MATH 122: Calculus II: Some Hints and Answers for Assignment 2/

I: Section 8.3: 43, 49, 57
Exercise 43: Start with n 4+ 3™ > 3™ so ﬁ < % and thus % < "l’gﬂ Note also that n? < 2"

for n > 3. Our converges converges by comparison to a geometric series with ratio %

Exercise 49: From the results of the proof of (8.23) with f(z) = %4—1 and then f(z) = 1/z, we have
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Exercise 57: If Y a, converges, then a,, — 0 so ai diverges. Apply nth-term Test.
II: Section 8.4: 13, 17, 21
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Exercise 13: lim /a, = 1 You may need ’'Hopital’s Rule to find that limit is indeed 2.
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Exercise 17: lim a, = lim ¢ ( n ) =3 Series Converges

Exercise 21: Ratio Test

Intl _ 99n+1((n + 1)5 +2) 10%"n? —= & < 1 so series converges
an  \ (n+ 121020+ 90" (n2+1) " 100 8es:

ITI: Section 8.5: 1, 6,11 Alternating Series Test applies for all three series.



