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Appendix | Theorems on Limits, Derivatives, and Integrals

APPENDICES \ Theorem [.8

PRV N P

Uniqueness Theorem for Limits

THEOREMS ON LIMITS, DERIVATIVES,
AND INTEGRALS

This appendix contains proofs for some theorems stated in the text. The
numbering system corresponds to that given in previous chapters.

If f(x) has a limit as x approaches a, then the limit is unique.

PROOF Suppose lim _, , f(x)=L; and lim__, f(x) =L, with
L, 7é L,. We may assume that L, < L,. Choose € > 0 such that
€ < (L2 — L,) and consider the open intervals (L, —¢€, L, +€)
and (L2 €, L +¢€) on the coordinate line " (see Figure 1). Slnce

(L2 L ) these two intervals do not intersect. By Definition
(1 5) there is a §; > 0 such that whenever x is in (@ — 8;,’a +§,) and
x #a, then f(x) is in’ (L1 €, L, + ¢). Similarly, there is a 8 >0
such that whenever x is in (a — 82, a-+34,) and x # a, then f(x) is in
(L, —€,L,+¢). This is illustrated in Figure 1, with §; < §,. If an x is
selected that is in both (a — 8;,a +8;) and (a — 6,,a + 82) then f(x)
isin (Ly —€,L; +€) and also in (L, — €, L, + €), contrary to the fact
that these two 1ntervals do not intersect. Hence our original supposition is
false, and consequently L, = L,. ==

Figure |
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If ggr; f(x) and }5_15 g(x) both exist, then
0] 31_13 L) +g@)] = lim fx) + }gr; g(x)
(i) }ijgz{f(X) -g(x)] = }13}1 f) }1_1}; g(x)

£ ] -
g(x) ]}1_13‘;1 g(x)

@) lim [

X—a

, provided lim g(x) # 0
X—=>a

PROOF Supposethatlim _, f(x)=Landlim_,  g(x)=

(i) According to Definition (1.4), we must show that for every € > 0
there'is a 8 > 0 such that

) if O0<|x—al<$8, then |[f(x)4+gkx)—(L+M)|<e.
We begin by writing
@ |f(x) +g(x) = (L+M)| = [(fx) — L) + (g(x) — M)|.
Using the triangle inequality
|b+c| < |b] +|e]

for any real numbers b and ¢, we obtain

|(f () = L)+ (g(x) = M)| < |f(x) = L| + |g(x) — M].
Combining the last inequality with (2) gives us
) |f(x) + gy~ (L+M)| < |f(x)—L|+|gx) - M]|.

Since lim,_ f(x) = L and lim,__, g(x) = M, the numbers | f(x) — L|
and |g(x) — M| can be made arbitrarily small by choosing x sufficiently
close to a. In particular, they can be made less than €/2. Thus, there exist

8, > 0 and 8, > 0 such that
@ if 0<ix—a| <3, then |f(x)—L|<e/2, and
if 0<|x—a| <3, then |[gx)—M|<c¢e/2

If § denotes the smaller of §, and §,, then whenever 0 < |x —a| < §, the
inequalities in (4) involving f(x) and g(x) are both true. Consequently, if
0 < |x —a| < é, then, from (4) and (3),
|f(x) +8(x) —(L+M)| <e€/2+¢€/2=F¢,
which is the desired statement (1).
(i) We first show that if k is a function and

) it limk(x) =0, then lim f(x)k(x)=0.

X—a

Since'lim,_, , f(x) = L, it follows from Definition (1.4) (with € = 1) that
there is a 8, > O such that if 0 < |x —a| < §;, then | f(x) — L| < 1 and
hence also

|f)| =|f&) —L+L|<|fx)-L|+|L| <1+]|L]|.
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Consequently,
) if 0<|x—al<3$, then |f(x)k(x)| <1+ |L|) |k(x)].

Since lim k(x) = 0, for every € > 0 there is a §, > O such that

X—a
€

@) if 0<|x—al]<3$, then |k(x)—-0]< T

If § denotes the smaller of §, and 8,, then whenever 0 < |x — a| < §, both

inequalities (6) and (7) are true and, consequently,

€
Pk < A+ILD 7

Therefore,
if 0<|x—a|l <38, then |f(x)k(x)—0|<e,

which proves (5).
Next consider the identity
(3) f@)gx) — LM = f(x)[g(x) — M1+ M[f(x) — L].

Sincelim,_, [g(x) — M] = 0, it follows from (5), with k(x) = g(x) — M,
that lim _ f(x)[g(x) — M] = 0. In addition, lim _  M[f(x) — L]‘;’='O
and hence, from (8), lim,_ [f(x)g(x) — LM]=0. The last statement is
equivalent to lim, _ , f(x)g(x) = LM.

@iii) It is sufficient to show that lim __ , 1/g(x) = 1/M, for once this
is done, the desired result may be obtained by applying (ii) to the product
f(x) - 1/g(x). Consider

1 1 M —g(x 1
‘—__=. £ = |g(x) — M.
gx) M g§x)M (M| |g(x)]
Since lim__, , g(x) = M, there is a §; > O such that if 0 < |x —al| <8,
then |g(x) — M| < |M| /2. Consequently, for every such x,

|M| = |gx) + (M - g(x)|
< lgx)| + |M — g(x)|
< g+ M| /2

9

and therefore,

M| lg(x)|, or b < 2
—_— < , —_.
2 =% g = M|
Substitution in (9) leads to

} 1 __1_|< 2
40 e~ M| = P

lg(x) — M

, provided 0 < |x —a| < §,.

Again, since lim__ , g(x) = M, it follows that for every € > 0 there is a
8, > 0 such that

M
(n if 0<|x—a|<$, then |g(x)—M|<—2—e.
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If § denotes the smaller of 8, and §,, then both inequalities (10) and (11)
are true. Thus,

1 1

- €,

if 0<|x—al<34, then <
gx) M

which means that lim,  1/g(x) =1/M. mm

Theorem [.13 . 5 ;
If a > 0 and n is a positive integer, or if @ <0 and #» is an odd

positive integer, then

lim 7/x = Ja.

AX—>a

PROOF Suppose a > 0 and n is any positive integer. We must show
that for every € > O there is a § > 0 such that

Jx = fal <,

if 0<|x—a|l<3d, then

or, equivalently,
() if —d<x—a<§ and x#a, then —e<Jx—Ja<e.

It is sufficient to prove (1) if € < /a, for if a § exists under this condition,
then the same § can be used for any larger value of €. Thus, in the remain-
der of the proof, </a — € is considered to be a positive number less than
/a. The inequalities in the following list are all equivalent:

—e<fx—a<e
Ja—e<x <a+e
(Wa—e) <x < (Ja+e)
Wa—€' —a<x—a<@a+e)" —a
~fa-Ra—e"l<x—a<Wa+e)—a
If 6 denotes the smaller of the two positive numbers a — (/a — €)" and
(/a + €)" — a, then whenever —§ < x — a < §, the last inequality in the
list is true and hence so is the first. This gives us (1).
Next suppose a < 0 and 7 is an odd positive integer. In this case, —a
and v/—a are positive and, by the first part of the proof, we may write

lim /—x =/—a.

—x—>—a
Thus, for every € > 0 there is a § > 0 such that

X — «"/—a| <€,

if 0<|—x—(—a)|<3$, then

or equivalently,
if 0<|x—a|]<§, then |v/x—+/a|<e
The last inequalities imply that lim,_,  &/x = J/a. =




Sandwich Theorem 1.15

Theorem I.18

Theorem .24
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Suppose f(x) < h(x) < g(x) for every x in an open interval con-
taining a, except possibly at a.

If lim f(x) = L= lim g(x), then lmA(x)= L.
X—>a A=>a X—>a

PROOF Foreverye > 0, thereisa$, > 0andad, > 0such that

: if 0<|x—a|<$§, then |f(x)—L| <€, and
® if 0<|x—al<3d, then [glx)—L|<e.

If § denotes the smaller of 8, and 8,, then whenever 0 < |x —a| < 8, both
inequalities in (1) that involve € are true— that is,

—e< f(x)—L<e and —e<gx)—L<e

Thus, if 0 < |x —a| <&, then L —e < f(x) and g(x) < L + €. Since
fx) <h(x) <gkx), if 0<|x—a| <3, then L —€ <h(x) <L+e,
or, equivalently, |2 (x) — L| < €, which is what we wished to prove. ==

If k is a positive rational number and c is any real number, then
¢

. c .
him 7:0 and lim 7:0,
X0 X X —0Q b

provided x¥ is always defined.

PROOF TouseDefinition (1.16) to prove that limx_mo(c/xk) =0, we
must show that for every € > 0 there is a positive number N such that

C

Z_0
xk

If c =0, any N > 0 will suffice. If ¢ # 0, the following four inequalities
are equivalent for x > 0:
— =0

k 1/k
X" 1 k_ lel lel

- < €, T lx|" > —, x>

x le] € € €

The last inequality gives us a clue to a choice for N. Letting N =
(le}/ e)l/ k we see that whenever x > N, the fourth, and hence the first,
inequality is true, which is what we wished to show. The second part of
the theorem may be proved in similar fashion. B

< € whenever x > N.

Cc

Iflim,_, . g(x) = b and if f is continuous at b, then

lim f(g@) = f®) = f ( im g(x)).
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Figure 2 PROOF Thecomposite function f(g(x)) may be represented geomet-
5% rically by means of three real lines /, ', and ", as shown in Figure 2. To
\ each coordinate x on [, there corresponds the coordinate g(x) on I’ and

then, in turn, f(g(x)) on !”. We wish to prove that f(g(x)) has the limit
S (D) as x approaches c. In terms of Definition (1.4), we must show that
for every € > O there exists a § > 0 such that

if 0<|x—c|<d, then |f(g(x))— f(b)] <e.

\ Let us begin by considering the interval (f(b) — ¢, f(b) +€) on I”,
\ shown in Figure 3. Since f is continuous at b, lim,_,, f(z) = f(b) and
| i . hence, as illustrated in the figure, there exists a number § 1 > Osuch that

fe) fo) 1" ) if |z—bl <8, then |f(z)—f(b)| <e.
In particular, if we let z = g(x) in (2), it follows that
3) if |g(x)—b| <é,, then |f(g(x))— f(b)| <e.

Next, turning our attention to the interval (b —&8,,b + §,) on [ " and using
the definition of lim, , . g(x) = b, we obtain the fact illustrated in Figure
4 — that there exists a § > 0 such that

X

P L
/
~Y

P 0

0) if 0<|x—c|<3d, then |[g(x)—0b|<3$,.

Figure 3 Figure 4

A\
i

\ ] I\‘
b—5 z b \b+31

\ \

y y

L ! | A (- I3 l | A

\ T I -
i) - f) fb) ;

7 - Tt
fb) + e ! b — & b g(x)

Finally, combining (4) and (3), we see that
if O0<|x—c|<d, then |f(g(x))— fb)| <e,

which is the desired conclusion (1). ==

Theorem 2.10a

1/n

If n is a positive integer and f(x) = x"/”", then

f/(x) dim lx(l/ﬂ)*l.
n

PROOF By Definition 2.5,

O N
! =lim -
f () = lim ” ;
Consider the identity

n—2

W =" = (-0 +u" 4 a2 ),
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If u # v, then
u—v 1

u — " un—l +un—2v+“_+uvn—2+vn—l

Substituting ¥ = (x + h)l/ "andv = xV " we obtain

(x _I_h)l/n _xl/n
x+h)—x
1

(x+h)(n—1)/n + (x+h)(n—2)/nx1/n 4o (x +h)1/nx(n—2)/n +x(n—1)/n'

Letting # — 0, we have
1
flx) =

x(n—l)/" + x(”—l)/” + .4+ x(n—lﬁn + x(”—l)/'l

1 _Lama

Toax!mUm g

Chain Rule 2.26

d, di
If y = f(u), u = g(x), and the derivatives Eﬁ and ;1-; both exist,

then the composite function defined by y = f(g(x)) has a derivative
given by

e flag x) = fgx)Ng'(x).

PROOF Since f is differentiable at g(x), we have

. flgx)+k)— f(gx))
1m
k—0 k

= f'(g(x))

so that if € > 0, there is a §; > 0 such that
f(glx) +k) = f(g(x))
k

Since g is differentiable at x, g is also continuous at x, and hence there is
a é > 0 such that

) if |h| <8, then |g(x+h)—gx)| <38,

() if 0<|k| <38, then — fllgx)| < e.

We define a function 7 by the rule
flglx+h)) — f(gx))
T(h) = glx +h) —gx)
f(g(x) if g(x +h) = g(x)

if g(x + h) # g(x)

Note that
S (gtx + h); — flgx) _ T(h)g(x + hz —g(x)
for all nonzero 4 (both sides are 0 if g(x + h) = g(x)).

Appendix I Theorems on Limits, Derivatives, and Integrals

Theorem 4.22

Let h be any real number with |h| < § and let k = g(x + h) — g(x).
Thus, by (2), |k| < 8,. If k # 0, then

f&x+m) - fgx) _ fgx)+k) — f(g(x))

I(h) = =
gx +h) —gx) k

Since |k| < §;, by (1) we also have |T'(h) — f'(g(x))| <e. If k=0,
then T(h) = f'(g(x)) so that |T(h) — f'(g(x))| = 0 < €. Thus, given an
€ > 0, there is a § > 0 such that if || < §, then |T(h) — f'(g(x))| < €.
Hence, T is continuous at O with lim,__, T'(h) = f(g(x)).

Finally, we note that

f(g()g'(x) = lim T(h) lim gx+h —sx)

h
= lim 7(p)8 TP —8®)

h—0 h

. +h)) -
i [EEED TGO _ (i

If f is integrable on [a, b] and c is any number, then ¢f is integrable
on {a, b} and

b b
fcf(x)dx:cf fx)dx,

a

PROOF If ¢ =0, the result follows from Theorem (4.21). Assume,
therefore, that ¢ # 0. Since f is integrable, fab f(x)dx = I for some num-
ber I. If P is a partition of [a, b], then each Riemann sum R, for the
function ¢f has the form ), ¢f(w,)Ax, such that for every k, w, is in
the kth subinterval [xkgl, xk] of P. We wish to show that for every € > 0
there is a § > 0 such that whenever || P| < &,

Zcf(wk)Axk’ —cl

k

< €

m

for every w, in [x,_,, x| If welete’ = ¢/ |c[, then, since f is integrable,
there exists a § > 0 such that whenever || P|| < 8,

€
el

Zf(wk)Axk—I‘ <€ =

3
Multiplying both sides of this inequality by |c| leads to (1). Hence,

lim cf (w)Ax, =cl
””””OXk: S0 8%

b
=cJ f(x)dx. mm




Theorem 4.23
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If f and g are integrable on {a, b}, then f + g and f — g are inte~
grable on [a, b] and

b b b
0] f [f(x)+g(x)]dx=f f(x)dX+f g(x)dx

b b b
(i) f = el f = ] A

a

PROOF (i) By hypothesis, there exist real numbers /; and I, such that

b b
f fx)dx =1, and f g(x)dx = 1I,.

a

Let P denote a partition of [a, b] and let R, denote an arbitrary Riemann
sum for f + g associated with P— that is,

) Ry = [f(wy)+gwp] Ax,

k

such that w, is in [xk_l, xk] for every k. We wish to show that for every
€ > Othereis ad > O such that whenever || P|| <&, |Rp — (I} + 12)| < €.
Using Theorem (4.11)(i), we may write (1) in the form

R, = Z fw)Ax, + Zg(wk)Axk.
k k

Rearranging terms and using the triangle inequality, we obtain

Rp— (I, + L)| = ‘(Zf(wk)Axk -~ 11> + (Zg(wk)Axk - 12>
k k

ey

= +

Y fwdx — 1,

k

Zg(wk)Axk -1,
k

By the integrability of f and g, if €’ = ¢/2, then there exist §; > 0 and
8, > 0 such that whenever || P|| < §; and [| P|| <4,

<€ =¢/2 and

> fw)Ax, — 1
k
3)

<€ =¢/2

Zg(wk)Axk -1,
k

for every w, in [xk_l, xk]. If § denotes the smaller of §; and §,, then
whenever || P|| < 8, both inequalities in (3) are true and hence, from (2),
|Rp — (I, + I)| < (¢/2) + (¢/2) = ¢,
which is what we wished to prove.
(ii) By Theorem (4.22) with ¢ = —1, we know that —g is integrable
on [a,b] and [ —g(x)dx = —1[” g(x) dx. Thus, by part (i), f — g =

Appendix | Theorems on Limits, Derivatives, and Integrals

Theorem 4,24

f + (—g) is integrable with

b b
f [f(X)—g(X)]dX=f Lf (x) + (—g(x))]dx

b b
- f FOr)dx + f —g(x)dx

a

b b
=J f(x)dx—J () dy. =m

If a < ¢ < b and if f is integrable on both [a, c] and {c, b], then f
is integrable on [a, ] and

b ¢ b
ff(x)dx=f f(x)a’x+f f(x)dx.

PROOF By hypothesis, there exist real numbers /; and I, such that
c b

0 f fGydx =1, and f Fdx = 1.
a c

Let us denote a partition of [a, c] by P;, of [c, b] by P,,and of [a, b] by P.
Arbitrary Riemann sums associated with P,, P,, and P will be denoted by
R P R Py and R, respectively. We must show that for every € > 0 there
isad > Osuch thatif | P|| < 8, then |Rp, — (I, + L,)| < €.

If we let €' = €/4, then, by (1), there exist positive numbers 8, and §,
such that if || P, ” < 8, and |P2 H < 4,, then

) ’RP] - Ill <€ =¢€/4 and ‘RPz - 2| <€ =¢/4.

If § denotes the smaller of 8, and §,, then both inequalities in (2) are true
whenever || P|| < 8. Moreover, since f is integrable on [a, c] and [c, b],
it is bounded on both intervals and hence there exists a number M such
that | f(x)| < M for every x in [a, b]. We shall now assume that § has
been chosen so that, in addition to the previous requirement, we also have
8 < e/(4M).

Let P be a partition of [a, b] such that || P|| < 8. If the numbers that
determine P are

a =Xy, X|, Xy, ..., X, = b,
then there is a unique half-open interval of the form (x,_,, x ;] that con-
tains c. If R, = Y p_, f(w,)Ax,, we may write

n

d—1
G)  Rp=) [w)Ax + fw)Ax,+ Y f(w)Ax,.
k=1

k=d+1



Theorem 4.26

Appendices
Let P, denote the partition of [a, c] determined by {a, x|, ..., x;_;, c}, let
P, denote the partition of [c, b] determined by {c,x,,...,x,_, b}, and
consider the Riemann sums
d—1

RP. = Z fw)Ax, + f(e)(c —x,;_;) and
@ k=l 0

Ry = f©@ =)+ D fw)Ax.

k=d+1

Using the triangle inequality and (2), we obtain

(Rp +Rp) = (I, + 1)

= ‘(RP] —I)+ (RP2 - 12)’

=t ]+ 8, -1

It follows from (3) and (4) that

'RP — (RP] + RPz)’ =|f(w,) — f(o)| Ax,.
Employing the triangle inequality and the choice of § gives us
|Rp = (Rp + Rp)| < (1 (wp)| + [ @])Ax,

< (M + M)le/(4M)] = €/2,

(6)
provided || P|| < §. If we write
|RP -+ Iz)‘ = ’RP - (RP] + RPZ) + (RP‘ + RPZ) — (L + 12)|

k]

< ‘Rp - (RP] + RPz)‘ + ‘(RPI + RPz) -, + 1)

then it follows from (6) and (5) that whenever || P|| < &,
|Rp — (I, + L)| < (€/2) + (¢/2) = €

for every Riemann sum R . This completes the proof. =

If f is integrable on [a, b] and f(x) > O for every x in [a, b], then

b
f fx)dx = 0.

PROOF We shall give an indirect proof. Let fab f(x)dx =1, and
suppose that I < 0. Consider any partition P of [a, b], and let R, =
Zk f(w,)Ax, be an arbitrary Riemann sum associated with P. Since
f(w,) >0 for every w, in [x,_,, x,], it follows that R, > 0. If we let

Appendix |
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Theorem 6.6

€ = —(I/2), then, according to Definition (4.15), whenever || P| is suffi-
ciently small,

I
R,—-1 =——,
[Rp— 1| <€ 5

It follows that R, < I — (I/2) = I/2 < 0, a contradiction. Therefore, the
supposition / < 0 is false and hence 7 > 0. ™=

If f is continuous and increasing on [a, b], then f has an inverse
function f~! that is continuous and increasing on [ f(a), f(P)].

PROOF If f is increasing, then f is one-to-one and so f~! exists.
To prove that f~! is increasing, we must show that if w, <w, in
[f(a), f(b)], then f_l(wl) < f_l(wz) in [a, b]. Let us give an indirect
proof of this fact. Suppose f "l(wz) <f ~1(u)l). Since f is increasing, it
follows that f(f_l(wz)) < f(f_l(wl)) and hence w, < w;, which is a
contradiction. Consequently, f _l(wl) < f _l(wz).

We next prove that f -1 is continuous on [f(a), f(b)]. Recall that
y = f(x) if and only if x = f~'(y). In particular, if Yo 18 in an open
interval (f(a), f(b)), let x;, denote the number in the interval (a, b) such
that y, = f(x,), or, equivalently, x, = f -1 (yo)- We wish to show that

m lim 7100 = £7100) = %

A geometric representation of f and its inverse f ! is shown in Figure
5. The domain [a, b] of f is represented by points on an x-axis and the
domain [ f(a), f(b)] of f~! by points on a y-axis. Arrows are drawn from
one axis to the other to represent function values. To prove (1), consider
any interval (x, — €, ;Vo + ¢) for € > 0. It is sufficient to find an interval
(yg — 8, yp + ), of the type sketched in Figure 6 on the following page,
such that whenever y is in (y, — §, y, + 8), 'y isin (xg — €, xy + €).
We may assume that x; — ¢ and x; + € are in [q, b]. As in Figure 7
on the following page, let §; = y; — f(x, — €) and 8, = f(xy + €) — yp.

Figure 5

m
[ )

«Q
&
%

r | 5|

T T 2| -
f@  vo=fe) fo) 7
r .‘/\ 3 -
L1 S | ;
axyg=f _I(YOK
C : 5 | -
y

o d
fla) Yo f(b)




Figure 6

-1
VY
e 1

Figure 7

I|
|
|
|
]
i
Y Yo Yo+ 8

Theorem 13.35

. } )
f@) flx, — € ylo feg + o) fB) 7
| |

e 5, —>f<—58,—>1

<Y

£®)

Since f determines a one-to-one correspondence between the numbers
in the intervals (x, — €, x, + €) and (y, — §;, y, + §,), the function val-
ues of f~! that correspond to numbers in (¥g — 8;, ¥y + 8,) must lie in
(xy — €, Xy + €). Let & denote the smaller of §; and 3,. It follows that if
yisin (yy — 4, yy + 9), then f_l(y) is in (x; — €, x;, + €), which is what
we wished to prove.

The continuity at the endpoints f(a) and f(b) of the domain of f -1
may be proved in a similar manner using one-sided limits. ==

If x = f(u,v), y = g(u, v) is a transformation of coordinates, then

0
ﬂ P59 sy e ff R G ) 0

o, )d u dv.

As (u, v) traces the boundary K of § once in the positive direction,
the corresponding point (x, y) traces the boundary C of R once in
either the positive direction, in which case the plus sign is chosen, or
the negative direction, in which case the minus sign is chosen.

PROOF Letus begin by choosing G(x, y) such that 3G/dx = F. Ap-
plying Green’s theorem (14.19) with G = N gives us

d
) ﬁF(x,y)dxdy=ff5;[G(x,y)]dXdy=3gc G(x,y)dy.
R R

Suppose the curve K in the #v-plane has a parametrization
u=¢@)v="9@); a<tr=<b.

From our assumptions on the transformation, parametric equations for the

curve C in the xy-plane are

x = flu,v) = f(@@), ¥())

y =8, v) =g@@), 1)

for a <t < b. We may therefore evaluate the line integral 95C G(x,y)dy

in (1) through formal substitutions for x and y. To simplify the notation,
let

)

H(t) = GLf (9 (1), ¥ (1)), g(p (1), ¥ (1))].
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Applying a chain rule to y in (2) gives us
dy dydu dy dv
dt  ud  ovdr
Consequently,

0
Do+ Ly,
u ov

_ dy
%C G(x,y)dy = éc H(t)z dt
b 9 9
_ f H@) [%qﬁ’(r) + %W(r)] dr.

Since du = ¢'(¢) dt and dv = V' (t) dt, we may regard the last line integral
as a line integral around the curve K in the uv-plane. Thus,

3) fﬁ G(x,y)dy = :t% Ga—y du—l—Ga—y dv.
C K ou v
For simplicity, we have used G as an abbreviation for G(f (u, v), g(u, v)).
The choice of the + sign or the — sign is made by letting ¢ vary from a to
b and noting whether (x, y) traces C in the same direction or the opposite
direction, respectively, as (u, v) traces K.
The line integral on the right in (3) has the form

§ Mdu+ N dv
K
9 3
with M=62 ad N=c2.
u av

Applying Green’s theorem, we obtain

M du+ N dv

K
ﬂ <———>dudv
H\G 3%y +8G3y Gazy 0Gay\ .
= — - - — = v
dudv  Jy v dvdu v du !
oG Ox 6G8y ay dG ox aG dy\ 9y
——\——+—=) = |dudv
A 8u 8y u) v dx dv  dy dv/ du
ox d dy 0
=ﬂ—— DTN .
dx \Judv  dudx
s

Using the fact that dG/dx = F(x,y), together with the definition of
Jacobian (13.34), gives us

a(x, y)

du dv.
) u dv

§ Mdu—l—Ndv:ﬂF(f(u,v),g(u,v
K
S

Combining this formula with (1) and (3) leads to the desired result. =
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344
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2
39 f\/uz—azduz%\/uz——az—%ln‘uﬁ—\/uz—az‘—i—c
i . 4 ‘
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2
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8 : 42j uzadu=— B 4 +ln‘u+\/u2—a2[+c
u
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= +ln

u+\/a2—Lu2

a+u

Ivatwl, e d “ Vi
u H SVu' —a -I——ln’u—l— u' —a ‘—I—C
2 2
— d
u+yat+ud|+c 44f S L I 45f = +C
u2\/u2—'a2 a’u w? —a*? a®Vu? — a?

U —a
2
d =
+C ’ 46J L = “ +ln‘u+Vu2—a2‘+C
w2 — a?)?? 2 — 2

=In

U
25[——
/a2+u2



Appendices
Forms involving a + bu
udu 1
47 fa+bu=?(a+bu—aln|a+bu|)+c
u? du 1 2 2
48 f———:—[(a—i—bu) —4a(a +bu) +2a” Inja +bull+ C
a+bu 2p°
1 b b
9jd7u=lln “ 5of2$.:___ —zna+u+C
ula@+bu) a a+ bu u“(a+ bu) au  q u
1 di 1 1 a+ bu
SIJ U du - d —|——21n|a+bu|+C 52[ = 5 = ——1n +C
(@a+bu)?  ba+bu) b u(a+buw)?  ala+bu) q

2 . 2
u”du 1 a
53 | — = — bu —
j(a—i—bu)z b’ <a+ YT At bu

55

—2a1n|a+bu|>+C

udu 2
— = —(bu —2a)Va+bu+C
Ja+bu 3b?

2

54 f“‘/—“ T budu = @(%u —2a)a+bw)? +C

u? du 2 2.2
56 | ———= = ——=(8a” +3b°u’ — 4abu)va+bu+C

Ja+ bu 156
57 f_ d”_ziln _7“‘1"%[”"—‘/5 +C, ifa>0

uva+bu Ja |Ja+bu+.a

2 ! (O e <0
/—a —a

W di

58J-—ﬂﬂdu=2\/a+bu+a _a
u uva + bu

Ja+ bu Ja+bu b du

59 _—-du=_—+_. -
u? u 2J ua+bu
2
60 fu"\/a—l—budu =" |ua+bu)? —naJ’u"’I\/aﬁ—budu]
b(2n +3)

6l u" du _2u"«/a-}1bu 2na uV du

Ja+ bu - bQ2n +1) b2n+1) ) Ja+bu

vJa+ bu

b(2n —3) du

du
62 f - —
u"a+ bu an—Du"' 2a -1 J v '\Ja+ bu

Trigonometric forms

63 fsinzudu = %u - Alfsin2u +C

65 jtanzudu =tanuy —u+ C

67 fsin3 uduy = —%(2 + sin® u) cosu + C

69 J-tan3udu = Stan®u +In |cosu| + C

cos® udu = %u+‘—1‘sin2u+c
co?udu = —cotu —u+C
cos’ udu = %(2+coszu) sinu + C

cot? udu = —1 cot? u = ~In [sinu| + C

Appendix Il Table of Integrals Al7
71 fsecSMdu = %secutanu + %ln [secu + tanu| + C 72 fcsc3udu e —% cscucotu + %m lescu —cotu| + C
1 n—1 1 -
73 fsin” uduy = ——,sin”_1 ucosu + —fsin"_zudu 74 fcos" udu = —cos" L ysiny + u fcos"_zudu
n n - n n
n 1 n—1 n—2 n -1 n—1 -2
75 | tan" udu = 1tan u— | tan" " udu 76 | cot® udu = 1cot u— | cot" “udu
n— _
n n—2 n—2 n—2
77 | sec" udu = tanu sec” “u + sec”  “udu
n—1 n—1
-1 n—2
78 fcsc” udy = cotuesc” 2 u + fcsc"_zudu
n—1 n—1
. . sinfa — b)u  sin(a + b)u J’ sinfa — b)u  sin(a + b)u
79 | sinausinbudu = - +C 80 | cosaucosbudu = — —+C
J auSIOndl == @ —b) 2a +b) " 20— b) 2a+b)
. cos(a — byu  cos(a + bu
81 | sinaucosbudu = — - +C
j s ou 2a - b) 2a+b)
82 fusinudu =sinu —ucosu + C 83 Jucosudu =cosu +usinu + C
84 fu" sinudu = —u" cosu —|—nfu"‘1 cos u du 85 J.u” cosudu = u"siny —nfu"*1 sinu du
sif" lucos”™ . m—1
86 Jsin” ucosuduy =-— fsin"’2 ucos™ udu
n+m n—+m
sintucos” 'y m—1
=— + fsin” ucos” 2y du
n+m n+m

Inverse trigonometric forms

87 fsin_luduzusin‘lu—ﬂ/l—u2+C 88 Jcos"udu——.ucos_lu—\/l—u2+C

89 |tan 'udu=utan'u— L In(1+u?)+C
w? -1 V1—u?
90 | usin~ludu = ! sin71u+u—u—+C
4 4
w? -1 V1 —u? 2.
! “ ! ‘u__u 92 futan”ludu:M; tan’lu—%—f—c

\/l—u2

1 n+1d
W cos™ u + u_a , n#-—1
v1-— u?

1 ntlyg
u”+1tan_1u—Ju 2u , n#-—1
1+u

n+1
di
u u:|’ nt—1




Exponential and logarithmic forms

1
96 fue‘“‘ du = — (au — De™ + C
a

au

98 fe“” sinbu du = —z—e—z(a sinbu — bcosbu) + C
a“+b

100 flnudu:ulnu—bH—C
J 1
102
ulnu

Hyperbolic forms

du=In |lnu|+C

103 fsinhudu:coshu—f—c

105 jtanhudu:lncoshu-{-C
107 f sech u du = tan™ ! sinhu + C
109 f sech?u du = tanhu + C

111 Jsechutanhudu‘: —sechu+ C

Forms involving \/2au — u*

[ —a [ 5 a* —
113 j\f’Zau—uzdu:%\;Zau—uz—l—%cos‘l (a

/ 2w — au —3a° |
)
114 u\/2mi —udt = ————

Appendices

1 n
97 fu”e“” du = ~u"e — = [ W le®™ dy
a a

au

99 fe‘”‘ cosbu du = (acosbu + bsinbu) + C

a’ +b?

n-+l
101 JM" Inudu = (”+ 1)2[(71-1-1)1nu— 11+ C
n

coshu du = sinhu + C

cothu du = ln |sinhu| + C

csch?udu = —cothu + C

eschucothudu = ~cschu + C

108 f csch u du :ln‘tanh%u’ +C

u
>+C

—_ =, 3 .
\/Zau—uz—i—%cos_l (a u)—i—C

6 a
2
115 j\/au du_\/Zau—u +acos_1< u)—i—C
a
/ _ 2 ' _ 42 _
16 jx2au2 u _ 2\/2(,314 u-—cosfl <a u>+c
u U a
du _1fa—u
117 ,.'—72=COS < a >+C
v2au —u
d f _
118 Miu_:—’“2au—uz—{—acos_1 a-u +C
2au — u? a
w® du u+3a; - 3a® _1<a—u>
119 V2au — u? + = cos +C
V2au — u? 2 a

d 2
IZOJ u _ V2au —u L C

u\/2au—u2 - au

Appendix Ill  The Binomial Series
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THE BINOMIAL SERIES

The binomial theorem states that if k is a positive integer, then for all
numbers a and b,

-1
k(k )ak—2b2 +

(a+b¥ =d*" +ka b+ >

+k(k—l) (k—n—I—l)knbn bk
n!
If weleta = 1and b = x, then
k(k—1
(1+x)k=1+kx+%x2+
kk—1---(k— 1
+ ( : nv( il )xn+-~-+xk.

If k is not a positive integer (or 0), it is useful to study the power series
Y a,x" withay=1anda, =k(k —1)---(k —n + 1)/ n!forn > 1. This
infinite series has the form

k(k—1) k(k=1)---(k—n+1)

1+ kx +———- + - x4
2! n!

and is called the binomial series. If £ is a nonnegative integer, the series

reduces to the finite sum given in the binomial theorem. Otherwise, the
series does not terminate. Using the formula for a,, we can show that

n+1

a, X _

a,x

lim

Tlim x| = Jx]..

‘Hence, by the ratio test (8.35), the series is absolutely convergent if |x| < 1

and is divergent if |x| > 1. Thus, the binomial series represents a function
f such that

f(x):1+Zk(k_1)'”(k—"+1)x" it x| < 1.
n=1

n!

We have already noted that if k is a nonnegative integer, then f(x) =
(1 + x)*. We shall now prove that the same is true for every real number
k. Differentiating each term of the binomial series gives us

ktk—1)---(k — 1
F) =k +k(k— Dx + -+ KEZD '( ntl)
n!
and therefore,
xf'(6) = kx 4 k(k — 1)x2 4 - 4 "REZD '( nt D .
n!
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If we add corresponding terms of the preceding two power series, then the
coefficient of x" is

n+Dk(k—1)---(k—n) nk(k—=1)---(k—n+1)
' (n + 1)! n! ’

which simplifies to

k(k—=1)--(k—n+1)
n! h

[(k —n) +n] ka

Consequently,
o0
F@)+xf' () =) ka,x" =kf(x),
n=0

or, equivalently,

Fx)A +x) —kf(x) =0.
If we define the function g by g(x) = f(x)/(1 4+ x)¥, then
AR ) = fEk1+x)
B 1+ x)*

A+ 00 k@) _
- (1 +x)k+1

g'(x)

0.

It follows that g(x) = ¢ for some constant c— that is,

J(x)

(1 + x)*

Since f(0) = 1, we see that ¢ = 1 and hence f(x) = (1 + x)k, which is
what we wished to prove. The next statement summarizes this discussion.

If |x| < 1, then for every real number k,
k(k—1) 5
Tx 4.

k(k—1)-(k—n+1
k=D nf ntl) ,

(1+x)*=1+kx+

o B

EXAMPLE®]

(a) Find a power series representation for f(x) = J1+x.

(b) Plot the graphs of f and g(x) =1+ %x.

(c) Use the graphs to estimate the largest closed interval of [—1, 1] on
which | f(x) — g(x)| < 5.
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Figure |

F&x)=vT+x, gx

)=1+1ix

-1<x<1,0<y<14

ud

05 1

Figure 2

h(x) = [ f(x) — g(x)]
—1<x<1,0<y<025

o]

015 1

w‘% |

1 —05

0.5 1

SOLUTION
(a) Using the binomial series with k = %, we obtain

1 id-p Ll 1yl 2o
m=1+§x+4332, x2+ﬁ———3)'(3 Ji g,

1.1 1
o d=n+1
fG-DG-ntn

* n!

which may be written as

3 1 2 1-2-5
Vi+x=14-x— 5 x*+ 3 g

3 321 3 -3!

1-2.--(3n— 4
+<—1)"“—3n,(n! D .

for |x| < 1. The formula for the nth term of this series is valid provided
n=>2.

(b) The function g(x) =1 + %x consists of the first two terms of the power
series representation of f. By graphing these functions, we can gain a
sense of how closely the first-degree polynomial g approximates f. We
use a graphing utility to plot f and g for —1 <x <land0 <y <1.4o0n
the same axes, as shown in Figure 1. We see that g(x) appears to be at least
as large as f(x) over the entire interval. We also note that the values of f
and g are relatively close to each other for —0.5 < x < 1. The closer x is
to —1, the farther apart are the values f(x) and g(x).

(c) To find the x-values where f and g are within Tlﬁ unit of each
other, we graph the constant function 11—0 and the function h(x) =
| f(x) — g(x)|. Figure 2 shows the graphs. By using the trace operation
or Newton’s method, we find that the graphs cross at approximately
—0.70664905. Thus, we conclude that | f(x) — g(x)| < 11—0 on the interval

[—0.70664905, 1]. If we use 1 + (x/3) to approximate ~/1 + x for any x
in this interval, the error will be less than TIG'

EXAMPLE®2 Find a power series representation for v/ 1 + x*.

SOLUTION The power series can be obtained by substituting x* for
x in the series of Example 1. Hence, if |x| < 1, then

1
3/ 4 _ L4
1+x_1+3x ¥ 2

11:2:-Gn=4) ,
3" . n!

X+

+(=D" sy




03 21 Refer to Exercise 82 of Section 7.7. The formula for the (a) Use the binomial series for (1 — x)“l/ 2 to show that
EXAMPLE®=3 Approximate V1 + x*dx. period T of a pendulum of length L, initially displaced
0 from equilibrium through an angle of 6, radians, is given L )
. . T~27r [— 1+ -k .
by the improper integral 8 4

SOLUTION Integrating the terms of the series obtained in Example

2 gives us e f% 1 " (b) Approximate 7 if 6, = /6.
g Jo /cost —cos,

0.3
3 4 e — . e
V1+x"dx = 0.3 +0.000162 — 0.000000243 + - - - - By making the substitution sinu = (1/k) sin 16, with

0
_ . 1 .
Consequently, the integral may be approximated by 0.300162, which is ke = sin 36, it can be shown that
accurate to six decimal places, since the error is less than 0.000000243. L (72 |
gJo  V1—k*sinu

The binomial series can be used to obtain polynomial approximation
formulas for (1 + x)*. To illustrate, if |x| < 1, then from Example 1,

«/31+x%1+%x.

Since the series is alternating and satisfies (8.30) from the second term

onward, the error involved in this approximation is less than the third term,

1.2
§x.

- EXERCISES

Exer. 1-12: Find a power series representation for the S T B * / 2
expression, and state the radius of convergence. 14 f(x) =sinh™"x; sinh"x = o A/V1+15dt
I (@ V1+x by V1-x E Exer. 15-18: Approximate the integral to three decimal
2 () 1 ®) 1 places, using the indicated exercise.
2) ———— -
J1+x J1 - 52 1/2
g 15 f V1+x3dx (Exercise 1)
3 (1+x) 3 4 1+ x4 0
: 1/2
5 (1—x)3° 6 (1—x)%3 16 f / - ! = dx  (Exercise 2)
7 (1+x)7? 8 (1+x)7* 0 Vi4x
_ _ 0.3
9 (1+x)7° 10 x(1+2x) 7 17 o (Exercise 7)
n 0 (14x3)?
Il </8+x (Hint: Consider 2,/1 + gx.) o
. 1
3/2 I8 f ————dx (Exercise 8)
12 4+ x0) 0 (1+5x%

Exer. 13-14: (a) Obtain a power series representation for [ c | Exer. 19-20: For the given k, graph f(x) = (1 + x)* and

F(x) by using the given relationship. (b) Find the radius g(x) = 1+ kx on the same xy-plane for —1 <x < 1. Use
of convergence. the graphs to estimate the largest closed interval of

[—1, 1] on which | f(x) — (0] < .
X
13 f(x)zsin_lx; sin'1x=f0(1/m)df 19 k=% 2°k=%



