MATH 122: Calculus II Hints and Answers for Assignment 15

I: Section 7.1: 37, 48, 53

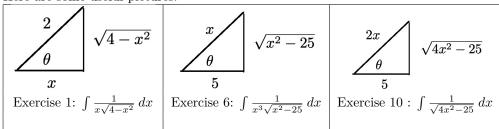
Exercise 37: Use integration by parts on $\int \arccos x dx$ with $u = \arccos x$, dv = dx. Answer is $x \arccos x - \sqrt{1-x^2} + C$

Exercise 48: Work = $\int_0^1 x^5 \sqrt{x^3 + 1} dx$. Write integrand as $(x^3)(x^2(x^3 + 1)^{1/2})$ and use integration by parts. Work equals $\frac{4}{45}(\sqrt{2} + 1)$.

Exercise 53: The argument treats $\int \frac{1}{x} dx$ as if it were a **number** when it fact it is a set of functions.

II: Section 7.2: 13, 17, 21

Exercise 13: $\int \tan^6 x \, dx$


. Use the identity $\tan^2 x = \sec^2 x - 1$ and $(\tan x)' = \sec^2 x$: $\int \tan^6 x \, dx = \frac{1}{5} \tan^5 x - \frac{1}{3} \tan^3 x + \tan x - x + C$.

Exercise 17: $\int (\tan x + \cot x)^2 dx = \int \tan^2 x + 2(\tan x)(\cot x) + \cot^2 x dx = \int \tan^2 x + 2 + \cot^2 x dx$ = $\int (\tan^2 x + 1) + (\cot^2 x + 1) dx$

Exercise 21: Observe that $\sin^3 x = (\sin^2 x)(\sin x) = (1 - \cos^2 x)(\cos x)'$ and try the substitution $u = \cos x$. Answer is $\frac{5\sqrt{2}}{2} + \frac{2}{3}$

III: Section 7.3: 1, 6, 10

Here are some useful pictures:

Exercise 1:

$$= -\frac{1}{2} \ln \left| \frac{2}{x} + \frac{\sqrt{4 - x^2}}{x} \right| + C = -\frac{1}{2} \ln \left| \frac{2 + \sqrt{4 - x^2}}{x} \right| + C$$

Exercise 6:

$$\frac{1}{250} \left(\operatorname{arcsec} \left(\frac{x}{5} \right) + \left(\frac{\sqrt{x^2 - 25}}{x} \right) \left(\frac{5}{x} \right) \right) + C$$

Exercise 10:

$$\frac{1}{2}\ln\left|\frac{2x+\sqrt{4x^2-5}}{5}\right|+C$$