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DUCTION

N DESIGNING A DAM and projecting its cost, engineers must

determine how much concrete is needed for construction,

This amount depends on the volume of the dam. The volume,
in turn, is a function of the shape of the dam and its thickness at various
levels. The dam must be thick enough to withstand the force of the
enormous amount of water held in the dam’s reservoir. To compute
the force of the water, the required thickness at each height, and the
resulting volume of concrete, engineers set up and evaluate numerous
definite integrals.

Hoover Dam, for example, which supplies much electrical power
and water for a large region of the American Southwest, is one of the
world’s largest concrete dams. The dam is 726 ft high, the equivalent of
a 50-story building, and 1244 ft wide, and its reservoir, Lake Mead, can
store approximately 1.3 trillion ft© of water. To withstand the resulting
pressure, the dam’s base is 660 ft thick, and the total amount of concrete
is over |18 million ft°, enough to pave a two-lane highway from San
Francisco to New York.

In this chapter, we discuss some of the many uses for the definite
integral. We begin by reconsidering in Section 5.1 the application that
motivated the definition of this mathematical concept: determining the
area of a region in the xy-plane. Then, in turn, we use definite integrals
to find volumes (Sections 5.2-5.4), lengths of graphs and surface areas
of solids (Section 5.5), work done by a variable force (Section 5.6),
and moments and the center of mass (the balance point) of a flat plate
(Section 5.7). Definite integrals are applicable because each of these
quantities can be expressed as a limit of sums.

Because of the multitude of other quantities that can be similarly
expressed, the definite integral is useful in a wide variety of applications,
some of which are considered in Section 5.8: finding the force exerted by
a liquid against a wall (water on a dam, gasoline on one end of a storage
tank, oil on the walls of an ocean tanker), measuring cardiac output and
blood flow in arteries, estimating the future wealth of a corporation,
calculating the thickness of the ozone layer, determining the amount of
radon gas in a home, and finding the number of calories burned during
a workout on an exercise bicycle.

As you proceed through this chapter and whenever you encounter
definite integrals in applications, keep the following words in mind: limit
of sums, limit of sums, limit of sums.

CHAPTER - 5

1Y The design of large engineering
projects such as a dam requires the
calculation of many physical quantities
that are most accurately described by
definite integrals.

Applications of the
Definite Integral
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Figure 5.1
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y = f(x)
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CHAPTER 5 Applications of the Definite Integral

AREA

If a function f is continuous and f(x) > 0 on [a, b], then, by Theorem
(4.19), the area of the region under the graph of f from a to b is given by
the definite integral [ ab S (x) dx. In this section, we consider the region that
lies between the graphs of two functions.

If f and g are continuous and f(x) > g(x) > 0 for every x in [a, b],
then the area A of the region R bounded by the graphs of f, g, x = a, and
x = b (see Figure 5.1) can be found by subtracting the area of the region
under the graph of g (the lower boundary of R) from the area of the
region under the graph of f (the upper boundary of R), as follows:

b b
A=f f(x)dx—f gx)dx

b
=f [f(x) — g(x)]dx.

This formula for A is also true if f or g is negative for some x in [a, b]. To
verify this fact, choose a negative number d that is less than the minimum
value of g on [a, b], as illustrated in Figure 5.2(a). Next, consider the
functions f; and g, defined as follows:

&) = f(x) —d = f(x)+|d|
81(x) =g(x) —d = g(x) + |d|

The graphs of f; and g, can be obtained by vertically shifting the graphs
of f and g a distance |d|. If A is the area of the region in Figure 5.2(b),

Figure 5.2
@ (b)
AY 1}}’
y = fH)
y = flx |
|
|
y = g1(x)
|
| > | | -
a b X a b X
y = gx)
d __________________

5.1 Area
Theorem 5.1
Figure 5.3
AY
y = fx)
y = g(x)
| | : o
:  w box

then

b
a=[ 10—
b
= [ -~ e — d1ax

b
- f LF () — g(x)] dx.

We may summarize our discussion as follows.

If £ and g are continuous and f(x) > g(x) for every x in [a, b], then
the area A of the region bounded by the graphs of f, g, x = a, and
x=bis

b
A= f Lf () — glx)]dx.

We may interpret the formula for A in Theorem (5.1) as a 1irr}it of
sums. If we let A(x) = f(x) — g(x) and if w is in [a, b], then h(w) is the
vertical distance between the graphs of f and g for x = w (see Figure
5.3). As in our discussion of Riemann sums in Chapter 4, let P denote
a partition of [a, b] determined by a = xg, Xy, .. Xy = b. For §ach k,
let Ax, = x;, — X _q» and let w, be any number in the kth subinterval

[x¢_y» X of P. By the definition of A,
h(wk)Axk = [f(wk) - g(wk)]Axk,

which is the area of the rectangle of length f(w,) — g(wy) and width Ax,
shown in Figure 5.4.

Figure 5.4

Ay Ax,
|
|

—

fow) — 8(wi)

=Y
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{ i CHAPTER 5  Applications of the Definite Integral 5.1 Area
[ ;‘ The Riemann sum Figure 5.6 R, regions
8 194
i > hw)Ax, = 3 [f (wy) — g(w)Ax, py
| k k Tk y = f(x) y = fx) "
| I
; is the sum of the areas of the rectangles in Figure 5.4 and is therefore an
' approximation to the area of the region between the graphs of f and g 1
'I from a to b. By the definition of the definite integral, ll |
|
i b \| _ l | y g(x) !
' § lim Z_'h(wk)Axk = f h(x)dx. LY g i ‘l .
' IPI—0 4 . l | - 3 -
y a b X a
i Since A(x) = f(x) — g(x), we obtain the following corollary of Theorem
(5.1).
| Y LY AY
| _
| 1 o y = f (x)
[ III fl Corollary 5.2 - y =)
il ¢ A= fim 571700 - gulax, = [ 17G) - s :
| ﬁPxi—»o},;[f( o~ gWlAx = | & | }
uihl 3 | ! _ !
: l ; Iy =8x | :y 8(x) !
I ! !
- | L >
Il B Figure 5.5 o . o 1 lb > . b *
| § Ly We may use the following intuitive method for remembering this limit 4
| ‘ “ F of sums formula (see Figure 5.5):
” I { I. Use dx for the width Ax, of a typical vertical rectangle.
L] - - ’ :
HI | | [ | 2 Use fx) —g(x) forbthe length /(w,) 8(1,) of the rectangle. The following guidelines may be helpful when working problems.
‘ |£‘ 3. Regard the symbol | , s an operator that takes a limit of sums of the ’
| I‘ i rectangular areas [ f (x) — g(x)] dx.
| | % This method allows us to interpret the area formula in Theorem (5.1) Guidelines for Finding .the As" ;a | Sketch the region, labeling the upper boundary y = f (x) and the
j ﬁ as follows: of an R, Region 3. lower boundary y = g(x). Find the §mallest v.alue x = g and the
|l | i b Jargest value x = b for points (x, y) in the region.
:l ﬁ 4= fa LF ()~ e dr 2 Sketch a typical vertical rectanglej and‘labcf,l its width dx.
|'_ H 3 Express the area of the rectangle in guideline (2) as
i ;“ limit of lengtth olf a wid:h og a . . [f(x) — g(x)1dx.
d sums rectangie rectangle igure 5. . Lt
! , AY 4 Apply the limit of sums operator f : to the expression in guideline
If i When using this technique, we visualize summing areas of vertical rectan- (3) and evaluate the integral.
- gles by moving through the region from left to right. Later in this section,
| il we consider different types of regions, finding areas by using horizontal > pee— 1,1)
11 1 rectangles and integrating with respect to y. I ’ . ion bounded by the graphs of
il | Let us call a region an R, region (for integration with respect to x) y = Vx | SO EXAM P LE=| szd the area of the region boun yHeE
| \ if it lies between the graphs of two equations y = f(x) and y = g(x), $ 5 the equations y = x“ and y = Vx. u
' with f and g continuous, and f(x) > g(x) for every x in [a, b), where Vx = x |
: a and b are the smallest and largest x-coordinates, respectively, of the | / |}V i SOLUTION Following guidelines (1)—(3), we sketch and label 'the
I\ 35? points (x, ) in the region. The regions in Figures 5.1-5.5 are R, regions. y = region and show a typical vertical rectangle (see Figure 5.7). The_pomts
| Several others are sketched in Figure 5.6 on t.he follqwing page. Note that 7 . - (0,0) and (1, 1) at which the graphs intersect can be found by solving the
| ; the graphs of y = f(x) and y = g(x) may intersect one or more times:; x x . ’uations y= x2 and y = +/x simultaneously. Referring to the figure, we
' however, f(x) > g(x) throughout the interval. q
I g
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Figure 5.8
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CHAPTER 5 Applications of the Definite Integral

obtain the following facts:

upper boundary: y = /x
lower boundary: y = x?

width of rectangle: dx

VE =2

(VX = x?) dx

Next, we follow guideline (4) witha = O and b = 1, remembering that

. 1 .
applying fo to the expression (/x — x%) dx represents taking a limit of
sums of areas of vertical rectangles. We thus obtain

1 1
A=L(I—x2)dx=f (V% — x2) dx
0

1
:ﬁ/z_ﬁ 2011
3 31 3 3 3

2 0

length of rectangle:
area of rectangle:

EXAMPLE®=2 Find the area of the regi
gion bounded by th h
y+x?=6andy+2x —3=0. ’ egraPSOf

SOLUTIO N‘ The.region and a typical rectangle are sketched in Fig-
ure 5.8. The points of intersection (—1, 5) and (3, —3) of the two graphs
may b'e found by solving the two given equations simultaneously. To apply
guideline (1), we must label the upper and lower boundaries y = f(x) and
y= g(x), respectively, and hence we solve each of the given equations for
y in terms of x, as shown in Figure 5.8. Here we obtain

upper boundary: y =6 — x?
lower boundary: y =3 — 2x
width of rectangle: dx
(6 —x%) — (3—2x)
[(6 —x*) — (3 — 2x)]dx
Next, we use guideline (4), witha = —1 and b = 3 i 3

e (4), = = 3, regarding [~ as an

operator that takes a limit of sums of areas of rectangles. Thus s

length of rectangle:

area of rectangle:

. 3 3
A=j1[(6—x2)—(3—2x)]dx=f (3 —x®+2x)dx
- -1

%3 ’
- [3?‘“?‘”52:' 1

=0-F+9-[3-(-H+1=2

b}hc?dfollowing example illustrates that it is sometimes necessary to
su .o .

ivide a region into several R regions and then use more than one
definite integral to find the area.

r

5.1

Area

Figure 5.9

=Y

Figure 5.10

Figure 5.11
Ay
x = f(y)
d -
e f(w)——
W ——— (W), W)
c4

8 |

EXAMPLE®3 Find the area of the region R bounded by the graphs
ofy—x=6,y—x3 =0,and 2y + x = 0.

SOLUTION The graphs and the region are sketched in Figure 5.9.
Each equation has been solved for y in terms of x, and the boundaries
have been labeled as in guideline (1). Typical vertical rectangles are shown
extending from the lower boundary to the upper boundary of R. Since
the lower boundary consists of portions of two different graphs, the area
cannot be found by using only one definite integral. However, if Ris
divided into two R regions, R, and R,, as shown in Figure 5.10, then we
can determine the area of each and add them together. Let us arrange our

work as follows.

Region R, Region R,
upper boundary: y=x+6 y=x+6
lower boundary: y = —%x y = %3

width of rectangle: dx dx
length of rectangle: (x +6) — —%x) (x +6) — x3

area of rectangle: [(x +6) — —%x)] dx [(x +6) — x)dx

Applying guideline (4), we find the areas A, and A, of Ry and R,:

0
Alzf [(x +6) — (—3x)]dx
—4

0 /3 3 [ x? ’
e —x+6>dx= | =) +6x
J—4<2 l:2<2> —4
=0-(12-24) =12
2
Azzf[(x+6)—x3]dx
0
| 2
B x2+6x x4
12 41,
=Q2+12-4)-0=10
The area A of the entire region R is
A=A +A,=12+10=22.

We have now evaluated many integrals similar to those in Example
3. For this reason, we sometimes merely sef up an integral—that is, we
express it in the proper form but do not find its numerical value.

If we consider an equation of the form x = f(y), where f is contin-
wous for ¢ < y < d, then we reverse the roles of x and y in the previous
discussion, treating y as the independent variable and x as the dependent
variable. A typical graph of x = f(y) is sketched in Figure 5.11. Note
that if a value w is assigned to y, then f(w) is an x-coordinate of the
corresponding point on the graph.
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CHAPTER 5 Applications of the Definite Integral 5.1 Area m

FO) - is the hori i X
0 Figureg gyiz e horizontal distance between these boundaries, as shown

11
|
] Figure 5.12 ) . . . .
| I ! "] oy of t}?en ggllll‘eglon 1s a region that lies between the graphs of two equations
| X = — H . . " . v
il E x = g(y) Fo) > g0 f f(y) and x = g(y), with f and g continuous, and with 3 Express the area of the rectangle in guideline (2) as
[ I ‘ Carset 8(y) for every y in [c, d], where ¢ and d are the smallest and
I i .arfci,!lest y-coo.rdln'ates, respectively, of points in the region. One such region [f(y) —g(nidy.
‘ ] is i ust'rated in Figure 5.12. We call the graph of f the right boundary of A d o W Tlrr
(| § the region and the graph of g the left boundary. For an th yb 4 Apply e Ao On ot eTesen R A
. y y, the number (3) and evaluate the integral.

» f) We can use limits of .
‘ ‘ | by selecting points on thseu;n Z;(i)sﬁvflli(i}:he 2rea :14 of an R, region. We begin In guideline (4), we visualize summing areas of horizontal rectangles
i o or . y-coordinates ¢ = y,, y,,...,y, = : . > . .
f . d, obtaining a partition of the interval [c, 4] into subinilgrv)z;ll o v?z)indth by moving from the lowest point of the region to the highest point.
| L x Ay, =N Ve For each k, we choose a number w, in [y v, 1 and
l { consider hf)rlzpntal rectangles that have areas [f(w,) — g(lf,_)lj AI;) as Figure 5.14 EXAMPLE®=4 Find the area of the region bounded by the graphs of
| | ‘ g illustrated in Figure 5.13. This procedure leads to g b AY the equations 2y2 =x+4and y2 = x.
| ,
. d
‘ |: il | A= ”})1”11_1)02 Lf (wy) — g(w)]Ay, = f [F(¥) — g(»)]dy. 1 SOLUTION The region is sketched in Figures 5.14 and 5.15. Figure
’I || 3 k ¢ 4 (4,2) 5.14 illustrates the use of vertical rectangles (integration with respect to
The last equality follows from the definiti _ 22 =x+4 + ’ x), and Figure 5.15 illustrates the use of horizontal rectangles (integration
‘I % ition of the definite integral. T 2 = x with respect to y). Referring to Figure 5.14, we see that several integrations
N —t—1 v\'l_ui - with respect to x are required to find the area. However, for Figure 5.15,
i Figure 5.13 (-4, 0 H ~ﬁ:==\‘ we need only one integration with respect to y. Thus we apply Guidelines
B iy dx—> b T @, —2) (5.4), solving each equation for x in terms of y. Referring to Figure 5.15,
’ | 1 ’ we obtain the following:
| d = Yop————-— / \ . . 2
| N right boundary: x =
f E il Ay, left boundary: x = 2y? —4
| y Yep———————— I . & width of rectangle: dy
‘ il
I ' § ykfl ________ length of rectangle: N 2y* -4
|' 3 \{ /{/ —_$ Figure 5.15 area of rectangle: [y — (2y? — 4)ldy
‘Il | : (8(we), wp) (Fwa), we) LY We could now use guidzeline (4) with ¢ = —2 and d =2, finding A by
i ¥y, applying the operator [, to [y2 — (2y* — 4)1dy. Another method is to
I i C=Yob—mm e 1 use the symmetry of the region with respect to the x-axis and find A by
| H x = f(y) dy i 4.2 doubling the area of the part that lies above the x-axis. Thus,
| 'i‘!‘ * =80 i 1 “2) )
i i ———z =2 2 _ 2 2
it : e 7771 A= o2t -aia
' I z (=4, MK ’ 2 2
‘ I | Usi - S A R =2L(4—y)dy
| 5 sing notation similar to that for R_ regions, we r i o
(111 1. . . , epresent the width T 2
| | Ay, of a horizontal rectangle by dy and the length fw,) — g(w,) of the y3 8 32
| ' ; rectangle by f(y) — g(y) in the following guidelines. g =24y - 3 =2(8- 3 - 3
0
A '\I ! Guidelines for Finding the Area
i of an R Regi ; ]
| , Region 5.4 I Sketch the region, labeling the ri -
I | left boundary x = g(y). I%ind tgfh:nlzgféﬁarylx = f(y) and the In following Guidelines (5.3) or (5.4) for finding the area of a region,
i largest value y = d for points (x, y) in the r R we may need to use a graphing utility and numerical methods to obtain an
i 2 Sketch a typical hori i ’ eglf)n' accurate sketch of the region, find the smallest and largest x- or y-values
| ] zontal rectangle and label its width dy. in the region, and approximate the area. Our next example illustrates such
a case.
I |
!
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—-38<x<38, -25 <y<?2
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Figure 5.17

)
(a, yab(--‘)((b’y”)
; P

o
L/

/N
/)

/

Yy=x+06x-2 /

¥ = cos (0.3x%)

(d) W§ compute numerical ap

t(g) using Simpson’s rule for
¢ area. For example, when n

L s =64, A

128, A ~ 6.93542681577. Thus, we hav

CHAPTER 5 Applications of the Definite Integral

EXAMPLE®5 For the region of the

y =cos(0.3x%) and y = x 4 0.6x — 2, plane bounded by the curves

(2) use a graphing utility to sketch the curves and determine the regj
egion

g

SOLUTION

(a) After examinin i
: g several different viewing wi i
of the desired area shown in Figure 5.16 ¥ vindows. we obain the view

(b) By traci i
Seiﬁo}; ;?)?;r:;ga(;n(glf gr?)p?), Zveii (El;tzmoﬁrst approximations for the inter-
rection -9,0.5) and (1.4, 0.8). At the int i i
ounding curves have equal y-values. Thus, cos(0 3x2€)rsiciclg I—lkpg lgts, t};e
. = b6x —

SO cos(0.3x2) — [+ 0.6x
Ox —2]1=0. i i
ply Newton’s method to the func]tion ks wolving routine or ap-

S () = cos(0.3x%) — x2 — 0.6x + 2

points of intersection, ¥, ~ 0.468996233702 and
! Y
i(IjzefrrsleFl.gure 5.17, we have labeled the boundin ;
ct120n and shaded the region. We s h ¥
€0s(0.3x7) is above the g ' yPii

( raph of y = x? 4 0.6x —
The integral representing the area of the r_(i:gi(.)flxis

~ 0.828169200187.

curves and points of
hat the graph of y=
2 on the interval [a, b].

b
A= f [c08(0.3x%) — (x2 + 0.6x — 2)] dx

~

f 1.40826496779

2 2
oot [c0s(0.3x%) — x? — 0.6x + 2] dx.

proximations for the definite j i

: ntegral in
several different values of # to asproxinl;);t:
~ 6.93542681443 and when 5 —
e confidence in the approximation

that, to seven decimal places, A ~ 6.9354268

economists call capital formation
ecregsmg a given holding of capital over

s

. _ —that is, Fhe process of increasing or
time. If K(z) is the amount

5.1

Area

relationship between capital formation and net investment flow in two
ways: in a derivative formulation,

dK — 1)
dar

and in an integral form,

Note that with I(¢) > 0 fora < t < b, the amount of capital accumulation
in this time interval is f: 1(t) dt, the area under the graph of the function

I().

If we know the amount of capital K (¢) accumulated at time £, we may
differentiate with respect to ¢ to find the investment flow. Alternatively, if
we are given the investment flow /(), we may integrate with respect to
¢ to find the amount of capital—that is, K (f) represents the total change
in capital or the capital accumulation. As a derivative, the investment flow
I(t) is a rate of change of capital. That is, the value of I(¢) at a par-
ticular time ¢ is the rate at which investment is flowing in or out of the
given holding of capital, measured in units of capital per unit of time. For
example, if I(t) =4 — 2 4 2¢, where capital is measured in millions of
dollars and time is measured in years, at time ¢ = 1 year, we have I(1) =
4 — 1+ 2 = 5 million dollars per year. Hence, capital is increasing at an
annual rate of $5 million. At =4, 1(4) = 4 — 16+ 8 = —4, so at time
t = 4 years, capital is decreasing at an annual rate of $4 million.

EXAMPLE® 6 If the net investment flow isI(t)=4—- 2 + 2¢ mil-
lions of dollars per time unit, find the capital formation during the time

interval [1, 2].

SOLUTION The capital formation is given by

2 2
J I(t)dt:j (4 — 1>+ 2t)dt.

1 1
We can evaluate the definite integral by finding an antiderivative for /(?):

2 £ ’
1

1

8 1 2
_ % 4_4__ 1 = 4—
[g 3+] [ 3+] 3

Thus, the capital accumulation is about $4.67 million.

EXAMPLE®=7 Consider two different net investment flows given by
L(1)=4— t? + 2t and L) =4—1 (both in millions of dollars per year
at year t).

(a) Find the time interval during which the first investment flow I, is at
least as great as the second investment flow I,.




CHAPTER 5 Applications of the Definite Integral

(b) For the time interval found in part (a), determine how much more

capital accumulates under the first investment flow than under the second
investment flow.

SOLUTION

B

Exercises 5.1

EXERCISES 5.1

Exer. 1-4: Set up an integral that can be used to find the 4 Ay
Figure 5.18 (a) We need to find the interval [a, b] during which 1,(2) = I(t). We area of the shaded region. T (4, 8) 4 (10, 8) /
Vi first sketch the graphs of the two functions (Figure 5.18) and then find | - 8+
‘ L the points of intersection by solving the equations y =4 — > 4 2¢ and Y T+
y =4 — t simultaneously: 1 ¥-y=2
| | 2 - T
| 4—1"+2r=4—1¢ ] i
| 3t —12=0 . A
‘l g gy t3—1)=0 g oy G AU -D
! T i Y
i 1 t=0 and r=3 i /__
i x =y
1 Thus, we see from the graph that I,(r) > I,(z) on the interval [0, 3]. If )/: B
| L + IL,=4—1¢ t = 0 corresponds to the present time, then the investment flow 1, will RO & Exer. 5-22: Sketch the region bounded by the graphs of
T exceed the investment flow 1, for the next three years. [ x-y= T the equations and find its area.
§ | (b) The difference in capital accumulation between the two investment 5 y=x% y =4x
i flows is the area of the region between the two curves I, and I, over the ) +x2=3
3 interval [0, 3]. That is, 6x+y=3; ) -
| i f[Il(t)—Iz(t)]dtzf[4—t2+2t—(4—t)]dt 1 8 y=4—x% y=—4
i 0 0
i 2. -
- 3 \ x=1 9 y=1/x% y=—x5 x=1
I :f[3t—t2]dt N ’
‘ o e 10 y=x% y=x
32 AT 121w 9 + y = Vs "y =-x x-y=4 y=-Ly
| =| — — — =|—=———=]0—-0 = —, T — 2 = —2; =3
|§ 2 3 [2 3] [0-0] 2 L 12 x =y y—x=2 y=-2y
§: 0 ‘ = R 2 : Z4x=2
! . . ——— I N X 13 y*=4+x; y tx
31 ‘ Thus, the first investment flow will generate $4.5 million more in accumu- T x+y=6 2 v =2
g lated capital than the second investment flow during the next three years. 1 14 x=y5 =
T 15 x =4y —y"; x=0
| 2
| S 16 x = y*; x=y
| Throughout this section, we have assumed that the graphs of the func- 3. -0
tions (or equations) do not cross one another in the interval under discus- 17 y=x"-% Y
Figure 5.19 sion. If the graphs of f and g cross at one point P(c,d), witha < ¢ < b, 3 {“ y 18 y=x"— x* - 6x; =0
§, Ay and we wish to find the area.bom'lded by the graphs fromx =atox =b, / 19 x=y>+2y>—3y; x=0
i then the methods developed in this section may still be used; however, wo + (1, 1) 3 -0
B | y = g(x) integrations are required, one corresponding to the interval [a, ¢] and the , T 20 x =9y =y =
H % y = fx) ot}(lier Eo)[c, b;,( a)s is i;lus;;atTeﬁ in Figll;r'e 5..19, V;/)ith fx) > g(x) on|a,c] x___—_3_y__+__4__—:_ x =y 21 y= x\/4_—_x7; y=0
b and g(x) = f(x) on [c, b]. The area A is given by ‘ Ly —
i | b 11‘__:._1,:_1—‘—:2“‘ = 22 y=xva -9, y=0 x—5b th
¢ + . Fi f the region between the
» A=A +A,= —g)ld — F()]dx. T Exer. 23-24: Find the area o _
; ,| | 1T 4 L [f(x) = g()]dx +fc [g(x) = f(x)]dx (-8, -2) 1 graphs of the two equations from x = OQtox=m.
Al 1
[ . . = si : =1 S3Xx
: 3 ; ’ If the graphs cross several times, then several integrals may be necessary. 23 y =sindx; Y o083
:' i . cf p - Problems in which graphs cross one or more times appear in Exercises 24 y=4+cos2x; y=13sin 1x
31-36.
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Exer. 25-26: Set up sums of integrals that can be used
to find the area of the shaded region by integrating with
respect to (a) x and (b) y.

25 LY
| y = 3x
L N3 Ay =X
HiM (272)
— —+—1 } o
X
il x+y=4
26 AY
2x +y = =2
(_1»%
———t e
Pd x
-y =-1 ] Tx —y =17

Exer. 27-30: Set up sums of integrals that can be used to
find the area of the region bounded by the graphs of the
equations by integrating with respect to (a) x and (b) y.

27 y = /x; y=—x; x=1, x=4
28 y=1-x% y=x—1

29 y=x+3; x=-y*+3

30 x=y% x=2y"-4

Exer. 31-36: Find the area of the region between the
graphs of f and g if x is restricted to the given interval.

31 f(x) =6—3x% gx)=3x; [0, 2]
32 f(x) =x>—4; gx)=x+2; [1,4]
33 f)=x>—4x+2; gx)=2; [—1, 3]
34 f(x) =x% gy =x%  [-1,2]
35 f(x)=sinx; g(x) =cosx; [0, 2m]
36 f(x) = sinx; g(x) = 4; [0, 7/2]

CHAPTER 5 Applications of the Definite Integral

Exer. 37-38: Let R be the region bounded by the graph
of f and the x-axis, from x = a to x = b. Set up a sum of
integrals, not containing the absolute value symbol, that
can be used to find the area of R.

37 f) = x> —6x45); a=0 b=7
38 f(x)=|-x>+2x+3]; a=-3, b=4

39 Show that the area of the region bounded by an el-
lipse whose major and minor axes have lengths 2qg
and 2b, respectively, is wab. (Hint: Use -an equation
of the ellipse to show first that the area is given by

2b/a) J°,V a® — x%dx, and then interpret the definite
integral as the area of a semicircle of radius a.)

40 Suppose that the function values of f and g in the
following table were obtained empirically. Assuming
that f and g are continuous, approximate the area
between their graphs from x = 1 to x = 5 using (a) the
trapezoidal rule, with n = 8§, and (b) Simpson’s rule,
withn = 4.

= l11.522.533.544.55

fx) | 35 25 3 4 35 25 2 2 3

‘g(x) 15 2 2 15 1 05 1 15 1
|

[c] 41 Graph f(x)=|x> = 0.7x% — 0.8x +1.3] on [ 1.5, 1.5].

Set up a sum of integrals, not containing the absolute
value symbol, that can be used to approximate the area
of the region bounded by the graph of f, the x-axis, and
the lines x = —1.5and x = 1.5.

|Z| 42 Graph, on the same coordinate axes, f(x) = sinx and

g(x) =x3 —x+0.2 for —2 < x <2. Set up a sum of
integrals that can be used to approximate the area of the
region bounded by the graphs.

E Exer. 43-46: Plot the graphs of the equations. (a) Find

numerical approximations for the intersection points of
the different bounding curves. (b) Set up a definite
integral representing the area of the bounded region.
(c) Approximate this area to four-decimal-place accuracy
using Simpson’s rule.

43 y=x3—2x2—x+1; y = 4/10x
44 y;4x4—8x2+x—1; y=—2x2—x—f—4
45 y =50c0s(0.5x); y=x2-20

46 y = 0.2x* — x* +0.4x% - 2; y = cos(0.7x)

Exer. 47-50: Plot the graphs of the equations. (a) Set up
a definite integral representing the area of the bounded
region. (b) Approximate this area to four-decimal-place
accuracy using Simpson’s rule.

47 y =25 — 1% y=v29—x*-2

5.2 Solids of Revolution

48 y =sin[r(:2— DI,  y=1-x*

y = sin(sin x);
x=0, x=m

50 y=1+1.6x—0.3x2; y:\/1+x3

Exer 51-54: For each pair of net investment flows I,(?)
and I,(?), (a) find the time interval during which-1, is

49 y =sinux;

(b) Set up an integral that can be used to approximate the
area of the region bounded by and inside both ellipses.

2 2 2 21 2
S SR DT S ¢t )
29 21 4.3 4.9
2 2 2 2
X y x+19) y
—_ _— = 1' = — - = 1
56 3.9 + 4 ’ 4.1 + 2.5

at least as great as I,, and (b) for the time interval |Z| Exer. 57-58: Graph, on the same coordinate axes, the

found in part (a), determine how much more capital
accumulates under the first investment flow than the
second investment flow.

51 1,(1) =1 L) =1

52 I,() =4(1—1%); L=1-1
53 () =2(1-1%; Ln=r—1
54 I,(r) = —1* +41; L(t) =3t/2

Exer. 55-56: Graph, on the same coordinate axes, the
given ellipses. (a) Estimate their points of intersection.

given hyperbolas. (a) Estimate their first-quadrant point
of intersection. (b) Set up an integral that can be used to
approximate the area of the region in the first quadrant
bounded by the hyperbolas and a coordinate axis.

(y-01> (x+ 02)%

=1;
T 6 0.5
=05 -01? _,
2.7 53
(x—0.1)2 y? 2 (y—03)?
58 - - =] -2 =1
0.12 0.1 0.9 2.1

5.2  SOLIDS OF REVOLUTION

N dmwyw[“”};qlﬁg“ﬁgaVk The volume of an object plays an important role in many problems in the

Al

physical sciences. In this section and the next two sections, we consider

several methods for computing volumes. Since it is difficult to determine
the volume of an irregularly shaped object, we begin with objects that have
simple shapes, including the solids of revolution.

If a region in a plane is revolved about a line in the plane, the resulting
solid is a solid of revolution, and we say that the solid is generated by
the region. The line is an axis of revolution. In particular, if the R, region
shown in Figure 5.20(a) is revolved about the x-axis, we obtain the solid
illustrated in Figure 5.20(b). As a special case, if f is a constant function,

Figure 5.20
@
AY

(b)

14
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volume of the solid. Hence we define the volume of the solid of revolution

say f (x.) =k, thpn the region is rectangular and the solid generated is a
rlgl}t circular cyllndgr. If the graph of f is a semicircle with endpoints of ' imi
a diameter at the points (a, 0) and (b, 0), then the solid of revolution is s limitolhese s

a sphere. If the region is a right triangle with base on the x-axis and two
vertices at the points (a, 0) and (b, 0) with the right angle at one of these
points, then the solid generated is a right circular cone. Definition 5.5 P .

‘ If a plane perpendicular to the x-axis intersects the solid shown in fLet a0 comimons on !a, 4], and et R b Fhe regigiiponsded by
Figure 5.20(b), a circular cross section is obtained. If, as indicated in the Figure 5.22 e RS e ve-rtxcal foth e g Y
figure, the plane passes through the point on the axis with x-coordinate w (j ' e LT V O.f the solid of revolution generated by revolving R
then the.radius of the circle is f(w), and hence its area is 7 [ f (w)]>. We; sBoutiicuak
Shflll arrive at a definition for the volume of such a solid of revolution by } b
using Riemann sums. V= lim Zx{f(wk)]ZAxk - f n[f(x)]2 T

Let us partition the interval [a, b], as we did for areas in Section 5.1 L a
and consider the rectangles in Figure 5.21(a). The solid of revolution ge.n-’ y = ()

eyate'd by _thesej, rectangles has the shape shown in Figure 5.21(b). Be-
rgelillgigﬁov;lih I}jlg,;ure 5.25, we shall remove, or cut out, parts of solids of ' o - b )
A o help us visualize portions generated by typical rectangles. The fact that the limit of sums in th}s d.eﬁmtlon equals J P f (x‘)] fix
by o Z:o;z;[ne%et(r)eiﬁgtﬁ, %luzr;s, rtememl.)er that the entire solid is obtained | p \\ b follows from the de?nition of tlt}e deﬁlmte 1ntIf;gr£all. }Ve shall not ord1nar11.y
out an axis, not a partial one. specify the units of measure for volume. the linear measurement 1S

inches, the volume is in cubic inches (in3). If x is measured in centimeters,

then V is in cubic centimeters (cm3), and so on.
The requirement that f(x) > 0 was omitted intentionally in Definition

o |

s in Figure 5.22(a), and if the region

Figure 5.21
@ (b) (5.5). If f is negative for some X, &
AY Ay ®) bounded by the graphs of f, x = a, x = b, and the x-axis is revolved about
AY the x-axis, we obtain the solid shown in Figure 5.22(b). This solid is
the same as that generated by revolving the region under the graph of

y = | f(x)| from a to b about the x-axis. Since |f(x)|2 = [f(x)]?, the
limit in Definition (5.5) gives us the volume.

Let us interchange the roles of x and y and revolve the R, region in
Figure 5.23(a) about the y-axis, obtaining the solid illustrated in Figure
5.23(b). If we partition the y-interval [c, d] and use horizontal rectangles
of width Ay, and length g(w,), the same type of reasoning that gave us
(5.5) leads to Definition (5.6) on the following page.

Figure 5.23
() (b)

. Observe' that the kth rectangle generates a circular disk (a flat right
circular cylinder) of base radius f (w,) and altitude (thickness) Ax, =
X, — X;_,- The volume of this disk is the area of the base times kthe

altitude'—that is, [ f (wk)]zAxk. The volume of the solid shown in Figure
5.21(b) is the sum of the volumes of all such disks:
= 8(»)

x = g(y)

> wlf(wlPAx,
k

o |

=Y

This sum may be regarded as a Riemann sum for 7 [ f (x)]z. If the norm
|| P|| of the partition is close to zero, then the sum should be close to the
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Definition 5.6
Figure 5.24
—>{ r<—Thickness
A
Radius
Axis of
revolution

Volume V of a Circular Disk 5.7

Guidelines for Finding the Yolume
of a Solid of Revolution
Using Disks 5.8

CHAPTER 5 Applications of the Definite Integral

d
= m S lgwpPay, = [ rleo)Pdy
1PI—0 4 2

Since we may revolve a region about the x-axis, the y-axis, or some
other line, it is not advisable to merely memorize the formulas in (5.5) and
(5.6). It is better to remember the following general rule for finding the
volume of a circular disk (see Figure 5.24).

V = w(radius)® - (thickness)

When working problems, we shall use the intuitive method developed
in Section 5.1, replacing Ax, or Ay, by dx or dy, and so on. The following
guidelines may be helpful.

1 Sketch the region R to be revolved, and label the boundaries.
Show a typical vertical rectangle of width dx or a horizontal rect-
angle of width dy.

2 Sketch the solid generated by R and the disk generated by the
rectangle in guideline (1).

3 Express the radius of the disk in terms of x or y, depending on
whether its thickness is dx or dy.

4 Use (5.7) to find a formula for the volume of the disk.

Apply the limit of sums operator [ ab or [ Lfi to the expression in
guideline (4) and evaluate the integral.

EXAMPLE®| The region bounded by the x-axis, the graph of the
equation y = x2 4+ 1, and the lines x = —1 and x = 1 is revolved about
the x-axis. Find the volume of the resulting solid.

SOLUTION As specified in guideline (1), we sketch the region and
show a vertical rectangle of width dx (see Figure 5.25a). Following guide-
line (2), we sketch the solid generated by R and the disk generated by the
rectangle (see Figure 5.25b). As specified in guidelines (3) and (4), we
note the following:

thickness of disk: dx

radius of disk: x2+1
volume of disk: 7 (x> + 1)%dx

5.2 Solids of Revolution

Figure 5.26

=Y

Figure 5.25
@) (b)
B4 Ay

y=x+1 y=x+1

dx—> :<—

]
R
) 1 =

We could next apply guideline (5) with @ = —1 and b = 1, finding the

volume V by regarding f_ll as an operator that takes a limit of sums of
volumes of disks. Another method is to use the symmetry of the region

with respect to the y-axis and find V by applying fol to (x? + 1) dx and
doubling the result. Thus,
1
V= J m(x? + 1)%dx
—1

1
=2J r(x*+2x2 + ) dx
0

5 3 1

X X

=2 — 42—
HI:S-I_ <3>+le0

=2tz +5+ 1) =3%r~117.

EXAMPLE®2 The region bounded by the y-axis and the graphs of
y=x3,y=1,and y = 8 is revolved about the y-axis. Find the volume of
the resulting solid.

SOLUTION The region and the solid are sketched in Figure 5.26,
together with a disk generated by a typical horizontal rectangle. Since we
plan to integrate with respect to y, we solve the equation y = x> for x in
terms of y, obtaining x = yl/ 3. We note the following facts (see guidelines
3 and 4):
thickness of disk: dy
radius of disk: yl/ 3
volume of disk: 71’(}11/3)2 dy
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Figure 5.27

(@)

L Y
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Finally, we apply guideline (5), with ¢ = 1 and d = 8, regarding J, 18 as an
operator that takes a limit of sums of disks:

8 8 E 8
V=f n(y1/3)2dy=nj yPdy=mn| =5
1 1 .

3

8
=in [y¥] = In 32— 11 = % ~ 584

Let us next consider an R region of the type illustrated in Figure
5.27(a). If this region is revolved about the x-axis, we obtain the solid
illustrated in Figure 5.27(b). Note that if g(x) > 0 for every x in [a, b],
there is a hole through the solid.

(b) (©

=Y

The volume V of the solid may be found by subtracting the volume
of the solid generated by the smaller region from the volume of the solid
generated by the larger region. Using Definition (5.5) gives us

b

b
V= f [ f ()] dx — f wlg(x)]* dx

a

b
- f w{[f P ~ [0} dx.
a

The last integral has an interesting interpretation as a limit of sums. As
illustrated in Figure 5.27(c), a vertical rectangle extending from the graph
of g to the graph of f, through the points with x-coordinate w,, generates
a washer-shaped solid whose volume is

7l f (w)PAx, — wlgw)PAx, = m{[f(w))? — [g(w )} Ax,.

5.2 Solids of Revolution

Volume V of a Washer 5.9

Figure 5.28
()

e R

Summing the volumes of all such washers and taking the limit gives us
the desired definite integral. When working problems of this type, it is
convenient to use the following general rule.

V = x[(outer radius)? — (inner radius)z] - (thickness)

In applying (5.9), a common error is to use the square of the difference
of the radii instead of the difference of the squares. Note that

volume of a washer # 7 [(outer radius) — (inner radius)]2 - (thickness).

Guidelines similar to (5.8) can be stated for problems involving wash-
ers. The principal differences are that in guideline (3), we find expressions
for the outer radius and inner radius of a typical washer, and in guideline
(4), we use (5.9) to find a formula for the volume of the washer.

EXAMPLE®=3 The region bounded by the graphs of the equations
x> =y—2and 2y — x — 2 = 0 and the vertical lines x = 0 and x = 1 is
revolved about the x-axis. Find the volume of the resulting solid.

SOLUTION Theregion and a typical vertical rectangle are sketched
in Figure 5.28(a). Since we wish to integrate with respect to x, we solve
the first two equations for y in terms of x, obtaining y = x> + 2 and y =
%x + 1. The solid and a washer generated by the rectangle are illustrated
in Figure 5.28(b). Using (5.9) we obtain the following:

thickness of washer: dx

x> 42

%x +1

wl(x? +2)* — (32 + 1)*1dx

outer radius:
inner radius:

volume:

We take a limit of sums of volumes of washers by applying folz
1 i
V= f 72 +2)% — Gx + DM dx
0

1
=7Tf (x4+%x2—x+3)dx
0

x 15 {3 x2 ! 797
A ELBEN s 2P L
”[5+4<3> 2—|—x0 20
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EXAMPLE®=4 Find the volume of the solid generated by revolving
the region described in Example 3 about the line y = 3.

SOLUTION The region and a typical vertical rectangle are re-
sketched in Figure 5.29(a), together with the axis of revolution y = 3. The
solid and a washer generated by the rectangle are illustrated in Figure
5.29(b). We note the following:

thickness of washer: dx
outer radius: 3 — (%x +1)=2-— %x
inner radius: 3 — (x2+2) =1 —x?
volume: 7[(2 — 1x)* — (1 — x?)?]dx

Figure 5.29
€Y (b)
Ay
y=x>+2
JAENTTRN!
3-(x*+2)
\.4 R S
| y=5x+1 T
|
—> s dx
1 o
1 X

Applying the limit of sums operator fol gives us the volume:
1
V= J 72— 3x)% = (1 — xH)?dx
0

1
=71f (3—2x+%x2—x4)dx
0

1

9 (x° %

=l 3x—=x2+ 2] -
77|:x x+4<3) 5]0

Exercises 5.2

Figure 5.30
(a)

(b)

- EXERCISES 5.2

EXAMPLE=5 The region in the first quadrant bounded by the
graphs of y = %x3 and y = 2x is revolved about the y-axis. Find the
volume of the resulting solid.

SOLUTION Theregion and a typical horizontal rectangle are shown
in Figure 5.30(a). We wish to integrate with respect to y, so we solve the
given equations for x in terms of y, obtaining

x= %y and x = 2y1/3.

Figure 5.30(b) illustrates the volume generated by the region and the
washer generated by the rectangle. We note the following:

thickness of washer: dy
outer radius: 2 yl/ 3
inner radius: % ¥
volume:  7[(2yY*)2 — (1y)Hdy = m(@y*? — LyD) dy

Applying the limit of sums operator f08 gives us the volume:
8
V= f w4y — 1% dy
0

8
—x [%ym - %y?’]o = 5127 ~107.2

Exer. 1-4: Set up an integral that can be used to find
the volume of the solid obtained by revolving the shaded

region about the indicated axis.

JP’

=Y
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-
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Exer. 5-24: Sketch the region R bounded by the graphs of
the equations, and find the volume of the solid generated
if R is revolved about the indicated axis.

[ |

5y=1/x, x=1, x=3, y=0; x-axis
6 y=./x, x=4, y=0;, x-axis

7y= x*—4x, y=0; x-axis

8 y= 3, x=-2, y=0; x-axis

9 y= X2, y=2; y-axis

0y=1/x, y=1, y=3, x=0; y-axis
Il x=4y—y>, x=0; y-axis

12 y=x, y=3, x=0; y-axis

13 y=x2, y=4—x% x-axis

14 x=y3, X>+y=0; x-axis

I5 y=x, x+y=4, x=0; x-axis

16 y=(x—1)°+1, y=—(x—D%*+3; x-axis
17 y> =x, 2y=1x; y-axis

18 y=2x, y=4x% y-axis

19 x=3% x—y=2; y-axis

CHAPTER 5 Applications of the Definite Integral
20 x+y=1 x—y=-1, x =2; y-axis
2l y=sin2x, x =0, x=m, y=0; x-axis
(Hint: Use a half-angle formula.)
22 y=1+4cos3x, x=0, x=2n, y=0; x-axis
(Hinz: Use a half-angle formula.)
23 y=sinx, y=cosx, x=0, x=mx/4 x-axis
(Hint: Use a double angle formula.)
24 y=secx, y=sinx, x=0, x=mn/4;, x-axis
Exer. 25-26: Sketch the region R bounded by the graphs
of the equations, and find the volume of the solid gen-
erated if R is revolved about the given line.
25 y = x2 , Y= 4
@y=4 (b)y=5
©@x=2 (dyx=3
26 y = ﬁ N y = 0’ X = 4
(@x=4 ((B)x=6
©y=2 (dy=4
Exer. 27-28: Set up an integral that can be used to find
the volume of the solid generated by revolving the shaded

region about the line (a) y = -2, (b)y =5, (¢} x = 7, and
(d)x = —4.

27 y

28 y
% 24

i1 1 1
1 T

7

Exercises 5.2

Exer. 29-34: Sketch the region R bounded by the graphs
of the equations, and set up integrals that can be used
to find the volume of the solid generated if R is revolved
about the given line.

29 y=x3, y = 4x; y =
30 y =1, y=4x; x=4
31 x+y=3, y—|—x2=3; x=2
32y=1—x2, x—y=1, y=3
33 242 =1; x =
34 y=x2/3, y = x%; y=-1

Exer. 35-40: Use a definite integral to derive a formula
for the volume of the indicated solid.

35 A right circular cylinder of altitude 4 and radius r

36 A cylindrical shell of altitude h, outer radius R, and
inner radius r

37 A right circular cone of altitude /4 and base radius r
38 A sphere of radius

39 A frustum of a right circular cone of altitude A, lower
base radius R, and upper base radius r

40 A spherical segment of altitude £ in a sphere of radius r

41 If the region shown in the figure is revolved about the x-
axis, use the trapezoidal rule with » = 6 to approximate
the volume of the resulting solid.

Exercise 41

=Y

42 If the region shown in the figure is revolved about the
x-axis, use Simpson’s rule with n = 4 to approximate
the volume of the resulting solid.

Exercise 42

Exer. 43-44: Graph f and g on the same coordinate
axes for 0 < x < 7. (a) Estimate the x-coordinates of
the points of intersection of the graphs. (b) If the region
bounded by the graphs of f and g is revolved about the
x-axis, use Simpson’s rule with n = 2 to approximate the
volume of the resulting solid.

sin x
43 = ;
fo =1 g
44 f(x) = J|sinx|; g(x)=02x+0.7
45 Find the volume of the solid obtained by revolving
the region bounded by the ellipse b’x? +d? y2 = a’b?
about the x-axis.

g(x)=0.3

46 Work Exercise 45 with the region revolved about the
y-axis.

47 A paraboloid of revolution is formed by revolving a
parabola about its axis. Paraboloids are the basic shape
for a wide variety of collectors and reflectors. Shown in
the figure is a (finite) paraboloid of altitude # and radius
of base r.

(a) The focal length of the paraboloid is the distance p
between the vertex and the focus of the parabola.
Express p in terms of r and A.

(b) Find the volume of the paraboloid.

Exercise 47
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Mathematicians and Their Times
JOHN BERNOULLI

WE OFTEN HEAR OF SCIENTIFIC or artistic genius emerging in an indi-
vidual of modest circumstances whose forebears gave little evidence of
greatness. Such was the case with Newton. There have been notable
instances, however, of enormous talent displayed by several genera-
tions of the same family. In music, the Bach family included a Score of
eminent artists. In mathematics, the pre-
mier example is the Bernoulli family, with
eight mathematicians in three generations
and dozens of other distinguished descen-
dants who played a leading part in devel-
oping calculus and making it accessible to
a wider audience.

The first generation of Bernoulli math-
ematicians were the three sons of a drug-
gist who fled from Antwerp to Switzerland
to escape religious persecution. Two of these brothers, James (1654 —
1705) and John (1667-1748), are the most eminent mathematicians
among the Bernoullis. Their brother Nicholas (1662—1716), also a gifted
mathematician, first earned a degree in philosophy at age 16 and then
turned to law before joining the mathematics faculty at St. Petersburg
Academy.

James Bernoulli, a mathematics professor at the University of Basel,
introduced the term integral into the field and developed the calculus
significantly beyond the state in which Leibniz and Newton left it. He
also made important contributions to probability and the calculus of
variations.

John Bernoulli began his career as a physician and studied mathemat-
ics under his older brother James, eventually replacing him as mathemat-
ics professor at the University of Basel. He became deeply interested
in calculus and was indirec’ly responsible for the first calculus textbook
(1696), published by the French marquis G. F A. de Hopital. Bernoulli
tutored I'Hopital and sold the marquis the rights to a number of his own
mathematical discoveries. Later Bernoulli virtually accused I'Hépital of
plagiarism.

5.3 Volumes by Cylindrical Shells

(1 r"’h!",l“'é" § ""- oy
e ey
N

t .Q‘J:ll‘l Y4 )y

5.3

N V1

Figure 5.31

lé—rl—>:
|
| |
|<——r—>’<—r2—>|l |l
I | f—Ar
|

-

h

Lo

w

2

John also became locked in a bitter quarrel over mathematics with

his brother James, exchanging words that later writers characterized
as more in keeping with horse thieves or street brawlers than weI}-
Kknown scientists. When the French Academy of Sciences awarded hfs
son Daniel a prize, John was so jealous that he expelled Daniel from his
home. . ’
" Most notable of the second generation of Bernoullis were lohn’s
sons: Nicholas, Daniel, and john Ii. Daniel’s discoveries in science wz'ere
so extensive that he is considered the founder of mathematical physics.
John 1l began his career in law, later became a professor of eloquence,
and eventually succeeded his father as Basel’s mathematics professor. .
In the third generation, the sons of john i, John [ll and Jacob, also did
significant work in the sciences. John 1l became the .royal astronomer
at Berlin, but his brother’s promising career was tragically cut short by

drowning at age 30.

VOLUMES BY CYLINDRICAL SHELLS

In the preceding section, we found Volurpes of solids of revc;lunm;t abﬁ’l
using circular disks or washers. In this section, we shall see that for f}?at i
types of solids, it is convenient to use hollow qrcul_ar cyhngc;rs——h ! r,
thin cylindrical shells of the type 111u§trated in Flgurg 56.1 , wd eAr 2l
is the outer radius, r, is the inner radius, h is the al.tztu e, an o =
is the thickness of the shell. The average radius of the shell is

r—r, '
r1= %(r1 +r,). We can find the volume of the shell by 2s,ubtract1ng the
volume nr2h of the inner cylinder from the volume zrih of the outer

cylinder. If we do so and change the form of the resulting expression, we
obtain
Jrrlzh —arih = 71'(r12 —r)h
=n(r, + 1) (r; —rp)h
=27 - 2 (ry + rhlr; — 1)
= 2nrhAr,

which gives us the following general rule.
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5.3 Volumes by Cylindrical Shells m

Volume V of a Definition 5.1 . )
Cylindrical Shell 5.10 N . . . Let f be continnous and suppose ' f(x} = 0 on the interval [a, b],
| Y - V = 2n(average radius)(altitude)(thickness) where 0 < a < b. Let R be the region under the graph of f from a
| to b. The volume V of the solid of revolution generated by revolving
| R about the y-axis is
If the R region in Figure 5.32(a) is revolved about the y-axis, we b
obtain the solid illustrated in Figure 5.32(b). V= lim Z 2w, flw)Ax, = f 2axf(x)dx.
Let P be a partition of [a, b], and consider the typical vertical rectangle IPi—0 47 a
‘ ‘ in Figure 5.32(c), where w, is the midpoint of [x,_,, x.]. If we revolve this
rectangle about the y-axis, we obtain a cylindrical shell of average radius

458 CHAPTER 5  Applications of the Definite Integral

| w,, altitude f(w,), and thickness Ax,. Hence, by (5.10), the volume of It can be proved that if the methods of Section 5.2 are also applicable,
the shell is then both methods lead to the same answer.
[ We may also consider solids obtained by revolving a region about the
e 2wy f(wp) Axy. x-axis or some other line. The following guidelines may be useful.
‘ it Revolving the recta;igular polygon formed by all the rectangles determined
| by P gives us the solid illustrated in Figure 5.32(d). The volume of this Guidelines for Finding the Volume
| solid is a Reimann sum: of a Solid of Revolution Using 1 Sketch the region R to be revolved, and label the boundaries.
If Lo Show a typical vertical rectangle of width dx or a horizontal rect-
‘ || Zk: 2w, f (w,)Ax, Cylindrical Shells 5.12 angle of width dy,
2 Sketch the cylindrical shell generated by the rectangle in guide-
The smaller the norm || P|| of the partition, the better the sum approxi- line (1).
| matqs the Volum§ V‘of the solid §hown in Figure 5.32(b). ThlS discussion 3 Express the average radius of the shell in terms of x or y, de-
provides the motivation for Definition (5.11) on the following page. pending on whether its thickness is dx or dy. Remember that x
@ Y represents a distance from the x-axis to a horizontal rectangle.
| .
Figure 5.32 Ly 4 Express the altitude of the shell in terms of x or y, depending on
| @ (b) whether its thickness is dx or dy.
' Ay Use (5.10) to find a formula for the volume of the shell.

y=2x —x2 6 Apply the limit of sums operator fab or [ Cd to the expression in
guideline (5) and evaluate the integral.

=Y

‘I Figure 5.33 represents a distance from the y-axis to a vertical rectangle, and
EXAMPLE® |  Theregion bounded by the graph of y = 2x — x2 and

| dx 2
t — the x-axis is revolved about the y-axis. Find the volume of the resulting
| a b X .
| solid.
1 © ®) SOLUTION The region to be revolved is sketched in Figure 5.33(a),
C

@ together with a typical vertical rectangle of width dx. Figure 5.33(b) shows

the cylindrical shell generated by revolving the rectangle about the y-axis.
Note that x represents the distance from the y-axis to the midpoint of the
rectangle (the average radius of the shell). Referring to the figure and using
(5.10) gives us the following:

thickness of shell: dx
average radius: x
altitude: 2x — x

2

volume: 27x(2x — xz) dx
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Figure 5.34
(@)
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To sum all such shells, we move from left to right through the region from
a =0to b = 2 (do not sum from —2 to 2). Hence, the limit of sums is

2 2
V= J 2rx(2x — x2) dx = 271f 2x% = x%) dx
0 0

2
3 4
X X 87
=2 |2|—]—— | =— = 8.4.
7T|:(3> 4}0 3

The volume V can also be found using washers; however, the calculations
would be much more involved, since the equation y = 2x — x2 would have
to be solved for x in terms of y.

EXAMPLE ®2 The region bounded by the graphs of y = x* and
y = x + 2 is revolved about the line x = 3. Set up the integral for the
volume of the resulting solid.

SOLUTION The region is sketched in Figure 5.34(a), together with
a typical vertical rectangle extending from the lower boundary y = x? to
the upper boundary y = x + 2. Also shown is the axis of revolution x = 3.
In Figure 5.34(b), we have illustrated both the cylindrical shell and the
solid that are generated by revolving the rectangle and the region about
the line x = 3. It is important to note that since x is the distance from the
y-axis to the rectangle, the radius of the shell is 3 — x. Referring to Figure
5.34 and using (5.10) gives us the following:

thickness of shell: dx
average radius: 3 — x
altitude:  (x +2) — x?2
volume: 27w (3 —x)(x +2 — xz) dx

To sum all such shells, we move from left to right through the region from
a = —1 to b = 2. Hence, the limit of sums is

2
V=J 213 — x)(x + 2 — x2) dx.
-1

EXAMPLE =3  Theregion in the first quadrant bounded by the graph
of the equation x = 2y> — y* and the y-axis is revolved about the x-axis.
Set up the integral for the volume of the resulting solid.

SOLUTION  Theregion is sketched in Figure 5.35(a), together with a
typical horizontal rectangle. Figure 5.35(b) shows the cylindrical shell and
the solid that are generated by the revolution about the x-axis. Referring to
the figure and using (5.10) gives the following:
thickness of shell: dy
average radius: y
altitude: 2y — y*
volume: 2my(2y® —y*) dy

Exercises 5.3

- EXERCISES 5.3

Figure 5.35
@) (b)

To sum all such shells, we move upward through the region from ¢ = 0 to
d = 2. Hence, the limit of sums is

2
V= f 2732y — ¥ dy.
0

It is worth noting that in the preceding example we were forced to
use shells and to integrate with respect to y, since the use of washers
and integration with respect to x would require that we solve the equation
x = 2y° — y* for y in terms of x, a rather formidable task.

Use cylindrical shells for each exercise.

Exer. 1-4: Set up an integral that can be used to find
the volume of the solid obtained by revolving the shaded

region about the indicated axis.
1 y

==

li]llll
1
=Y
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Exer. 5-18: Sketch the region R bounded by the graphs of
the equations, and find the volume of the solid generated
if R is revolved about the indicated axis.

5 y=./x, x =4, y=0; y-axis
6 y=1/x; x=1, x=2,y=0; y-axis
7 y=x2 y? = 8x; y-axis
8 16y = x2, y2 =2x; y-axis
92x—y=12, x—2y=3, x=4; y-axis
10 y=x>+1, x+2y=2, x=1; y-axis
I 2x—y=4, x=0, y=0; y-axis
12 y=x?—-5x, y=0; y-axis
13 2= 4y, y =4, X-axis
14 y3 = x, y =3, x=0; X-axis
I5 y=2x, y =6, x=0 x-axis
16 2y = x, y =4, x =1 X-axis
17 y:m, y =0, x=0; x-axis
18 y=—x, x—y=-4, y=0 X~axis

Applications of the Definite Integral

Exer. 19-26: Let R be the region bounded by the graphs
of the equations. Set up an integral that can be used to
find the volume of the solid generated if R is revolved
about the given line.
I9y=x2+l, x =0, x=2, y=0
(@x=3 (b)yx=-1
20 y =4 —x?, y=0
(@a)x=2 (b)x=-3

21 y =x2, y=4
(@y=4 ®)y=5 ()x=2 (d)x= -3
22_)1:\/)?, y:(), x=4

@x=4 ()x=6 ()y=2 (d)y=-4
23 x+y=3, y+x’=3; x=2
24 y=1-x% x—-y=1; y=3
25 X4yt =1 x=5
26 y=x3, y =x% y=-1

Exer. 27-30: Let R be the region bounded by the graphs
of the equations. Set up integrals that can be used to find
the volume of the solid generated if R is revolved about
the given axis using (a) cylindrical shells and (b) disks or
washers.

27 y=1//x, x=1, x=4, y=0; x-axis
28 y=9—x2, x=0, x=2, y=0; x-axis
29 y:x2+2, x=0, x=1, y=0; y-axis
30 y=x+1, x=0, x=1, y=0; vy-axis

31 If the region shown in the ﬁgufe is revolved about
the y-axis, use the trapezoidal rule, with n = 6, to
approximate the volume of the resulting solid.

Exercise 31

32 If the region shown in the figure on the following page
is revolved about the y-axis, use Simpson’s rule, with
n = 4, to approximate the volume of the resulting solid.

about the y-axis, use the trapezoidal rule, with

n = 6, to approximate the volume of the resulting

Ay solid.

35 Let R be the region bounded by the parabola x* =4y
and the line [ through the focus that is perpendicular to
the axis of the parabola.

(a) Find the area of R.

(b) If R is revolved about the y-axis, find the volume of
the resulting solid.

(c) If R is revolved about the x-axis, find the volume of
the resulting solid.

36 Work (a)—(c) of Exercise 35 if R is the region bounded
by the graphs of y? =2x —6and x = 5.
Exer. 37-38: Let R be the region bounded by the hyper-

bola with equation px? —a?yt = a*b* and a vertical line
through a focus.

5.4 Volumes by Cross Sections

Exercise 32

X

(|33 Graph f(x) = —x* 4 221x% = 3.21x% + 4.42x — 2.
(a) Estimate the x-intercepts of the graph.

(b) If the region bounded by the graph of f and the x-
axis is revolved about the y-axis, set up an integral
that can be used to approximate the volume of the

resulting solid.
37 Show that the area of the region R is given by

C
EEJ \/xz—azdx, wherec=\/a2+b2.
a Ja

34 Graph, on the same coordinate axes, f(x) =cscx and
gx)=x+1for0<x <.

(a) Use Newton’s method to approximate, to four

decimal places, the x-coordinates of the points of
intersection of the graphs.

(b) If the region bounded by the graphs is revolved

38 Find the volume of the solid obtained by revolving R
about the y-axis.

5.4  VOLUMES BY CROSS SECTIONS

"4 U@l If a plane intersects a solid, then the region common to the plane and the
solid is a cross section of the solid. In Section 5.2, we used circular and
washer-shaped cross sections to find volumes of solids of revolution. In
this section, we shall study solids that have the following property (see
Figure 5.36): For every x in [a, b], the plane perpendicular to the x-axis at
x intersects the solid in a cross section whose area is A(x), where A is a
continuous function on [a, b].

Figure 5.36
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Figure 5.39

(@)

(b)

CHAPTER 5 Applications of the Definite Integral

The solid is called a cylinder if, as illustrated in Figure 5.37 a line
parallel to the x-axis that traces the boundary of the cross section corre-
sponding to a also traces the boundary of the cross section corresponding
to every x in [a, b]. The cross sections determined by the planes through
x = a and x = b are the bases of the cylinder. The distance between the
bases is the altitude of the cylinder. By definition, the volume of the cylin-
der is the area of a base multiplied by the altitude. Thus, the volume of the
solid in Figure 5.37 is A(a) - (b — a).

To find the volume of a noncylindrical solid of the type illustrated in
Figure 5.38, we begin with a partition P of [a, b]. Planes perpendicular to
the x-axis at each x, in the partition slice the solid into smaller pieces. If
we choose any number w, in [x,_,, x; ], the volume of a typical slice can
be approximated by the volume A(w,)Ax, of the red cylinder shown in
Figure 5.38. If V is the volume of the solid and if the norm || P|| is small,
then

VA A(w)Ax,.
k

Since this approximation improves as || P| gets smaller, we define the
volume of the solid by

b
V= lim A(w szfodx,
”PMij (w)Ax = | AR
where the last equality follows from the definition of the definite integral.
We may summarize our discussion as follows.

Let S be a solid bounded by planes that are perpendicular to the x-
axis at ¢ and b. If, for every x in {a, b}, the cross-sectional area of §
is given by A(x), where A is continuous on {a, b], then the volume
of S is

b
\% :f A(x)dx.

a

An analogous result can be stated for a y-interval [c, d] and a cross-
sectional area A(y).

EXAMPLE®I Find the volume of a right pyramid with a square
base of side a and altitude 4.

SOLUTION Asin Figure 5.39(a), let us take the vertex of the pyra-
mid at the origin, with the x-axis passing through the center of the square
base, a distance & from O. Cross sections by planes perpendicular to the
x-axis are squares. Figure 5.39(b) is a side view of the pyramid. Since 2y
is the length of the side of the square cross section corresponding to x, the
cross-sectional area A(x) is

A(x) = (2y)* =4y,

5.4 Volumes by Cross Sections

Figure 5.40
@

(@ 0) P y)
2+ y?=a

(b)

Using similar triangles in Figure 5.39(b), we have

1
y_ 24 .2
x on YT
Hence,
da?x? a?
A(x) = 4y* = = —x"

—X
4n? h?

Applying (5.13) yields

h hof g2 )
V= Alx dxzf — | x“dx
.L (x) 2
a\ | %3 ! an o1,
= _— —_— =——:—ah.
L2 3 o K2 3 3

EXAMPLE®=2 A solid has, as its base, the circular region in the xy-
plane bounded by the graph of 24yt = a* with g > 0. Find the volume
of the solid if every cross section by a plane perpendicular to the x-axis is
an equilateral triangle with one side in the base.

SOLUTION A triangular cross section by a plane x units from the
origin is illustrated in Figure 5.40(a). If the point P(x, y) is on the circle
and y > 0, then the lengths of the sides of this equilateral triangle are 2y.
Referring to Figure 5.40(b), we see, by the Pythagorean theorem, that the
altitude of the triangle is

Vy? -2 =3y = V3y.
Hence, the area A(x) of the cross section is
A() = 3@ (B3y) =3y = V3@ - x).
Applying (5.13) gives us

V=F A(x)dx = ’ V3(a? — x%) dx

—a —a

x3:|a 43 3
= —a.

3

—a

:ﬁ[azx__ ‘
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- EXERCISES 5.4

CHAPTER 5 Applications of the Definite Integral

Exer. 1-8: Let R be the region bounded by the graphs of
x = y* and x = 9. Find the volume of the solid that has R
as its base if every cross section by a plane perpendicular
to the x-axis has the given shape.

I A square

(x, —Vx)

2 A rectangle of height 2

x
3 A semicircle :
y
x
4 A quartercircle
:y
x

5 An equilateral trian'gle

=~

6 A triangle with height equal to % the length of the base

y

7 A trapezoid with lower base in the xy-plane, upper base
equal to % the length of the lower base, and height equal
to zlt the length of the lower base

s

r

Exercises 5.4

8 A parallelogram with base in the xy-plane and height
equal to twice the length of the base

P

pe

9 A solid has as its base the circular region in the xy-plane
bounded by the graph of 2+ = a? witha > 0. Find
the volume of the solid if every cross section by a plane
perpendicular to the x-axis is a square.

10 Work Exercise 9 if every cross section is an isosceles
triangle with base on the xy-plane and altitude equal to
the length of the base.

Il A solid has as its base the region in the xy-plane
bounded by the graphs of y =4 and y = x%. Find the
volume of the solid if every cross section by a plane
perpendicular to the x-axis is an isosceles right triangle
with hypotenuse on the xy-plane.

12 Work Exercise 11 if every cross section is a square.

I3 Find the volume of a pyramid of the type illustrated in
Figure 5.39 if the altitude is & and the base is a rectangle
of dimensions a and 2a.

14 A solid has as its base the region in the xy-plane
bounded by the graphs of y = x and y2 = x. Find the
volume of the solid if every cross section by a plane
perpendicular to the x-axis is a semicircle with diameter
in the xy-plane.

I5 A solid has as its base the region in the xy-plane
bounded by the graphs of y? = 4x and x = 4. If every
cross section by a plane perpendicular to the y-axis is a
semicircle, find the volume of the solid.

16 A solid has as its base the region in the xy-plane
bounded by the graphs of x? =16y and y = 2. Bvery
cross section by a plane perpendicular to the y-axis is
a rectangle whose height is twice that of the side in the
xy-plane. Find the volume of the solid.

17 A log having the shape of a right circular cylinder of
radius a is lying on its side. A wedge is removed from
the log by making a vertical cut and another cut at an

angle of 45°, both cuts intersecting at the center of the
log (see figure). Find the volume of the wedge.

Exercise 17

18 The axes of two right circular cylinders of radius a
intersect at right angles. Find the volume of the solid
bounded by the cylinders.

19 The base of a solid is the circular region in the xy-plane
bounded by the graph of x4 y2 = g? witha > 0. Find
the volume of the solid if every cross section by a plane
perpendicular to the x-axis is an isosceles triangle of

constant altitude &. (Hint: Interpret re Y a* — x?dx as
an area.)

20 Cross sections of a horn-shaped solid by planes perpen-
dicular to its axis are circles. If a cross section that is
s inches from the smaller end of the solid has diameter
6+ %sz inches and if the length of the solid is 2 ft, find
its volume.

21 A tetrahedron has three mutually perpendicular faces
and three mutuaily perpendicular edges of lengths 2, 3,
and 4 cm, respectively. Find its volume.

22 Cavalieri’s theorem states that if two solids have equal
altitudes and if all cross sections by planes parallel to
their bases and at the same distances from their bases
have equal areas, then the solids have the same volume
(see figure). Prove Cavalieri’s theorem.

Exercise 22
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5.5 Arc Length and Surfaces of Revolution

23 The base of a solid is an isosceles right triangle whose 27 The base of a solid is a region bounded by an ellipse with Figure 5.41 Qy Q1> @y, - --» Q> as illustrated in Figure 5.41. We may then approxi-
equal sides have length g. Find the volume if cross major and minor axes of lengths 16 and 9, respectively. Bent wire mate the length of the wire betw?en Q,_, and Q, (for each k) by measur-
sections that are perpendicular to the base and to one Find the volume of the solid if every cross section by a Or-s ing the distance d(Q,_;, Q,) with a ruler. The sum of all these distances
of the equal sides are semicircular. plane perpendicular to the major axis has the shape of a is an approximation for the total length of the wire. Evidently, the closer

24 Work Exercise 23 if the cross sections are .egular square. QO together we place the dots, the better the approximation. The process we
hexagons with one side in the base. 28 Work Exercise 27 with the cross section having the shall use for the graph of a function is similar; however, we shall find the

25 Show that the disk and wash thods di di shape of an equilateral triangle. Qo Q, exact length by taking a limit of sums of lengths of line segments. This

ow thal the disk and washer metods discussed . . . process leads to a definite integral. To guarantee that the integral exists,

Section 5.2 are special cases of (5.13). 29 A common model for human limbs is the elliptical . . : . 1 ; .
frustum shown in the figure, where cross sections 0 we must place restrictions on the function, as indicated in the following

E 26 A circular swimming pool has diameter 28 ft. The depth . 1eure, o v o, discussion
. perpendicular to the axis of the frustum are elliptical ' . . o .. ’

of the water changes slowly from 3 ft at a point A on and have the same eccentricity. For human limbs, the A function f is smooth on an interval if it has a derivative f’ that
one side Zf the pg ol 9Df ‘ a;la p(()11.n t B hdlame.tnc;ally eccentricity typically varies from 0.6 to values near is continuous throughout the interval. Intuitively, this means that a small
?alf osgle ilslee di gur?' AeBp_t feacings t]‘(l)C)f (ﬁ1 eet) 1. If k =a,/b, = a,/b, and if L is the length of the change in x produces a small change in the slope f’(x) of the tangent line
cn along the diameter AS are given 1n the toflowing limb, show that the volume V is given by the equation to the graph of f. Thus, the graph has no corners or cusps. We shall define

table, where x is the distance (in feet) from A.

V= (%nL/k) (a% +aya, + a%). (Hint: Use Exercise 39

the length of arc between two points A and B on the graph of a smooth

in Section 5.1.) function.

If f is smooth on a closed interval [a, b], the points A(a, f(a)) and
B(b, f (b)) are called the endpoints of the graph of f. Let P be the parti-
tion of [a, b] determined by a = x5, x;, x,, ..., X, = b, and let Q, denote
the point with coordinates (x;, f(x,)) on the graph of f, as illustrated in
Figure 5.42. If we connect each Q,_; to Q, by a line segment of length
d(Q ,;_1, Q,), the length L, of the resulting broken line is

1“ x| 0 4 8 12 16 20 24 28
[
3

| | h(x) 35 4 5 65 8 85 9 Exercise 29
| | |
‘ Use the trapezoidal rule, with n = 7, to estimate the
volume of water in the pool. Approximate the number
| of gallons of water contained in the pool (1 gal ~

I 0.134 f£3).
n

‘ I Exercise 26 LP = Zd(Qk—l’ Qk)
ali/ &=l
e——28 ft——>1 Using the distance formula, we get

B} aids A0y 0 = /(i — 5P+ LF (5 — FO,_ P
‘ Y - 30 The base of a right elliptic cone has major and minor k=1 =k Mk k-1 k k-1
9ft . 5

| axes of lengths 2a and 2b, respectively. Find the volume By the mean value theorem (3.12),

! : s if the altitude of the cone is 4. (Hint: Use Exercise 39 in
| Section 5.1.)

f(xk) - f(xk_l) = f/(wk)(xk - xk—l)

I | Figure 5.42

ARC LENGTH AND SURFACES OF REVOLUTION

In earlier sections, we considered the volume of the solid created when
the graph of a function is revolved about an axis. In this section, we will

| determine the length of the graph and the surface area of the solid.

! For some applications, we must determine the length of the graph of a

\ function. To obtain a suitable formula, we shall employ a process similar
‘ | to one that could be used to approximate the length of a bent wire. Let

us imagine dividing the wire into many small pieces by placing dots at
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for some number w, in the open interval (x,_;, x,). Substituting for
Fxp) - S (x;_y) in the preceding formula and letting Ax, = x, — x,_,
we obtain

d(Q;_1, Q) =/ (Ax)? + [ (wp) Ax, 1
= J1+ [f’(wk)]_zAxk.

Consequently,
n —_—
Ly=Y_ L+ 17 wpPax,.
k=1

Observe that L, is a Riemann sum for g(x) = v 1+ [f ! (x)]z. Moreover,
g is continuous on [a, b], since f’ is continuous. If the norm || P|| is small,
then the length L, of the broken line approximates the length of the graph
of f from A to B. This approximation should improve as || P|| decreases,
so we define the length (also called the arc length) of the graph of f from A

to B as the limit of sums L . Since g = \fl + (f")? is a continuous func-
tion, the limit exists and equals the definite integral f V1+[f (x) dx
This arc length will be denoted by Lb

5.5 _Arc Length and Surfaces of Revolution

2 21
_2/3- D Ve I I
u=x7"4+4, du—3x dx—3x—.1/3dx.

The integral can be expressed in a suitable form for integration by intro-
ducing the factor % in the integrand and compensating by multiplying the
integral by %:

27=§J' /2/3+_4<2 1 )dx
2 Js 3 L1/

We next calculate the values of u = x%> + 4 that correspond to the limits
of integration x = 8 and x = 27:

() Ifx =8, thenu =8/ +4=38.
@ii) If x = 27, then u = 27%3 + 4 =13,

Substituting in the integrand and changing the limits of integration gives
us the arc length:

To evaluate this integral, we make the substitution

13
LY = gf Vidu =[u¥?)y =132 - 8¥2 ~ 242
8

{fi{t Definition 5.14

Let f be smooth on [a, b). The arc length of the graph of f from
A(a, f(@)) to B(b, f(b))is

l
IV Lg:fb 1+ [/ (0 dx.

{
1
‘ Definition 5.15

Interchanging the roles of x and y in Definition (5.14) gives us the
following formula for integration with respect to y.

Let x = g(y) with g smooth on the interval [c, d]. The arc length of

‘ |
| Definition (5.14) will be extended to more general graphs in Chapter the graph of g from (g(c), c) to (g(d), d) (see Figure 5.44) is

| 9. If a function f is defined implicitly by an equation in x and y, then we Figure 5.44 ;
1 shall also refer to the arc length of the graph of the equation. AY T L? — j 141 g'(y)]2 dy.
d - ’ €
Figure 5.43 EXAMPLE® 1 If f(x) = 3x%3 — 10, find the arc length of the graph
| | Ay of f from the point A(8, 2) to B(27,17). x = g(y)
The integrands v 1 + [f’(x)]2 and \/1 + [g’(y)]2 in formulas (5.14)

\ SOLUTION The graph of f is sketched in Figure 5.43. Since . . . L

i 5 (¢(c), c)  and (5.15) often result in expressions that have no obvious antideriva-

1l y = 3¢ — 10 flix) = V= 2 tives. In such cases, numerical integration may be used to approximate arc
| ‘ /3 length, as illustrated in the next example.

| o, .
‘ B(27., 17) we have, by Definition (5.14),

27 I N - EXAMPLE"2
A6.2) 1+ = B s integral for finding the arc length of the graph of the equation
> 1/3 (a) Set up an integral for finding the arc length of the graph of the equ
\/ y> —y —x =0 from A0, —1) to B(6, 2).
27

x4 (b) Approximate the integral in part (a) to at least four-decimal-place ac-
curacy by using Simpson’s rule (4.38).

/

Y

dx—J 2/3—f—4—dx

x2/3 1/3
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Figure 5.45
AY
L ox=» -y
/”_/B_((:E)_
,.a-/'DA(O, -1)

CHAPTER 5 Applications of the Definite Integral

SOLUTION

(a) Since the equation is not of the form y = f(x), we cannot apply Def-
inition (5.14) directly. However, if we write x = y3 — v, then we can use
(5.15) with g(y) = y> — y. The graph of the equation is sketched in Figure
5.45. Using (5.15) with ¢ = —1 and d = 2 yields

2
L%, :f J1+Gy?—1)2%dy
-1
2
=f Iyt — 6y%+ 2dy.
-1

(b) We compute Simpson’s rule repeatedly, beginning with n =1
and then successively doubling the number of subintervals—that is,

n=1,2,4,8,.... The following‘" table shows the results of our calcula-
tions.

n 1 SH

1 8.70226731015

2 8.94490388877

4 8.70891806925

8 8.72498046484

16 8.72499726385
32 ‘ 8.72500017224

From the table, we see that to four decimal places we obtain the approxi-
mation 8.7250 for n = 8, 16, and 32. We know, furthermore, from Theo-
rem (4.39) that another doubling of n would divide the error by 16. Thus,
subsequent changes in the approximation based on larger values of n would
not affect the first four decimal places. Our conclusion is

2 —
f V9y* — 6y% +2dy ~ 8.7250.
—1

A function f is piecewise smooth on its domain if the graph of f can
be decomposed into a finite number of parts, each of which is the graph of
a smooth function. We define the arc length of the graph as the sum of the

arc lengths of the individual graphs.
To avoid any misunderstanding in the following discussion, we shall

denote the variable of integration by ¢. In this case, the arc length formula
in Definition (5.14) is written

b D ———
= Vi+uora

If f is smooth on [a, b], then f is smooth on [a, x] for every number x in
[a, b], and the length of the graph from the point A(a, f(a)) to the point

O(x, f(x))is
L= f S+ 0P dr.

5.5 Arc Length and Surfaces of Revolution

Figure 5.46
AY

Y

If we change the notation and use the symbol s(x) in place of L}, then
s may be regarded as a function with domain [a, b], since to each x in
[a, b] there corresponds a unique number s(x). As shown in Figure 5.46,
5(x) is the length of arc of the graph of f from A(a, f(a)) to Q(x, f(x)).
We shall call s the arc length function for the graph of f, as in the next

definition.

Definiti 5.16
efinition Let f be smooth on [a, b]. The arc length function s for the graph

of f on {a, b] is defined by

s(x):jx‘/l + [ OV dt

fora <x <b.

If s is the arc length function, the differential ds is called the differen-
tial of arc length. The next theorem specifies formulas for finding ds.

Th 5.17 !
eorem Let f be smooth on [a, b}, and let s be the arc length function for the

graph of y = f(x) on [a, b]. If Ax is an increment in the variable x,
then

ds
@ —=vyi+ L)1
(i) ds =1+ [ (0)PAx

PROOF By Definition(5.16) and Theorem (4.35),

= 4 [ f Ji+ [f/(t)]zdt} =117 wrP.

Applying Definition (2.34) yields Theorem (5.17)(ii). ==
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EXAMPLE®=3 Approximate the arc length of the graph of the equa- Surface Area S of a Frustum
tion y = x> + 2x from A(1, 3) to B(1.2, 4.128) by of a Cone 5.18 S = 2m (average radius)(slant height)

Bl ]

() differentials at x, = 1
H‘ (b) the line segment from A to B

i i ite i it We shall use this fact in the following discussion.
| g)lt;l)e V;ftaﬁ) Zzo_ldlaé ;’Itll(lienagpggd to the definite integral from Definition Let f be a smooth function that is nonnegative on [a, b], and consider

I the surface generated by revolving the graph of f about the x-axis (see
‘Il SOLUTION Figure 5.47). We wish to find a formula for the area S of this surface. Let

' 3 , 2 P be a partition of [a, b] determined by a = x5, x{, ..., X, = b, and for
I (@) If we let g(x) = x” 4 2x, then ¢'(x) =3x"+2, so by Theorem : each k, let Q, denote the point (x, f(x,)) on the graph of f (see Figure
” ' (5.17)G), 5.49). If the norm || P|| is close to zero, then the broken line /, obtained
I . . . .
— 2 2 by connecting Q,_, to Q, for each k is an approximation to the graph
‘ ds = V1+(Gx"+2)"Ax. of f, and hence the area of the surface generated by revolving [, about
‘I' We obtain an approximation by letting x = 1 and Ax = 0.2: the x-axis should approximate S. The line segment Q, | Q, generates a
' / ) frustum of a cone having base radii f(x,_,) and f(x;) and slant height
il As ~ds = V1+5°(0.2) = v/26(0.2) ~ 1.01980 d(Qy_;» Qp)- By (5.18), its surface area is
| | (b) By the distance formula (4) on page 10, the length of the line segment FO,_D)+ f(x)
h from A(1, 3) to B(1.2,4.128) is m— d(Q 1> Qp)-
| H d(A, By = /(12— 1Y + 4.128 - 3% = \/(0.2)2 + (1.128)* ~ 1,14559.
| !
‘ ‘I (c) For the trapezoidal rule, with n = 10, we have Figure 5.49
b—a 12-1 |
. Ax=-"—C =T =002 sothat x,=1+002% o
n
H Figure 5.47

| From (4.37), we have
‘ y = f(x)

A .
TlO = TX[f(xo) + 2f(xl) + 2f(x2) +---+ 2f(x9) + f(xl())]
= 0.0DLf(L) + 2 (1.02) + 2£(1.04) + - - + 2£(1.18) + £(1.2)]

with f(x) = \/ 1+ (3x2 + 2)2. Calculating each term in this sum and then
adding them together is a task best left to a computing device with a built-in
program for the trapezoidal rule. Using such a program, which allows the a = x, x
user to enter the values for a, b, and n and an expression for the function

f, we obtain T,y ~ 1.456709 and T, ~ 1.456811.

[l Summing terms of this form from k& = 1 to k = n gives us the area S, of
| the surface generated by the broken line [,. If we use the expression for

| Let f be a function that is nonnegative throughout a closed interval d(Q,_,, Q) on page 474, then
' Figure 5.48 la, b]. If the graph of f is revolved about the x-axis, a surface of revolu- -
p o
l ! tion is generated (see Figure 5.47). For example, if f(x) = v/r?> — x? for S = Zzn fO_) + () ‘/1 + [f/(wk)]zAxk’
i a positive constant r, then the graph of f on [—r, r] is the upper half of the F — 2

circle x2 + y? = r2, and a revolution about the x-axis produces a sphere |

of radius » having surface area 47 r2.

If the graph of f is the line segment shown in Figure 5.48, then the
surface generated is a frustum of a cone having base radii , and r, and §= lim Sp.
slant height s. It can be shown that the surface area is 171=0

w(ry+r)s =2n (%ﬁ> s.

‘You may remember this formula as follows.

where x, _; < w, < x;. We define the area S of the surface of revolution
as

From the form of S, it is reasonable to expect that the limit is given by

b b =
f 2”%“% 14 [f/ (0P dx = f 2/ 1+ 1/ P .

a




476 CHAPTER 5 Applications of the Definite Integral
The proof of this fact requires results from advanced calculus and is omit-
ted. The following definition summarizes our discussion.

Definition 5.19 s
If f is smooth and f(x) > O on [a, b), then the area S of the surface
generated by revolving the graph of f about the x-axis is
b -
S = f 2 f (x)y/1 + [f'(x))* dx.
a
If f is negative for some x in [a, b], then the following extension of
Definition (5.19) can be used to find the surface area S:
b
S = f 27 | F )| 14 L () dx
a
We can use (5.18) to remember the formula for S in Definition (5.19).
) As in Figure 5.50, let (x, y) denote an arbitrary point on the graph of f
Figure 5.50 and, as in Theorem (5.17)(ii), consider the differential of arc length
AY p (x, )

ds = /14 [f'(x)]*Ax.

Next, regard ds as the slant height of the frustum of a cone that has average
radius y = f(x) (see Figure 5.50). Applying (5.18), the surface area of
this frustum is given by

2nf(x)ds = 2myds.

As with our work in Sections 5.1-5.3, applying /[, ba may be regarded as
taking a limit of sums of these areas of frustums. Thus,

b b
S=f 2nf(x)ds=f 2ryds.

a a

EXAMPLE®=4 Thegraphofy = /x from (1, 1) to (4, 2) is revolved
about the x-axis. Find the area of the resulting surface.

SOLUTION The surface is illustrated in Figure 5.51. Using Defini-

Figure 5.51 tion (5.19) or the previous discussion, we have

4
L 24 Szf 2y ds
1

i 1\

=f1 27 x 1+<2xl/2> dx
4 , [4x 41 4

=f 27 xY —4—dx=nf Védx + ldx
1 X 1

4
= % [(4x + 1Y 2]1 = %(173/ 2 _ 5%2y ~ 30.85 square units.

Exercises 5.5

If we interchange the roles of x and y in the preceding discussion, then
a formula analogous to (5.19) can be obtained for integration with respect
to y. Thus, if x = g(y) and g is smooth and nonnegative on [c, d], then
the area S of the surface generated by revolving the graph of g about the
y-axis (see Figure 5.52) is

d
S = f 2rg(y)y/ 1+ g (I dy.

Figure 5.52

<Y

- EXERCISES 5.5

Exer. 1-4: Set up an integral that can be used to find the 3 ng y
arc length of the graph from A to B by integrating with il
respect to (a) x and (b) y. B(—-1,3)4 L
| ]L y / ::
il B s i =" -
ulll B(3, 28) == = >
T y =4 — x? T
i y=x+1 1
- A(-3, -5 4+
3+ LA 2)
[ o o e L. e 4 AY
4 g L L I T ) I 5
a1 X
2 AY . B(—1,1)
:_V
f i i | | L
A4, ) x
m B(27,9)

Exer. 5-12: Find the arc length of the graph of the
equation from A to B.

! 5y =243 AQ, D, BB Y
T° 6 b+ 1P =(—4% AG,0), BB T
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7 y=5-—+vx% A(l, 4, B4, -3
8 y=6Vxi+1;  A(=1,7), B(=8,25)

3

x 1

. 13
Iy=5+ A, 13, B2 D)
10 +i+£_0. A2 67 109
y 4x 3 — U ( ) ﬂ)a B(3a W)

1 30xy? —y8 =15, A, 1), B(%J)
4

y 1
|2 = — _—
ST

9 9
2y2, A(g,—z), ' B(1_6’_1)

Exer. 13-14: Set up an integral for finding the arc length
of the graph of the equation from A to B.

132y —7y+2x=8; AQ(.2), B4,0)

14 11x —4x* -7y = -7, A(1,2), B0, 1)

15 Find the arc length of the graph of 34 yz/ o1
(Hint: Use symmetry with respect to the line y = x.)

16 Find the arc length of the graph of y =
3023

from (1, 2) to (2, 173).

E Exer. 17-22: (a) Set up an integral for finding the

arc length of the graph of f between A and B, and
approximate the integral by using Simpson’s rule with
n = 4. (b) Approximate the arc length from A to B by
differentials. (c) Approximate the arc length from A to B
by computing the length of the line segment from A to B.

17 () =% AQ, 1), 3(1.1, 31.12)

18 f(x) =+vx% AQ, D), 3(1.1, \/1.13)

19 f(x)y=x%  AQ, 4), B(2.1, 4.41)
20 f(x)=—x°  A(, —D), B(1.1, —1.331)
V3 31 31
21 fy=cosx; A[Z, X2}, BZE cos ot
(6 2 ) 180" “** 180
22 f(x) =sinx; A, 0), B(Z, sinZ
0.0 <90’Sm9o)

E Exer. 23-26: Use Simpson’s rule, with n = 8 or larger, or

use the numerical integration provided by a calculator or
computer application to approximate the arc length of
the graph of the equation from A to B.

23 y=x*+x+3; A(-2,5), BQ, 9

24 y = x3; A(0, 0), B(2, 8)
3
25 y =cscx; A(Z B|—
y (4, ﬁ) T V2
26 y — tanx; A0, 0), B(Z
00 5(3)

CHAPTER 5  Applications of the Definite Integral

E Exer. 27-28: Consider the arc length Lz of the graph

of f from the point A (a, f(a)) to the point B (b, f(b)).
Let a=xg,x,,... »X, =b be a regular partition of
l[a, b] with Ax = (b—a)/n. (a) Approximate Lg by
> k=14(Q,_,, Q). where Q, is the point (X f(x;)) on
the graph, for n =4 and n = 8. In general, for any n,
how does this approximation compare to LZ? (b) Set up
a definite integral for le, and approximate this integral
using the trapezoidal rule for n = 4 and n = 8.

27 f(x) =sinx; A0, 0), B(m, 0)

28 f(x) =sin(sinx); A(0, 0), B(m, 0)
Exer. 29-32: The graph of the equation from A to B is

revolved about the x-axis. Find the area of the resulting
surface.

29 4x = y?;
30 y = x3;

A0, 0), B(1,2)
Al 1), B(2,8)
oA A 2,
38y =2"+x"%  A(L, 3, B2, B
32 y=2/x+1; A, 2), B3, 4
Exer. 33-34: The graph of the equation from A to B is

revolved about the y-axis. Find the area of the resulting
surface.

33 y=2¥x; AQ,2), B, 4
34 x =4/y; A4, 1), B(12,9)
Exer. 35-36: If the smaller arc of the circle x2 + yr=125

bétwc.een the points (—3, 4) and (3, 4) is revolved about
the given axis, find the area of the resulting surface.

35 The y-axis . 36 The x-axis

Exer. 37-39: Use a definite integral to derive a formula
for the surface area of the indicated solid.

37 A right circular cone of altitude 4 and base radius r

38 A spherical segment of altitude 4 in a sphere of radius r
39 A sphere of radius r

40 Show that the area of the surface of a sphere of radius
a between two parallel planes depends only on the
distance between the planes. (Hinz: Use Exercise 38.)

41 If the graph in Figure 5.50 is revolved about the y-axis,
show that the area of the resulting surface is given by

b pr—
f 21+ 1 (0 d.

42 Use Exercise 41 to find the area of the surface generated
by revolving the graph of y = 3./x from A(1, 3) to
B(8, 6) about the y-axis.

Exercises 5.5

Exer. 43-44: Let S be the area of the surface generated
by revolving the graph of f from A(a, f(a)) to B(b, f(b))
about the x-axis. Let a = x5, X{5..., X, = b be a regular
partition of [a, b] with Ax = (b — a)/n. (a) Approximate
S by

3 2 [&l)%@] dQ 10,
k=1

where Q, is the point (x, f(x;)) on the graph for
n=4 and n = 8. In general, for any n, how does this
approximation compare to S? (b) Set up a definite
integral for S and approximate this integral using the
trapezoidal rule forn =4 and n = 8.

43 f(x) =sinx; A, 0), B(m, 0)
44 f(x)=1-x> A, 1), B(,0)

EI 45 An American football has the approximate shape of

the solid generated by revolving the arc of a circle,
x2+(y—|—k)2 =r2, where y > 0and 0 < k < r. Fora
full-sized football, the arc from point to point measures
about 14 in. along a seam. Around the widest part, the
circumference measures about 22 in. Approximate the
surface area of the football.

E| 46 For a junior-sized football, the arc from point to point

measures about 13 in. along a seam. (Assume the same
model for a football used in Exercise 45.) Around the
widest part, the circumference measures about 18 in.
Approximate the surface area for a junior-sized football.

47 One section of a suspension bridge has its weight
uniformly distributed between twin towers that are 400
ft apart and that rise 90 ft above the horizontal roadway.
A cable strung between the tops of the towers has the
shape of a parabola, with center point 10 ft above the
roadway. Suppose coordinate axes are introduced, as
shown in the figure.

Exercise 47

(a) Find an equation for the parabola.

(b) Set up an integral whose value is the length of the
cable.

() If nine equispaced vertical cables are used to support
the parabolic cable, find the total length of these
supports.

48 Let R be the region bounded by the parabola x = ay*
and the line ! through the focus that is perpendicular
to the axis of the parabola. Find the area of the curved
surface obtained by revolving R about the x-axis.

49 A radio telescope has the shape of a paraboloid of
revolution (see Exercise 47 of Section 5.2) with focal
length p and diameter of base 2a.

(a) Show that the surface area § available for collecting
radio waves is

E (b) One of the largest radio telescopes, located in Jodrell
Bank, Cheshire, England, has diameter 250 ft and
focal length 50 ft. Approximate S to the nearest
square foot.

50 (a) Show that the circumference C of the ellipse with
the equation

2/a®) + (/P =1

is given by

/2
c=4aj J1—e?sin®6do,
0

where e is the eccentricity. (This is called an elliptic
integral, and it cannot be evaluated exactly using
methods we have presented to this point.)

E (b) The planet Mercury travels in an elliptical orbit
with e = 0.206 and a = 0.387 AU. Use part (a)
and Simpson’s rule, with n = 10, to approximate the
length of the orbit.

(<) Find the maximum and minimum distances between
Mercury and the sun.
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i i hing an automobile a dis-
MPLE=1 Find the work. done in pus
tEa:CQ of 20 ft along a level road while exerting 2 constant force of 90 1b.

5.6 WORK

is i d in Figure 5.53. Since the con-
T10N  The problem is illustrate : .
:tgn:- ;’orce is F =90 Ib and the distance that the automobll.e moves 18
d = 20 ft, it follows from Definition (5.20) that the work done is

W" We may consider the concept of force as a push or pull on an object. For
example, we need a force to push or pull furniture across a floor, to lift an

Definition 5.20

object off the ground, to stretch or compress a spring, or to move a charged
particle through an electromagnetic field. In this section, we discuss the
work done by a continuously varying force.

If an object weighs 10 Ib, then by definition the force required to lift it
(or hold it off the ground) is 10 1b. A force of this type is a constant force,
since its magnitude does not change while it is being applied to the object.

The concept of work is used when a force acts through a distance. The
following definition covers the simplest case, in which the object moves
along a line in the same direction as the applied force.

If a constant force F acts on an object, moving it a distance d in the
direction of the force, the work W done is

W = Fd.

The following table lists units of force and work in the British Sys-
tem and the International System (abbreviated SI, for the French Systeme
International). In SI units, 1 Newton is the force required to impart an
acceleration of 1 m/sec? to a mass of 1 kilogram.

| | Unitof | Unitof | Unit of
System force ‘ distance . work
British ' pound (Ib) ‘ foot (ft) | foot-pound (ft-1b)
‘ - | inch(in) inch-pound (in.-1b)
International (SI) Newton (N) meter (m) Newton-meter (N-m)

—— I—

A Newton-meter is also called a joule (J). It can be shown that

IN~02251b and 1N-m = 0.74 ft-1b.

For simplicity, in examples and most exercises we will use the British
system, in which the magnitude of the force is the same as the weight, in
pounds, of the object. In using SI units, it is often necessary to consider
a gravitational constant a (9.81 m/sec?) and use Newton’s second law of

motion, F' = ma, to change a mass m (in kilograms) to a force F (in
Newtons).

W = (90)(20) = 1800 ft-Ib.

Figure 5.53

Force = 901b
=

e =

20 ft

Anyone who has pushed an automobile (or some other object) is aware

that the force applied is seldom constant. ThI:IS, if ;m iutim(g)?teirlls riltgggtril,

ired to get it moving than to Ke< .

a larger force may be require it n . ey b
f friction, since part of the

The force may also vary because o : O e

h. A force that is not constan

smooth and another part roug R e by
d for determining the wor

rce. We next develop a metho r | . rk d 2

fglriable force in moving an object rectilinearly in the same direction as th

force.

Suppose th s ar
x = b and that the force at x 18 g1ve

[a, b]. (The phrase force at x means th
dinate x.) As shown in Figure 5.54, we
of [a, b] determined by

j -axis from x = a o

ce moves an object along the x-axis .
e o n by f(x), where f is continuous on
e force acting at the point Wlt.h.coor—
begin by considering a partition P

= ith Ax, =x, — X _1-
a:xo,xl,xz,...,xn—b wit X X X

Figure 5.54 -
b
L B
A i L ‘
F RN T T B | o ,,l
—f—= = e L _,
0 a=>xy Xy X X3 Xp-1 Zr Xk Xp-1 Xn

If AW, is the increment of work—that is, the gmount of work done from
X t(])C xk-—then the work W done from a to b is the sum
k-1

N
W=AW1+AW2+---+AWH=;AW,<.

i ber z, in [x,_q» %] and con-
roximate AW,, we choose any number z, k=1 %] 2
:;%;Pgle force f (zk)kat z;- If the norm | P|| is small, then intuitively we
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@ow that the function values change very little on [x,_;» x, ] —that is, f
is almost constant on this interval. Applying Definition (5.20) gives us ’

AW, = f(z)Ax,

and hence
n n
W= AW~ f(z)Ax,.
k=1 k=1
S.inf:e this approximation should improve as || P|| — 0, we define W as a
limit of such sums. This limit leads to a definite integral.

If f(x) is the i:'orce at x and if f is continuous on [a, b], then the
wnrl; W done in moving an object along the x-axis from x = a to
x=bis

W= 1
1PI=0 Zk: A

= Lb fx)dx.

Aq analogpus definition can be stated for an interval on the y-axis by
replacmg‘)f with y throughout our discussion.
Definition (5.21) can be used to find the work done in stretching or

compressing a spring. To solve problems of this type, it i
the following law from physics. ype fHis necessanyfo nse

Hooke’s Law: The force f(x) required to stretch a spring x units be-

yond its natural length is given by f(x) = kx, wh i
called the spring constant. , wWhere k is a constant

EXAMPLE®=2 A force of 91b is required to stretch a spring from its

natural length i - L
e Sprinegng of 6 in. to a length of 8 in. Find the work done in stretching

(2) from its natural length to a length of 10 in.
(b) from a length of 7 in. to a length of 9 in.

SOLUTION

(@ .Let us introduce an x-axis as shown in Figure 5.55, with one end of the
spring attached to a point to the left of the origin and the end to be pulled
located at the origin. According to Hooke’s law, the force f(x) required to
stretch the spring x units beyond its natural length is f(x) = kx for some
constant k. Since a 9-1b force is required to stretch the spring 2 in. beyond
its natural length, we have f(2) =9. Weletx =2in f(x) = kx :. ¢

9=k-2, or k=3

5.6 Work

Figure 5.56

|—0

Definition 5.22

__.

Consequently, for this spring, Hooke’s law has the form
fx) = 3x.

Applying Definition (5.21) with a = 0 and b = 4, we can determine the
work done in stretching the spring 4 in.:

49 9 | x? !
WZLExdeE _2-'0=36in.-1b

(b) We again use the force f(x) = %x obtained in part (a). By Definition
(5.21), the work done in stretching the spring from x = 1 to x = 3 is

39 9 | x* ’
szl EXdXZE[T 1:18in.—1b.

In some applications, we wish to determine the work done in pumping
out a tank containing a fluid or in lifting an object, such as a chain or a
cable, that extends vertically between two points. A general situation is
illustrated in Figure 5.56, which shows a solid that extends along the y-
axis from y = c to y = d. We wish to vertically lift all particles contained
in the solid to the level of point Q. Let us consider a partition P of
[c, d] and imagine slicing the solid by means of planes perpendicular to
the y-axis at each number y, in the partition. As shown in the figure,
Ay, = ¥ — Yi_1> and §; represents the kth slice. We next introduce the

following notation:
7, = the (approximate) distance S, is lifted
AF, = the (approximate) force required to lift Sy

If AW, is the work done in lifting S, then, by Definition (5.20),
AW, = AFk = AF,.

We define the work W done in lifting the entire solid as a limit of sums.
W= lim 7, - AF,
uPn—m; te Sk

The limit leads to a definite integral. Note the difference between this
type of problem and that in our earlier discussion. To obtain (5.21), we
considered distance increments Ax, and the force f(z;) that acts through
Ax. In the present situation, we consider force increments AF, and the
distance z; through which A F; acts. The next two examples illustrate this
technique. As in preceding sections, we shall use dy to represent a typical
increment Ay, and y to denote a number in [c, d].
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Figure 5.57

Figure 5.58

30

dy

CHAPTER 5 Applications of the Definite Integral

EXAMPLE ®=3 A uniform cable 30 ft long and weighing 60 Ib hangs
vertically from a pulley system at the top of a building, as shown in Figure
5.57. A steel beam weighing 500 1b is attached to the end of the cable.
Find the work required to pull it to the top.

SOLUTION Let Wy denote the work required to pull the beam to
the top, and let W, denote the work required for the cable. Since the beam
weighs 500 Ib and must move through a distance of 30 ft, we have, by
Definition (5.20),

Wy = 500 - 30 = 15,000 ft-Ib.

The work required to pull the cable to the top may be found by the
method used to obtain (5.22). Consider a y-axis with the lower end of the
cable at the origin and the upper end at y = 30, as in Figure 5.58. Let dy
denote an increment of length of the cable. Since each foot of cable weighs
60/30 = 2 1b, the weight of the increment (and hence the force required to
lift it) is 2 dy. If y denotes the distance from O to a point in the increment,
then we have the following:

increment of force: 2dy
distance lifted: 30—y

increment of work: (30 — y)2dy

Applying fg 9 takes a limit of sums of the increments of work. Hence,

30
We=| (0-y2dy
0

=2[30y — 1y?]° = 900 ft-Ib.
The total work required is

W = Wj + W, = 15,000 + 900 = 15,900 ft-Ib.

EXAMPLE®4 A right circular conical tank of altitude 20 ft and
radius of base 5 ft has its vertex at ground level and axis vertical. If the
tank is full of water weighing 62.5 1b/ft3, find the work done in pumping
all the water over the top of the tank.

SOLUTION  We begin by introducing a coordinate system, as shown
in Figure 5.59. The cone intersects the xy-plane along lines of slope —4
and 4 through the origin. An equation for the line with slope 4 is

y.

ENTSN

y=4x, or x=

Let us imagine subdividing the water into slices, using planes perpen-
dicular to the y-axis, from y = 0 to y = 20. If dy represents the width of
a typical slice, then its volume may be approximated by the circular disk

5.6 Work

Figure 5.59

=Y

-!

shown in Figure 5.59. As we did in our work with volumes of revolution
in Section 5.2, we obtain

volume of disk = wx>dy = 71(%)1)2 dy.

Since water weighs 62.5 b/, the weight of the disk, and hence the force
required to lift it, is 62.571(}l y)? dy. Thus, we have

increment of force: 62.57r(313y2) dy
distance lifted: 20—y
increment of work: (20 — y)62.57 ({5 y%) dy

Applying f02 0 takes a limit of sums of the increments of work. Hence,

20 L 2 62.5 20 ) 3
W=| (0-y6257(kyHdy = ?nfo 20y? — y¥) dy
0

20
3 4
_62s [ () =62'571(40’000)m163,625ft—1b.
16 3) 4], 16 3

The next example is another illustration of how work may be calculated
by means of a limit of sums—that is, by a definite integral.

EXAMPLE®5 A confined gas has pressure p (1b/in?) and volume
v (in%). If the gas expands from v =a to v = b, show that the work done

(in.-1b) is given by

b
W=J pdv.
a

SOLUTION Since the work done is independent of the shape of
the container, we may assume that the gas is enclosed in a right circular
cylinder of radius r and that the expansion takes place against a piston
head, as illustrated in Figure 5.60. As in the figure, let dv denote the

Figure 5.60

dv = change in volume

{ | h = change in position
of piston head
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change in volume that corresponds to a change of 4 inches in the position
of the piston head. Thus,

dv = nrzh, or h= %dv.

wr
If p denotes the pressure at some point in the volume increment shown
in Figure 5.60, then the force against the piston head is the product of p
and the area 772 of the piston head. Thus, we have the following for the
indicated volume increment:

force against piston head:

p(rr?)

distance piston head moves: A

increment of work: (pnrz)h = (pnrz)i2 dv = padv
Tr

. b .
Applying [ o to the increments of work gives us the work done as the gas
expands from v = a to v = b:

b
sz pdv
a

- EXERCISES 5.6

=& = T 51 © o imaie e R

I A 400-1b gorilla climbs a vertical tree 15 ft high. Find
the work done if the gorilla reaches the top in

(a) 10sec  (b) S sec

2 Find the work done in lifting an 80-Ib sandbag a height
of 4 ft.

3 A spﬁng of natural length 10 in. stretches 1.5 in. under
a weight of 8 1b. Find the work done in stretching the
spring
(a) from its natural length to a length of 14 in.

(b) from a length of 11 in. to a length of 13 in.

4 A force of 25 Ib is required to compress a spring of
natural length 0.80 ft to a length of 0.75 ft. Find the
work done in compressing the spring from its natural
length to a length of 0.70 ft.

5 If a spring is 12 in. long, compare the work W, done in
stretching it from 12 in. to 13 in. with the work W, done
in stretching it from 13 in. to 14 in.

6 It requires 60 in.-1b of work to stretch a certain spring
from a length of 6 in. to 7 in. and another 120 in.-lb
of work to stretch it from 7 in. to 8 in. Find the spring
constant and the natural length of the spring.

7

10

A freight elevator weighing 3000 Ib is supported by
a 12-ft-long cable that weighs 14 Ib per linear foot.
Approximate the work required to lift the elevator 9 ft
by winding the cable onto a winch.

A construction worker pulls a 50-1b motor from ground
level to the top of a 60-ft-high building using a rope that
weighs 41 Ib/tt. Find the work done.

A bucket containing water is lifted- vertically at a
constant rate of 1.5 ft/sec by means of a rope of
negligible weight. As the bucket rises, water leaks out
at a rate of 0.25 Ib/sec. If the bucket weighs 4 Ib when
empty and if it contained 20 Ib of water at the instant that
the lifting began, determine the work done in raising the
bucket 12 ft.

In Exercise 9, find the work required to raise the bucket
until half the water has leaked out.

A fishtank has a rectangular base of width 2 ft and length
4 ft, and rectangular sides of height 3 ft. If the tank
is filled with water weighing 62.5 Ib/ft’, find the work
required to pump all the water over the top of the tank.

Generalize Example 4 to the case of a conical tank of
altitude . feet and radius of base a feet that is filled with
a liquid weighing p 1b/ft°.

1

Exercises 5.6

13

14
15

16

18

A vertical cylindrical tank of diameter 3 ft and height 6
ft is full of water. Find the work required to pump all the
water

(a) over the top of the tank

(b) through a pipe that rises to a height of 4 ft above the
top of the tank

Work Exercise 13 if the tank is only half full of water.

The ends of an 8-ft-long water trough are equilateral
triangles having sides of length 2 ft. If the trough is full
of water, find the work required to pump all of it over
the top.

A cistern has the shape of the lower half of a sphere of
radius 5 ft. If the cistern is full of water, find the work
required to pump all the water to a point 4 ft above the
top of the cistern.

Refer to Example 5. The volume and the pressure of a
certain gas vary in accordance with the law pvl'2 =115,
where the units of measurement are inches and pounds.
Find the work done if the gas expands from 32 in® to
40 in’.

Refer to Example 5. The pressure and the volume of a
quantity of enclosed steam are related by the formula
pvl'14 = ¢, where c is a constant. If the initial pressure
and volume are p, and v, respectively, find a formula
for the work done if the steam expands to twice its
volume.

Newton’s law of gravitation states that the force F
of attraction between two particles having masses m
and m, is given by F = Gmlmz/sz, where G is a
gravitational constant and s is the distance between the
particles. If the mass m, of the earth is regarded as
concentrated at the center of the earth and a rocket of
mass m, is on the surface (a distance 4000 mi from
the center), find a general formula for the work done in
firing the rocket vertically upward to an altitude % (see
figure).

Exercise 19

20

e

In the study of electricity, the formula F = kq/ 2,
where k is a constant, is used to find the force (in
Newtons) with which a positive charge Q of strength g
units repels a unit positive charge located r meters from
Q. Find the work done in moving a unit charge from a
point d centimeters from Q to a point %d centimeters
from Q.

EI Exer. 21-22: Suppose the table was obtained experimen-
tally for a force f(x) acting at the point with coordinate x
on a coordinate line. Use the trapezoidal rule to approxi-
mate the work done on the interval [a, b], where @ and b
are the smallest and largest values of x, respectively.

21

22

23

‘ x (£t) 0 05 10 15 20 25
| foab) | 74 81 84 78 63 71
x (ft) 30 35 40 45 50
f@ ) | 59 68 70 80 92
x (m) 1 2 3 4 5

JOMN) 125 120 130 146 165

x (m) 6 7 8 9
fOM) | 157 150 143 140

The force (in Newtons) with which two electrons repel
each other is inversely proportional to the square of the
distance (in meters) between them.

(a) If one electron is held fixed at the point (5, 0), find
the work done in moving a second electron along the
x-axis from the origin to the point (3, 0).

(b) If two electrons are held fixed at the points (5, 0)
and (-5, 0), respectively, find the work done in
moving a third electron from the origin to (3, 0).

24 If the force function is constant, show that Definition

(5.21) reduces to Definition (5.20).




