MATH 122: Calculus II Hints and Answers for Assignment 11

I: Section 6.5: 45, 48, 53

Exercise 45: The area is $\int_0^1 2^x - (1-x) dx$

Exercise 48: The amount accumulated by time t is $A(T) = \int_0^T 5(.95^t) dt = \left[\frac{5}{\ln .95} .95^t\right]_0^T = \frac{5}{\ln .95} \left[.95^T - 1\right]$. We want to choose T so that this amount is 50: $50 = \frac{5}{\ln .95} \left[.95^T - 1\right]$. $T = \frac{\ln(1+10 \ln .95)}{\ln .95} \approx 14.02$ minutes.

Exercise 53: (a) $R(x) = a \log \left(\frac{x}{x_0}\right)$ so $R(x_0) = a \log \left(\frac{x}{x_0}\right) = a \log 1 = a(0) = 0$

(b) We can also write R(x) as $R = a \log \left(\frac{x}{x_0}\right) = a \log x - a \log x_0$ where second term is constant. Then $S(x) = dR/dx = \frac{a}{\ln 10} \frac{1}{x} = \frac{k}{x}$ where $k = \frac{a}{\ln 10}$ is constant; Thus S is inversely proportional to x. Finally, note $S(2x) = \frac{k}{2x} = \frac{1}{2} \frac{k}{x} = \frac{1}{2} S(x)$ so S(x) = 2S(2x).

II: Section 6.6: 10, 15, 19

Exercise 10: Let N(t) be the number of ticks per minute t days after it was 2000. Then $N(t)=2000e^{rt}$. Half life is at time T where N(T)=1000 Solve T to get $T/10\ln(3/4)=\ln(1/2)$ so $T=\frac{10\ln(1/2)}{\ln(3/4)}\approx 24.09$ days

Exercise 15: Let U(t) be number of units of the drug t hours after the operation. Then $U(t) = U_0 e^{rt}$.

$$U_0 = 600e^{-\left(\frac{3}{4}\right)\left(-\frac{\ln 2}{4}\right)} = 600e^{\frac{3}{16}\ln 2} = 600e^{\ln(2^{3/16})} = 600\left(2^{\frac{3}{16}}\right) \approx 683.27$$

Exercise 19: Let q(t) be amount of ^{14}C present at t years. Then $q(t)=q_0e^{at}$. $T=\frac{-(\ln 5)5700}{-\ln 2}\approx 13,235$ years.

III: Section 6.7: 1, 9, 18

Exercise 1: (a) $-\pi/4$; (b) $2\pi/3$; (c) $-\pi/3$

Exercise 9: (a) $\sqrt{3}/2$ (b) 0

(c) undefined...

Exercise 18: To find $\sec(\arcsin x/3)$, draw a right triangle with angle θ that has $\sin \theta = x/3$. Let opposite side by x and hypotenuse 3. Find adjacent third side by Pythagorean Theorem.