## MATH 122: Calculus II

Hints and Answers for Assignment 13

I: Section 6.7: 51, 60, 69

**Exercise 51**: Let  $\tan \theta = \frac{x}{4}$ .  $\int_0^4 \frac{1}{x^2 + 16} dx = \frac{\pi}{16}$ 



**Exercise 60:** Consider a right triangle with hypotenuse  $x^3$  and horizontal side 2; then the vertical side is  $\sqrt{x^6-4}$ . The simplest ratio in the triangle involving x is  $\frac{x^3}{2}$  which is  $\sec \theta$ . See picture above.  $\int \frac{1}{x\sqrt{x^6-4}} \, dx = \frac{1}{6} \operatorname{arcsec} \left(\frac{x^3}{2}\right) + C$ 

**Exercise 69:** (See Figure above): Let h(t) be height of missile t seconds after firing and  $\theta$  the angle of elevation. We are looking for h'(t) at the instant  $\theta = 30^{\circ} = \pi/6$  radians. Switch to radian measure. One relation between h and  $\theta$  that is true at every second is  $\tan \theta = h/5$  so  $h(t) = 5 \tan \theta(t)$ . At the given instant, we have  $h' = \frac{2\pi}{27} mi/sec$ .

## II: Section 6.9: 28, 36, 42

Exercise 28: Limit is 0 (l'Hôpital's Rule does not apply!)

**Exercise 36**: Let  $u = \frac{1}{x}$ . Then  $\frac{e^{-1/x}}{x} = \frac{e^{-u}}{1/u} = \frac{u}{e^u}$ . Limit is 0.

Exercise 42: (a) K; l'Hôpital's Rule does not apply here).

(b) y(t) is a  $\frac{\infty}{\infty}$  form as  $K \to \infty$ . Limit is  $y(0)e^{rt}$  Then consider 2 cases: K is unbounded and K is bounded.

## III: Section 7.1: 1, 7, 13

Integration By Parts Formula:  $\int u \, dv = uv - \int v \, du$ 

**Exercise 1**: Let u = x and  $dv = e^{-x} dx$ .  $\int x e^{-x} dx = --e^{-x} (x+1) + C$ .

**Exercise 7**: Let u = x and  $dv = \sec x \tan x dx$ . Then  $\int x \sec x \tan x dx = x \sec x - \ln(|\sec x + \tan x|) + C$ .

**Exercise 13**:  $\int \sqrt{x} \ln x \, dx = \frac{2}{3} x^{3/2} \ln x - \frac{4}{9} x^{3/2} + C$ .