MATH 122: Calculus II Some Notes on Assignment 8

I: Section 6.2: 44, 51

Exercise 44: Using the properties that $\ln \frac{AB}{C} = \ln A + \ln B - \ln C$ and $\ln A^n = n \ln A$.

Exercise 51: Use the product rule to find the derivative of the second term: velocity s'(t) simplifies to $-c\left(\ln\frac{m_1+m_2-bt}{m_1+m_2}\right)$ and the acceleration $=s''(t)=\frac{bc}{m_1+m_2-bt}$

(a) Initial velocity = 0, initial acceleration = $s''(0) = \frac{bc}{m_1 + m_2}$

(b) Burnout: $s'\left(\frac{m_2}{b}\right)$

II: Section 6.3: 20, 25, 32

Exercise 20: 1.

Exercise 25: Use Product Rule on $f(x) = e^{3x} \tan \sqrt{x}$

Exercise 32: Implicit differentiation.

$$y' = \frac{e^y + 2}{\frac{1}{y+1} - xe^y}$$

III: Section 6.4: 1, 7, 14

Exercise 1: Let u = 2x + 7. Answer is $ln\sqrt{3}$

Exercise 7: Let $u = \cos 2x$ Indefinite integral is $-\frac{1}{2} \ln |\cos 2x| + C$. Definite integral has value $\frac{\ln 2}{4}$.

Exercise 14: Let $u = (2 + \ln x)$