MATH 122: Calculus II Some Hints and Answers for Assignment 26

I: Section 8.5: 31, 44, 45

Exercise 31: The series $\sum \frac{(-1)^n}{(n-4)^2+5}$ converges absolutely. For large n, we have $(n-4)^2+5\approx (n-4)^2\approx n^2$ so the series should behave like $\sum 1/n^2$

Exercise 44: The series $\sum a_n$ converges. The Ratio Test and Alternating Series Test will be useful.

Exercise 45: The claim is false. Consider a converging alternative series $\sum a_n$ and let $b_n = a_n$. You need to choose a_n carefully. Is the claim true if both series are series of positive terms.

II: Section 8.6: 19, 23, 25

Exercise 19: Ratio of Successive Terms approaches 9|x-2|. The interval of convergence is $[2-1/9, 2+1/9) = [\frac{17}{9}, \frac{19}{9}]$.

Exercise 23: In the limit of the ratio of successive terms we have one factor approaching 1, one approaching |x-3|, one approaching e and one of the form n+1 so the ratio has limit ∞ for all x except 3 where limit is 0. Thus the series converges only at x=3.

Exercise 25: Here the Ratio of Successive Terms reduces to

$$\left(\frac{\ln(n+1)}{\ln n}\right)\frac{1}{e}|x-e|$$

Use l'Hôpital's Rule to find the limit. The interval of convergence is (0, 2e).

III: Section 8.7: 1, 5

Exercise 1: $f(x) = \frac{1}{1-3x}$ is the sum of the geometric series with first term 1 and common ratio 3x. By Theorem 8.40, $f'(x) = \sum_{n=0}^{\infty} n 3^n x^{n-1}$ and $\int f(x) = \sum_{n=0}^{\infty} 3^n \frac{x^{n+1}}{n+1}$

Exercise 5 $\frac{x^2}{1-x^2} = x^2 \frac{1}{1-x^2}$ which is x^2 times the geometric series with first term 1 and common ratio x^2 .