MATH 122: Calculus II

Some Hints and Answers for Assignment 30

I: Section 8.9: 41, 43

Exercise 41: Maclaurin series for $\cos x$ begins $1 - x^2/2! + 0x^3 + x^4/4!$ so error is of form $\frac{\cos z}{4!}x^4$. $|R_3(x)| \le \left|\frac{(1)(0.1)^4}{24}\right| = \frac{1}{240000} \approx 4.1 \times 10^{-6} < 0.5 \times 10^{-5}$; accurate to 5 decimal places.

Exercise 43: Maclaurin series for e^x begins $1 + x + x^2/2! + x^3/3!$. $|R_2(x)| \le \left| \frac{e^{0.1}(0.1)^3}{6} \right| \approx .00018$; 3 decimal places.

II: Section 9.2: 15, 22, 26

Exercise 15: Here $x=3t^2-6t$ has dx/dt=6t-6=6(t-1) which is 0 when t=1; similarly, $y=\sqrt{t}$ has $dy/dt=\frac{1}{2\sqrt{t}}$ which is 0 at t=0. We have $\frac{dy}{dx}=\frac{1}{12\sqrt{t}(t-1)}$ which is never 0 (so no horizontal tangents) and is undefined (vertical tangents) at t=0 and t=1.. When t=0, the curve is at the point (0,0); at t=1, it is at (-3,1). To find the second derivative d^2y/dx^2 , we first differentiate $\frac{dy}{dx}=\frac{1}{12\sqrt{t}(t-1)}$ with respect to obtain (using the quotient rule) $\frac{1-3t}{24\,t^{3/2}\,(t-1)^2}$ and then divide this expression by dx/dt=6(t-1) to get $\frac{1-3t}{144\,t^{3/2}\,(t-1)^3}$.

Plot of
$$x = 3t^2 - 6t$$
, $y = \sqrt{t}$, $t \ge 0$

Exercise 22: $(dx/dt)^2 + (dy/dt)^2 = 9 + 9t = 3^2(1+t)$. Length = $2[5^{3/2} - 1]$

Exercise 26: Length = $\int_0^{\pi/2} 3\cos t \sin t \, dt = \left| \frac{3}{2}\sin^2 t \right|_0^{\pi/2} = \frac{3}{2}$.

III: Section 9.3: 1, 9, 30

Exercise 1: r = 5 is the circle of radius 5 with center at origin.

Exercise 9: $r = 2 + 4\sin\theta$. The curve is a limacon; see the discussion of Examples 2 and 3 in Section 9.3. . Here are helpful pictures:

Cartesian Coordinate plot of $r = 2 + 4 \sin \theta$

Polar Coordinate plot of $r = 2 + 4 \sin \theta$

Exercise 30: Let $x = r \cos \theta$, $y = r \sin \theta$. Then $r = 8 \sin \theta \sec^2 \theta$ which we can also write as $r = 8 \tan \theta \sec \theta$