MATH 122: Calculus II

Some Hints and Answers for Assignment 23

I: Section 8.2: 43, 57, 61

Exercise 43: Difference of two convergent geometric series? $\sum (2^{-n} - 3^{-n}) = 1 - \frac{1}{7} = \frac{6}{7}$.

Exercise 57: Consider $\sum (a_n - a_n)$ where $\sum a_n$ diverges.

Exercise 61: (a) Use the fact that the amount of the drug in bloodstream immediately after the kth dosage is Q+ amount left in the blood stream after the (k-1)st dosage times e^{-cT} ; that is, A(k)=

 $\begin{array}{l} Q + A(k-1)e^{-cT}. \\ \text{(b) } A(k) < \frac{Q}{1 - e^{-cT}} \\ \text{(c) We want } \frac{Q}{1 - e^{-cT}} < M \text{ so } T > -\frac{1}{c} \ln \frac{M - Q}{M}. \end{array}$

II: Section 8.3: 22, 29, 36

Exercise 22: Comparison Test: $3 + \sqrt{n} < \sqrt{n} + \sqrt{n}(n > 9)$ so $\frac{1}{3 + \sqrt{n}} > \frac{1}{2\sqrt{n}}$ and $\frac{1}{2} \sum \frac{1}{\sqrt{n}}$ which diverges by p-series test with p = 1/2. We can also use Limit Comparison Test with $a_n = \frac{1}{3 + \sqrt{n}}$ and $b_n = \frac{1}{\sqrt{n}}$ where $\lim_{n\to\infty} (a_n/b_n) = 1$

Exercise 29: For large values of n, $2n + n^2 \approx n^2$ and $n^3 + 1 \approx n^3$ so $\frac{2n + n^2}{n^3 + 1}$ should behave like $\frac{n^2}{n^3} = \frac{1}{n}$. You could also use a direct comparison test showing $a_n > b_n$ for all n.

Exercise 36: The series should behave like the convergent series $\sum \frac{1}{n^2}$ Using Limit Comparison with $a_n = \frac{n + \ln n}{n^3 + n + 1}$ and $b_n = \frac{1}{n^2}$.

III: Section 8.4: 1,5, 9

Exercise 1: Use Ratio Test: Ratio has limit 1/2.

Exercise 5: Ratio has limit 0.

Exercise 9: Ratio Test:

$$\frac{a_{n+1}}{a_n} = \frac{n+1}{e} \to \infty \text{ as } n \to \infty$$