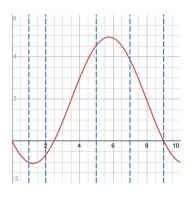
Math 121 - Calculus I

Exam 3: Practice Exam

Name: Section:


Please be sure to neatly **show and explain all of your work** and clearly label your answers. Except for your index card, this exam is a closed-book, closed-notebook exam. Calculators are not allowed.

Please write and sign the Honor Pledge here when you are done:

Signed:

Problem	Points .
1	/10
2	/10
3	/10
4	/8
5	/12
6	/10
Total	/60

1. Consider the following graph of the function f(x).

Consider the values x=1,2,5,7,9. For each question below, list all of these values that apply. For each, explain your reasoning.

- (a) For which of these values is f(x) > 0?
- (b) For which of these values is f'(x) > 0?
- (c) For which of these values is f(x) increasing?
- (d) For which of these values is f'(x) increasing?
- (e) For which of these values is the slope of f(x) negative?
- (f) For which of these values is the slope of f'(x) negative?

2. Suppose that

$$f(x) = (3x+8)^{1/3}.$$

(a) Use a linearization to estimate the value of f(0.1).

(b) Is your estimate an overestimate or an underestimate? Please explain.

3. Suppose that the *derivative* of f(x) is given by

$$f'(x) = \frac{(x-1)^2 x}{(x+1)^3}.$$

Find the local maxima and minima of f(x) assuming that the domain of f(x) is all $x \neq -1$.

4. Find the absolute maximum and absolute minimum values of

$$f(x) = x + \frac{1}{x}$$

on the interval [0.2, 4].

5. Use first and second derivative information to sketch a graph of

$$f(x) = 4x^5 - 5x^4 - 12.$$

Clearly label the coordinates of the y-intercept and the x-values of any local maxima, local minima, or inflection points.

6. A box with a square base and open top must have a volume of 32,000 cm³. Find the dimensions of the box that minimize the amount of material used. Confirm that your dimensions minimize the amount of material used.