

Turing Machines VII
Friday, October 31

Handouts:
Assignment 20

On some input, a TM may run indefinitely without ever accepting
or rejecting.

For example, it may loop on that input. Such a machine will never
halt.

Simple Examples

1. A TM to recognize 2 (a decider)

2. A TM to compute f (x) = x + 1 for an integer x ≥ 1 (the
increment or plus one function).

3. A TM that does not halt.

4. A TM to ’compute’ f (x) = 2x for an integer x ≥ 1 (the
doubling function)

5. A TM that adds two non-negative integers:

f (x , y) = x + y for two non-negative integers x and y .

Note: Leavitt discusses a TM to add two integers (page 68)
but since he never gives a careful, precise definition for a TM,

it is difficult to follow some of what he says.
Does his TM only work for 2 + 2?.

Two More Examples

▶ A TM that accepts strings over the alphabet {a, b} that
contain an arbitrary number of a’s followed by an arbitrary
number of b’s. So the strings aabb, aaaabbbbbb, bb, aaab will
all be accepted while bbaa or abba will be rejected. This TM
is a decider.

▶ (Hard) A TM to carry out subtraction; that is, to compute
f (x , y) = x − y where x ≥ y ≥ 0

An Alternate Proof for The Halting Problem (HP)

Suppose there exists a Turing Machine MH
that decides Halting Problem; that is, if we feed ⟨M, x⟩ to MH it
will print ’yes’ if M halts on input x and ’no’ if M does not halt on
x (for any Turing Machine M and input string x).

Given the existence of MH we can create a new machine MH*
that on input M, run MH on ⟨M,M⟩; if MH prints ”yes” Loop
else (if MH prints ”no”) Halt.

Given the existence of MH we can create a new machine MH*
that on input M, run MH on ⟨M,M⟩; if MH prints ”yes” Loop
else (if MHprints ”no”) Halt.

So MH* on M halts if and only if M on M does not halt.
Now, what about MH* on MH* ? (a self reference)
MH* on MH* halts if and only MH* on MH* does not halt.
So, MH cannot exist (assuming so leads to a contradiction).

Turing used Self-Reference to
attack the

”Entscheidungsproblem”

We can also use the notion of ”self-reference” to prove the Halting
Problem. (Turing’s Entscheidungs or ”decision” problem).

Does an algorithm exist to ”decide” the following problem:
Given a TM M and an input string x, does M eventually halt when

it is run with x on its tape?

Given an algorithm H() and its input x, does H() halt when run on
x?

(does H(x) halt?)
We will show the Halting Problem is undecideable in the sense
that no Turing machine can ever answer ”yes” or ”no” to the

above question(s).

What is wrong with the following attempt at an algorithm? ”Just
run M on x and see.”
Answer: M may never answer ”yes” or ”no” since it may never
halt!
Alternate form: Can we write a special program that will take any
other program that someone has written as well as the data it will
run on and decide whether

▶ it will eventually stop (halt) or

▶ it will run indefinitely?

We will see that Turing ”stood on the shoulders of giants” in the
sense that he was influenced by mathematicians such as Cantor
(the idea of a ”diagonalization” argument) and Gödel (the
incompleteness theorems as well as the idea of encoding something
like ”This sentence is false” into a number).

Question: How many TMs are there?

It is possible to encode all of the information needed to describe a
TM as a finite string. So, there are no more TMs than there are
strings over a finite alphabet.

Given a finite alphabet such as Σ = a, b, how many strings are
there? There are an infinite number of course but the degree of
infinity is ”countable” since we can list or ”itemize” the strings by
size:
Σ = ϵ, a, b, aa, ab, ba, bb, aaa, aab, ?
So the total number of TMs is at most countably infinite (similar
to the set of integers).

The Halting Problem (HP): ”Given a TM M and an input string x,
does M halt when it is run with x on its tape?”

Theorem: The Halting Problem, HP, is undecidable.

Proof: (by contradiction, using ”diagonalization”) -assume there is
a rule for deciding if a given TM will halt.

Construct a table as follows:

List all Turing machines down the side List the possible inputs
across the top In position (i , j) put the result of executing Turing
machine i on input j .
If it halts, output H.
If it doesn’t halt, output L (for loops)

1 2 3 4 5 . . .

T1 H H L H H . . .

T2 L L H H H . . .

T3 H H H H H . . .

T4 H H H L H . . .

T5 H H H H H . . .

. . .

1 2 3 4 5 . . .

T1 H H L H H . . .

T2 L L H H H . . .

T3 H H H H H . . .

T4 H H H L H . . .

T5 H H H H H . . .

. . .

Now define a new TM called D that will halt for all inputs.
It outputs H if Ti(i) does not halt and L if Ti(i) does halt
D:L H L H L ?
Now, our assumption is that the above table lists all possible TMs.
It can’t be T1 since D differs from the operation of T1 in the first
column,
it can’t be T2 since D differs from the operation of T2 in column
2, and so forth.

An alternate way to reach this same contradiction is as follows:

We already said that the assumption is that we can always decide
if a given TM halts. Also, we said this table lists all possible TMs.
This is a contradiction. We cannot determine if an arbitrary

program/TM will halt when run on some input string x.

