MATH 122A Some Notes on Sample Final Examination Spring 2023

- 1 Short Answer Questions
 - (a) What is the relationship between the natural logarithm and natural exponential functions? They are inverses of each other.
 - (b) Our text shows Maclaurin series for several commonly used functions such as the sine and cosine but does not display a Maclaurin series for the cotangent. Why?

 Maclaurin series requires that the function and all its derivatives be defined at 0, but cotangent x has no value at x = 0.
 - (c) Give an example of a positive series $\sum_{n=1}^{\infty} a_n$ which converges but $\sum_{n=1}^{\infty} \sqrt{a_n}$ diverges. $a_n = \frac{1}{n^2}$
 - (d) Explain why the integration by parts formula is correct. **Integrate both sides of the product rule for differentiation:**

$$\int (uv)' = \int u'v + \int uv' \text{ so } \int uv' = uv - \int u'v$$

- (e) Give an example to show the claim "Every bounded sequence converges" is false. $\{(-1)^n\}$
- 2. (a) Let C be the curve described by parametric equations $x = \sin^2 t$, $y = \cos 2t$, $0 \le t \le \pi/2$
- (i) Sketch a graph of C. Since $y = \cos 2t = 1 2\sin^2 t = 1 2x$, the graph is the straight line segment from (0,1) to (1,-1).
- (ii) Find the equation of the normal line to the curve at $t = \pi/4$ The slope of the tangent line is $\frac{y'(t)}{x'(t)} = \frac{-2 \sin 2t}{2 \sin t \cos t}$ which has value -2 at $t = \pi/4$. Slope of normal line is 1/2. The point is
- (1/2, 0) so the equation of the normal line is $y = \frac{1}{2}(x \frac{1}{2})$
- (ii) Determine the length of the curve. Note that $y'(t) = -2 \sin 2t = -2 (2 \sin t \cos t) = -4 \sin t \cos t$.

Then
$$\sqrt{[x'(t)]^2 + [y'(t)]^2} = \sqrt{20 \sin^2 t \cos^2 t} = 2\sqrt{5} \sin t \cos t = \sqrt{5} \sin 2t \sin 2t \cos t$$

Length $= \int_0^{\pi/2} \sqrt{5} \sin 2t \, dt = \sqrt{5} \left[-\frac{\cos 2t}{2} \right]_0^{\pi/2} = \sqrt{5}$

- (iv) Find y as an explicit function of x See above: y = 1 x.
- (v) Rewrite the equation you found in (iv) in polar coordinates. Use $x = r \cos \theta$, $y = r \sin \theta$.

Then y = 1- x becomes
$$r \sin \theta = 1 - r \cos \theta$$
 or $r = \frac{1}{\sin \theta + \cos \theta}$

(b) Find a power series solution for the differential equation f'(x) = 5x + 2f(x) if f(3) = 7.

$$f''(x) = 5 + 2 f'(x), f^{(3)}(x) = 2 f''(x), f^{(4)}(x) = 2 f^{(3)}(x), \dots, f^{(n+1)}(x) = 2 f^{(n)}(x) \text{ for } n > 2$$

Thus f(3) = 7, $f'(3) = 5 \times 3 + 2 \times 7 = 29$, $f''(3) = 5 + 2 \times 29 = 63$, $f^{(3)}(3) = 2 \times 63$, $f^{(4)}(3) = 2^2 \times 63$ and, in general for n > 2, $f^{(n)}(3) = 2^{n-2} \times 63$. The series solution is

$$7 + 29(x-3) + \frac{63}{2!}(x-3)^2 + \frac{2 \times 63}{3!}(x-3)^3 + \dots + \frac{2^{n-3} \times 63}{n!}(x-3)^n + \dots$$

3. Let
$$f(x) = \frac{\ln x}{x}$$
 for $x > 0$.

(a) Determine the intervals where the function is increasing and where it is decreasing.

By Quotient Rule, $f'(x) = \frac{1 - \ln x}{x^2}$ which is positive for 1 < x < e and negative for x > ee. Thus f is increasing on (0, e) and decreasing on (e, ∞)

- (b) Find the maximum value of the function. Maximum occurs at x = e where value is
- (c) Discuss the concavity of the graph of the function and determine all points of inflection.

Use Quotient Rule again to find $f''(x) = \frac{-3+2\ln x}{x^3}$, which changes sign from negative to positive at $x = e^{3/2}$ where there is the only point of inflection. (d) Find $\lim_{x \to \infty} f(x)$. This is an $\frac{\infty}{\infty}$ indeterminate form so we can use l'Hopital's Rule: $\lim_{x \to \infty} \frac{\ln x}{x} = \lim_{x \to \infty} \frac{1/x}{1} = 0$.

- 4. (a) Use the Integral Test to determine if $\sum_{n=3}^{\infty} \frac{\ln n}{n^2}$ converges or diverges.

To find an antiderivative, use integration by parts with $u = \ln x$, $dv = \frac{1}{r^2}$ so $du = \frac{1}{r}$, $v = \frac{1}{r^2}$ $-\frac{1}{x}$. Then $\int \frac{\ln x}{x^2} dx = -\frac{\ln x}{x} + \int \frac{1}{x^2} dx = \frac{-\ln x - 1}{x}$. The value of the improper integral is $\lim_{h\to\infty}\left(\frac{-\ln b-1}{b}+\frac{\ln 3+1}{3}\right)=\frac{\ln 3+1}{3}.$ The Improper Integral converges so the series converges

(b) For n > 1, determine which is larger: $\frac{n \ln n}{(n+1)^3}$ or $\frac{\ln n}{n^2}$ Since $(n+1)^3 > n^3$, we have $\frac{n \ln n}{(n+1)^3} < \frac{n \ln n}{n^3} = \frac{\ln n}{n^2}$

(c) Use the results of (a) and (b) to determine whether the series with $a_n = \frac{n \ln n}{(n+1)^3}$ converges or diverges.

The a_n series is positive and term by term smaller than a convergent series. By the Comparison Test, it also converges

5. (a) Use your knowledge of Geometric Series to show that

$$\frac{1}{1+x} = 1 - x + x^2 - x^3 + x^4 - x^5 + \dots + (-1)^n x^n + \dots$$

Right hand side is a geometric series with a=1 and r=-x. Series sums to $\frac{a}{1-r}=\frac{1}{1-(-x)}=\frac{1}{1-($ $\frac{1}{1+x}$ if |x| < 1

(b) Use the result of (a) to find a Maclaurin series for ln(1+x)

Integrate each side of the equation to obtain $\ln 1 + x = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \frac{x^5}{5} - \frac{x^6}{4} - \frac{x^$ $\cdots + (-1)^{n-1} \frac{x^n}{n} + \dots$

(c) What is the radius of convergence for the series in (b) Same as geometric series: 1

(d) If we use the first 5 terms of the power series for $\ln(1+x)$ to approximate $\ln(\frac{1}{2})$, estimate the error.

As we have an alternating series, error has size less than 6^{th} term: $\left(\frac{1}{2}\right)^6/6$

- (e) Find a Maclaurin Series for $\frac{\ln{(1+x)}}{x}$ Divide each term in (b) by x.
- 6. A colony of harmful bacteria grows at a constant rate (300 bacteria per hour) and reaches a level of 20,000 when it begins to be felt as a harmful threat to a human it has invaded. At this moment, an antibiotic agent is injected which kills 2% of the remaining bacteria per hour in a continuous manner.
- (a) Discuss why the differential equation B'(t) = 300 .02B(t) is a good model for subsequent growth of the colony.
- (b) Without solving the differential equation for B as an explicit function of t, discuss what will happen in the long run to the bacteria population. Population will decline as long as B'(t) is negative. Since B' = 0 when $B = \frac{300}{.02} = 15,000$, population will have limit of 15,000
- (c) Now solve the differential equation and determine the number of bacteria 24 hours after the injection.

Separate variables and integrate:

$$\int \frac{B'(t)}{300-.02B(t)} dt = \int 1 dt \text{ to obtain } -\frac{1}{.02} ln(300-.02B(t)) = t + C \text{ so } ln(300-.02B(t)) = -.02 t + C$$

and then $300 - .02B(t) = C e^{-.02t}$. Apply initial condition B(0) = 20000 to get 300 - 400 = -100 = C.

Thus B(t) = 15000 +5000 $e^{-.02t}$. Number of bacteria after 24 hours is $B(24)=15000+5000e^{-.48t}$