MATH 122A Calculus II

Sample Examination 1

- 1. (a) Explain the difference between a Lorenz Function and a Gini Index.
 - (b) Find the Gini Index if

$$L(x) = \begin{cases} \frac{3}{4}x & \text{if } 0 \le x \le \frac{1}{3} \\ \frac{27}{16} \left(x - \frac{1}{3} \right)^2 + \frac{1}{4} & \text{if } \frac{1}{3} \le x \le 1 \end{cases}$$

- (c) Suppose $L(x) = x^p$ for some constant p. Determine the value of p if the Gini Index =
- (d) Using your answer for (c), write an expression for the portion of the total wealth owned by the top 5% of the population.
- 2. Let f be the function defined by $f(x) = \frac{3}{8+x^3}$ on the closed interval I = [-1,4].
 - (a) Show that f is a one-to-one function.
 - (b) If g is the inverse of f, determine $g'(\frac{1}{2})$
 - (c) Find f' and determine the maximum and minimum values of f on the interval I.
 - (d) Determine where the graph of f is concave up and where it is concave down. Identify all points of inflection.
 - (e) Sketch a graph of f.
- 3. Differentiate each of the following functions with respect to *x*:

(a)
$$P(x) = \ln(\sin x)$$

(b)
$$Q(x) = e^{x^2 + 7x}$$

(c)
$$R(x) = log_8(\cos x)$$

(d)
$$S(x) = \ln(e^x)$$

(e)
$$T(x) = x^x$$

(a)
$$P(x) = \ln(\sin x)$$
 (b) $Q(x) = e^{x^2 + 7x}$ (c) $R(x) = \log_8(\cos x)$ (d) $S(x) = \ln(e^x)$ (e) $T(x) = x^x$ (f) $U(x) = \int_2^x \frac{\sin t}{t} dt$

$$s(g) V(x) = \int_{1}^{\sqrt{x}} \frac{3}{8+t^2} dt$$

4. Suppose all we know about a continuous function f is that f(0) = 0, f(1) = 1, f'(x) > 00, all x, and $\int_{0}^{1} f(x) dx = \frac{1}{4}$.

Find $\int_0^1 f^{-1}(x) dx$ where f^{-1} is the inverse of f.

- 5. (a) Give a careful statement of the Fundamental Theorem of Calculus.
 - (b) What is the definition of the natural logarithm function?
 - (c) How is the number e defined?
- The amount x of light affects the rate y of photosynthesis by the relationship

$$y = f(x) = x^a e^{\left(\frac{a}{b}\right)(1-x^b)} = x^a exp\left(\left(\frac{a}{b}\right)1 - x^b\right)$$

where x > 0 and a and b are positive constants. Show that f has a maximum at x = 1.