MATH 122: Calculus II

Some Hints and Answers for Assignment 12

I: Section 6.6: 21, 22

Exercise 21: $I(x) = I_0 e^{-f(x)}$ has $I'(x) = I_0 e^{-f(x)} \times (-f(x))' = -I(x)(f'(x))$ but $f(x) = k \int_0^x p(h) \, dh$ so the Fundamental Theorem of Calculus yields f'(x) = kp(x) and thus I'(x) = -kp(x)I(x)

Exercise 22: $f(n) = 3 + 20 (1 - e^{-0.1n})$

- (a) $f(5) \approx 10.87$; $f(9) \approx 14.87$; $f(24) \approx 21.19$; $f(30) \approx 22$
- (b) f'(n) is positive for all n while f''(n) is negative so graph of f is increasing and concave down.
- (c) $f(n) = 23 e^{-0.1n}$; exponential term goes to 0 as n gets large.

II: Section 6.7: 27, 30, 41

Exercise 27: (a) $y = \operatorname{arccot} x$ means $x = \cot y$ for any real number x and $0 < y < \pi$.

Graph of $\operatorname{arccot} x$ on $[0, \pi]$ Visualizing $\cot y = u$

(c) If $y = \operatorname{arccot} u$, then $\cot y = u$. Taking derivatives with respect to x we have $(-\csc^2 y)$ y' = u' so $y' = (-\sin^2 y)(u'(x)) = -\frac{1}{1+u^2}u'(x) = (-\arctan y)'$

Exercise 30: Draw lines from the critic's eyes to the top of the painting and to the bottom of the painting. See picture below. Let x be the distance between the critic and the painting. We let α be the angle of elevation to the painting's top and β the angle of depression to the painting's bottom.

(a) We have a right triangle ATB with $\tan \alpha = 8/x$ and another right triangle ABC with $\tan \beta = 2/x$.

Note also that $\theta = \alpha + \beta = \arctan(8/x) + \arctan(2/x)$. (b) Use $\tan \theta = \tan(\alpha + \beta) = \frac{\tan \alpha + \tan \beta}{1 - (\tan \alpha)(\tan \beta)} = \dots = \frac{10x}{x^2 - 16}$. Note that to get a positive angle, we need x > 4

(c) Since the tangent of $45^{\circ}=1$, we need to solve $\frac{10x}{x^2-16}$. = 1; that is $x^2-16=10x$ or $x^2-10x-16=0$. Apply the quadratic formula to obtain $x = 5 \pm \sqrt{41}$. Since x > 0, we have $x = 5 + \sqrt{41} \approx 11.4$ feet.

Exercise 41: $f'(x) = -\sin(\frac{1}{x})(-\frac{1}{x^2}) + \sec x \tan x - \frac{1}{\sqrt{1-x^2}} = \sin(\frac{1}{x})(\frac{1}{x^2}) + \sec x \tan x - \frac{1}{\sqrt{1-x^2}}$

III: Section 6.9: 1, 10, 19

These 3 problems can be done with or without l'Hôpital's Rule

Exercise 1: $\frac{1}{2}$

Exercise 10:0

Exercise 19: By 2 applications of l'Hôpital, limit is $\frac{2}{5}$