MATH 122: Calculus II Hints and Answers for Assignment 16

I: Section 7.2: 25, 29

Exercise 25: Note that $\csc^4 x \cot^4 x = \cot^4 x \csc^2 x \csc^2 x = \cot^4 x (1+\cot^2 x) \csc^2 x = \cot^4 x \csc^2 x \cot^6 x \csc^2 x$ and use the fact that the derivative of $\cot x$ is $-\csc^2 x$. Let $u = \cot x$, then $du = -\csc^2 x du$.

Exercise 29: Since $\sec^2 x$ is the derivative of $\tan x$, a reasonable substitution to try is $u = 1 + \tan x$.

II: Section 7.3: 14, 18, 22

Exercise 14: $\int \frac{1}{49+x^2} dx$. Set up right triangle with x as a opposite side and 7 as adjacent side, making hypotenuse $\sqrt{49+x^2}$; see picture below. Then our substitutions are $\tan\theta=x/7$ so $x=7\tan\theta$ and $dx=7\sec^2x\theta\,d\theta$ with $49+x^2=49\sec^2\theta$. Then $\int \frac{1}{49+x^2}\,dx=\int \frac{7\sec^2\theta}{49\sec^2\theta}\,d\theta=\frac{1}{7}\int 1\,d\theta=\frac{1}{7}\arctan(x/7)+C$

Exercise 18: c Set up right triangle with 5x as opposite side and 4 as adjacent side. Then hypotenuse is $\sqrt{25x^2+16}$; see picture above. Simplest ratio involving x is $\tan\theta=5x/4$ so use $x=\frac{4}{5}\tan\theta$

Exercise 22: $\int \frac{3x-5}{\sqrt{1-x^2}} dx$ Set up right triangle with x as opposite side and 1 as hypotenuse so adjacent side is $\sqrt{1-x^2}$.

III: Section 7.4: 2, 3, 5

Exercise 2:
$$\frac{x+34}{(x-6)(x+2)} = \frac{A}{x-6} + \frac{B}{x+2} \int \frac{x+34}{(x-6)(x+2)} dx = \int \frac{5}{x-6} + \frac{-4}{x+2} dx = 5 \ln|x-6| - 4 \ln|x+2| + K$$

Exercise 3:
$$\frac{37-11x}{(x+1)(x-2)(x-3)} = \frac{A}{x+1} + \frac{B}{x-2} + \frac{C}{x-3} = \frac{A(x-2)(x-3)+B(x+1)(x-3)+C(x+1)(x-2)}{(x+1)(x-2)(x-3)}$$
 Thus (*)37 - 11x = $A(x-2)(x-3) + B(x+1)(x-3) + C(x+1)(x-2)$ Step 1: Set $x = -1$ in (*): 37 - 11(-1) = $A(-3)(-4) + 0 + 0$ so $48 = 12A$ which gives $A = 4$ Step 2: Set $x = 2$ in (*): $15 = B(3)(-1)$ so $B = -5$ Step 3: Set $x = 3$ in (*): $4 = C(4)(1)$ so $C = 1$

Exercise 5:
$$\frac{6x-11}{(x-1)^2} = \frac{A}{x-1} + \frac{B}{(x-1)^2}$$

$$\int \frac{6x-11}{(x-1)^2} dx = \int \frac{5}{6x-1} - \frac{5}{(x-1)^2} dx = 6 \ln|x-1| + \frac{5}{x-1} + K$$