MATH 122: Calculus II Hints and Answers for Assignment 18

I: Section 7.4: 34, 37

Exercise 34: $\frac{1}{u(a+bu)} = \frac{A}{u} + \frac{B}{a+bu} = \frac{Aa+(Ab+B)u}{u(a+bu)}$. We need Aa = 1 and Ab+B = 0 so A = 1/a, B = -b/a. The integral $= \frac{1}{a} \ln \left| \frac{u}{a+bu} \right| + C$

Exercise 37: Note that $f(x) = \frac{x}{x^2 - 2x - 3}$ is negative throughout the interval [0,2] so the area is $-\int_0^2 f(x) dx$. Now $f(x) = \frac{A}{x+1} + \frac{B}{x-3}$ with A = 1/4, B = 3/4. The area is $\frac{1}{2} \ln 3 \approx 0.549$.

II: Section 7.7: 21, 30, 34

Exercise 21: $\int_1^\infty \frac{1}{x^4} dx$ converges and $1 + x^4 > x^4$

$$\int_{1}^{\infty} \frac{1}{x^4} \, dx = \frac{1}{3}$$

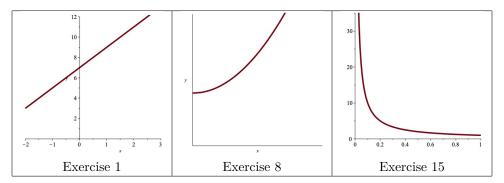
Exercise 30: (a) $\int_0^\infty R(t) dt = \int_0^\infty mke^{-kt} dt$ is total mass of fuel burned over all future time. (b) The amount burned in the first T seconds is $\int_0^T mke^{-kt} dt = m(1 - e^{-kT})$. The spacecraft will never run out of fuel.

Exercise 34: If k is a positive constant, then $\int 12000e^{-kt} dt = -12000\frac{1}{ke^{kt}}$ so $\int_T^b 12000e^{-kt} dt$ has limit $A = 12000\frac{1}{ke^{kT}}$ as $b \to \infty$. For T = 20, we have $A = 12000\frac{1}{ke^{20k}}$.

(a) Here k = .08 so $A = \frac{12000}{.08e^{.16}} \approx \$30, 284$ (b) Integrate $12000e^{.04t}e^{-.08t} = 12000e^{-.04t}$ so k = .04 and $A \approx \$134, 799$.

III: Section 9.1: 1, 8, 15

Exercise 1: $x = t - 2, y = 2t + 3, 0 \le t \le 5$. x = t - 2 implies t = x + 2. Then y = 2(x + 2) + 3 = 2x + 7Graph is straight line from (-2, 3) to (3, 13).



Exercise 8: $x = \sqrt{t}, y = 3t + 4, t \ge 0$: We have $x^2 = t$ so $y = 3x^2 + 4$. Graph is right hand side of parabola.

Exercise 15: $y = \csc t = \frac{1}{\sin t} = \frac{1}{x}$. Graph is hyperbola: (x, y) varies asymptotically from positive vertical axis to (1,1)