Turing Machines VI

Wednesday, October 29

Handouts:

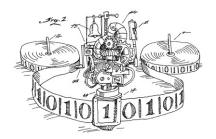
Assignment 19 A Simple Turing Machine

ON COMPUTABLE NUMBERS, WITH AN APPLICATION TO THE ENTSCHEIDUNGSPROBLEM

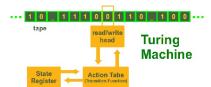
By A. M. TURING.

[Received 28 May, 1936.—Read 12 November, 1936.]

The "computable" numbers may be described briefly as the real numbers whose expressions as a decimal are calculable by finite means. Although the subject of this paper is ostensibly the computable numbers, it is almost equally easy to define and investigate computable functions of an integral variable or a real or computable variable, computable predicates, and so forth. The fundamental problems involved are, however, the same in each case, and I have chosen the computable numbers for explicit treatment as involving the least cumbrous technique. I hope shortly to give an account of the relations of the computable numbers functions, and so forth to one another. This will include a development of the theory of functions of a real variable expressed in terms of computable numbers. According to my definition, a number is computable if its decimal can be written down by a machine.



What Exactly is a Turing Machine?



$$T = (Q, \Sigma, \Gamma, \delta, q_0, B, F)$$

Where:

Q = Set of states

 Σ = Input alphabet

 Γ = Tape alphabet $(\Sigma \subseteq \Gamma)$

 δ = Transition function

 $\delta: Q \times \Gamma \to Q \times \Gamma \times \{L,R\}$

 q_{\cap} = Start state

B = Blank symbol

 $F = Set of accepting states (F \subseteq Q)$

Turing Machine Definition

- 1. a finite input alphabet Σ (used to create strings to be processed)
- 2. a finite tape alphabet Γ that contains Σ as well as a special blank symbol # (or \square or \clubsuit) in Γ but not in Σ
- 3. a finite set of states Q
- 4. an infinite tape with cells (infinite to the left and right and indexed as ... #, #, -3, -2, -1, 0, 1,2 ,3, #, # . . .)
- a tape head that can move left (L) or right (R) over the tape, reading and writing symbols onto tape cells as it proceeds
- 6. a special start state q_0
- 7. a special accept (or yes) state q_{yes} (or q_{acc})
- 8. a special reject (or no) state q_{no} (or q_{rej}) with $q_{acc} \neq q_{rej}$
- 9. a special transition function $\delta: Q \times \Gamma \to Q \times \Gamma \times \{L, R\}$ that describes how the **TM** operates on a specific input string.

Some Comments

- Everything is finite except for the tape. If you object to an infinite tape, you can simply view it as being unbounded (or unlimited).
- ► There are slight differences between how TMs can be defined but the definitions do not differ in significant ways.
- ▶ We shall view the special accept and reject states as final in the sense that once the TM enters one of these "halting" states the machine stops.
- We shall assume the tape cells are indexed by the integers . . #, #, -3, -2, -1, 0, 1, 2, 3, 4, #, #, . . .
- And that each of the cells contains the special blank symbol just before we place any input string onto the tape.
- ▶ We will always place an input string to be "processed" onto the tape with its left end at cell 0.

So, for example, if the input string is *abcd* the contents of the tape will be

$$\{...\#, \#, \#, a, b, c, d, \#, \#, ...\}$$

(with a at cell 0).

Note that, given this assumption, we are guaranteed to have a blank symbol at each end of the input string.

More Comments

- ► The TM machine's tape head always starts at cell 0.
- ▶ The TM machine always starts in state q_0 .
- This is often called the start configuration.
- It is the transition function $\delta()$ that determines the *action* of a specific TM.

```
How do you read \delta(q,a)=(q',b,L) given the definition \delta:Q\times\Gamma\to Q\times\Gamma\times\{L,R\} ? Answer: when in state q scanning symbol a on the tape, write b over the tape cell, move the head left by one cell, and enter state q'.
```

▶ In terms of modern computers, you can think of the tape as being (an unlimited amount of) *memory* and the transition function (along with the states) as being the *control unit* (within the CPU).

How it Works

A Turing machine begins in its start state with its tape head at cell 0 scanning the leftmost symbol in the string. At each step, it reads the symbol under its head, and, depending on that symbol and its current state, it

- writes a new symbol on that cell (possibly the same),
- moves its head either left or right one cell, and
- enters a (possibly) new state.

The action is determined by the **transition function** $\delta(q, a) = (q', b, L)$ given as part of the description for the machine.

A TM **accepts** its input (saying **yes**) by entering the accept state and **rejects** its input (saying **no**) by entering the reject state.

A TM to compute x + y where x, y are positive integers

We use unary (|||||||) to represent x, y and x + y/

The input string will be $x\phi y$ in unary.

The goal is to produce xy on the tape.

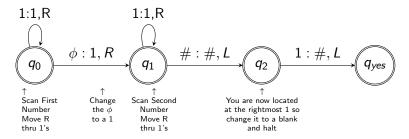
Example: 3 + 5 = 8

Start	#	1	1	1	ϕ	1	1	1	1	1	#
			\uparrow								
			q_0								
Finish	#	1	1	1	1	1	1	1	1	#	
									\uparrow		
									q_{yes}		

$$\Sigma = \{\phi, 1\}$$
$$\Gamma = \{\phi, 1, \#\}$$

Aside: We do not really need ϕ since we could just as easily use # to separate two numbers.

State Diagram



In our Transition Table, we will Reject on anything else (not drawn in the State Diagram)

You can use one fewer state since q_0 and q_1 really do the same thing.

Transition Table

Tape Symbols

		1	ϕ	#	
S	q 0	$q_0, 1, R$	$q_1, 1, R$	$q_N, \#, L$	(q', sym, R/L)
t	q_1	$q_1, 1, R$	$q_N,-,-$	$q_2, \#, L$	(q', sym, R/L)
а	q_2	$q_Y, \#, L$	$q_N,-,-$	$q_N,-,-$	
t	q_Y	_	_	_	
е	q_N	_	_	_	

Another Turing Machine Transition Table Here $\Sigma = \{1,*\}$ and $\Gamma = \{1,*,\#\}$

	1	#	
q 0	$q_1, *, R$	$q_{yes}, *, R$	
q_1	$q_0, *, R$	$q_{yes}, 1, R$	
q_{yes}	_	_	

The input tape will consists of some #'s followed by some nonnegative number of 1's followed by all #'s.

Output? Machine halts with --# ** * # ... on the tape.

Output? Machine halts with --# ***1 # #... on the tape. TM determines whether the number is Odd or Even. If Odd, TM prints a single 1 but if the number is Even, it prints all #'s.

On some input, a TM may run indefinitely without ever accepting or rejecting.

For example, it may **loop** on that input. Such a machine will never **halt**.

Simple Examples

- 1. A TM to recognize 2 (a decider)
- 2. A TM to compute f(x) = x + 1 for an integer $x \ge 1$ (the increment or plus one function).
- 3. A TM that does not halt (several, actually).
- 4. A TM to 'compute' f(x) = 2x for an integer $x \ge 1$ (the doubling function)
- 5. A TM that adds two non-negative integers:

$$f(x, y) = x + y$$
 for two non-negative integers x and y .

Note: Leavitt discusses a TM to add two integers (page 68) but since he never gives a careful, precise definition for a TM, it is difficult to follow some of what he says.

Does his TM only work for 2 + 2?