MATH 122A Calculus II **Sample Examination 3**

- 1. Define what it means for a sequence to **bounded**
- 2. .(a) Determine whether the sequence $\{an\}$ where $an = 1/5^n$ is increasing, decreasing, or not monotonic. Is the sequence bounded? Does it_converge?
 - (b) Give an example of a sequence which bounded but does not converge.
- 3. For each of the two series below, determine if it converges or diverges. If it converges, find the sum:

(a)
$$1 + 0.4 + 0.16 + .0064 + ...$$

(b)
$$\sum_{n=1}^{\infty} \frac{(-6)^{n-1}}{5^n}$$

4. Determine whether the series is convergent or divergent: $\sum_{n=1}^{\infty} \frac{7n - n^{1/3}}{n^5}$

$$\sum_{n=1}^{\infty} \frac{7n - n^{1/3}}{n^5}$$

5. Use the integral test to determine if the following series converges or diverges

$$\sum_{n=2}^{\infty} \frac{1}{n^2 - 1}$$

6. Test the series for convergence

$$\sum_{n=1}^{\infty} (-1)^n \frac{2n}{4n^2 + 1}$$

7. Test for absolute convergence

$$\sum_{n=1}^{\infty} \frac{(-3)^n}{n!}$$

8. Find the interval of convergence of the power series $\sum_{n=1}^{\infty} \frac{x^n}{n3^n}$

$$\sum_{n=1}^{\infty} \frac{x^n}{n3^n}$$

- 9. (a) Either give an example of an infinite series that sums to 10^{2023} or show that no series can add up to that large a number.
 - (b) Suppose $\{a_n\}$ is a sequence of positive numbers such that $\sum a_n$ converges. Provide a careful argument that $\sum a_n^2$ must also converge.
- 10. Determine which of the following improper integrals converge and which diverge: (a) $\int_1^\infty \frac{1}{\sqrt{x}} dx$ (b) $\int_0^1 \frac{1}{\sqrt{x}} dx$ (c) $\int_0^\infty \frac{1}{1+x^2} dx$ (d) $\int_2^4 \frac{1}{x-4} dx$

(a)
$$\int_1^\infty \frac{1}{\sqrt{x}} dx$$

(b)
$$\int_{0}^{1} \frac{1}{\sqrt{x}} dx$$

$$(c) \int_0^\infty \frac{1}{1+x^2} \, dx$$

(d)
$$\int_{2}^{4} \frac{1}{x-4} dx$$

/