better by taking circumscribed
rather than inscribed rectangles?




St

K

. '.E'_"'i__-_

~ | N 1948, THE FINNISH-BORN AMERICAN ARCHITECT Eero
Saarinen (1910—1961) submitted the winning design for a
new national park, the Thomas Jefferson Westward Expansion
Memorial in St. Louis. The center of his design was a great gleaming
stainless-steel arch. Saarinen wanted “to create a monument which
would have lasting significance and would be a landmark of our time. An
absolutely simple shape . . .seemed to be the basis of the great memo-
rials that have kept their significance and dignity over time” Saarinen
designed his arch to be the purest expression of the forces within. This
arch .. .is a catenary curve—the curve of a hanging chain—a curve in
which the forces of thrust are continuously kept within the center of
the legs of the arch. The mathematical precision seemed to enhance
the timelessness of the form, but at the same time its dynamic quality
seemed to link it to our own time.

To understand the mathematics of Saarinen’s Gateway Arch to the
West, we need to examine the natural exponential function. This func-
tion and its inverse, the natural logarithm, are perhaps the most im-
portant functions in applications of calculus to the natural world. They
are examples of transcendental functions, the main topic of this chapter.
We begin in Section 6.1 with a brief review of inverse functions and
develop a formula for the derivative of an inverse function that will be
useful throughout the entire chapter. Next, we employ a definite integral
to introduce in Section 6.2 the natural logarithm function, which is then
used to define in Section 6.3 the natural exponential functibn as the in-
verse of the natural logarithm. The natural logarithmic and exponential
functions occur in many indefinite integral problems, a number of which
are studied in Section 6.4. There are many other pairs of exponential
and logarithmic functions; we analyze the general case in Section 6.5.
After developing the theory of logarithms and exponentials, we explore
in Section 6.6 a number of applications that involve these functions as
solutions to first-order separable differential equations, an important
modeling tool.

In Sections 6.7 and 6.8, we introduce other important transcendental
functions: the inverse trigonometric functions and the hyperbolic func-
tions and their inverses. We derive the equation for the catenary curve
as an application of the hyperbolic functions. The chapter concludes
with PHopital’s rule, which provides a direct way to evaluate limits of
quotients in which both the numerator and the denominator approach
0 or both approach co or —oco. Such limits often occur when dealing
with transcendental functions.

Transcendental functions frequently
occur in the descriptions of curves that
possess both aesthetic appeal and
important structural properties of
stability.

Transcendental
Functions
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