## MATH 122: Calculus II Hints and Answers ffor Assignment 17

## I: Section 7.3: 27, 28

**Exercise 27:** We have  $dy/dx = \frac{\sqrt{x^2-16}}{x}$  so  $y = \int \frac{\sqrt{x^2-16}}{x} dx$ . This is essentially the same integration problem as Example 3 in Section 7.3 of the text with  $4^2$  replacing  $3^2$  and can be solved the same way. C = 0

**Exercise 28:** Here  $\frac{dy}{dx} = \frac{x^3}{\sqrt{1-x^2}}$  with y(0) = 0. Thus  $y = \int \frac{x^3}{\sqrt{1-x^2}} : dx$ . Let  $\sin \theta = x$ . C = 2/3.

## II: Section 7.4: 10, 20

**Exercise 10:** Factor denominator:  $x^3 - 4x^2 - 5x = x(x^2 - 4x - 5) = x(x - 5)(x + 1)$ . Thus

$$\frac{4x^2 - 5x - 15}{x^3 - 4x^2 - 5x} = \frac{A}{x} + \frac{B}{x - 5} + \frac{C}{x + 1}$$

A=3, B=2, C=-1 The integral equals  $3\ln|x|+2\ln|x-5|-\ln|x+1|+K$ .

**Exercise 20:** Let  $u = x^2 + 1$ 

III: Section 7.7: 1, 9, 18

Exercise 1:

$$\int_{1}^{\infty} \frac{1}{x^{4/3}} dx = \lim_{b \to \infty} \int_{1}^{b} x^{-4/3} dx = 3$$

Exercise 9:

$$\int_{-\infty}^{-1} \frac{1}{x^3} dx = \lim_{a \to -\infty} \int_{a}^{-1} \frac{1}{x^3} dx = -\frac{1}{2}$$

**Exercise 18:** Use Partial Fraction Decomposition. Answer is  $\frac{1}{2} \ln 2 \approx 0.347$