Turing Machines VI

Wednesday, October 29

Alan Turing Google Doodle - 23th June 2012

Handouts:
Assignment 19
A Simple Turing Machine



ON COMPUTABLE NUMBERS, WITH AN APPLICATION TO
THE ENTSCHEIDUNGSPROBLEM

By A. M. TvrixG.
[Received 28 May, 1936.—Read 12 November, 1936.]

The “computable” numbers may be described briefly as the real
numbers whose expressions as a decimal are caleulable by finite means.
Although the subject of this paper is ostensibly the computable numbers.
it is almost equally easy to define and investigate computable functions
of an integral vaviable or a real or computable variable, computahle
predicates, and so forth. The fundamental problems involved are,
however, the same in each case, and I have chosen the computable numbers
for explicit treatment as involving the least cumbrous technique. I hope
shortly to give an account of the relations of the computable numbers,
functions, and so forth to one another. This will include a development
of the theory of functions of a real variable expressed in terms of com-
putable numbers. According to my definition, a number is computable
if its decimal can be written down by a machine.
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What Exactly is a Turing Machine?
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Turing Machine Definition

. a finite input alphabet ¥ (used to create strings to be

processed)

. a finite tape alphabet I' that contains X as well as a special

blank symbol # (or (J or & ) in I but not in X

a finite set of states Q

4. an infinite tape with cells (infinite to the left and right and
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indexed as ... #,#, -3,-2,-1,0,1,2 3, #,# . .. )

a tape head that can move left (L) or right (R) over the
tape,reading and writing symbols onto tape cells as it proceeds

a special start state qg
a special accept (or yes) state Gyes (OF Gacc)
a special reject (or no) state gno (Or Grej) With Gacc 7 Grej

a special transition function 6 : Q@ x ' = Q x I' x {L, R} that
describes how the TM operates on a specific input string.



Some Comments

Everything is finite except for the tape. If you object to an
infinite tape, you can simply view it as being unbounded (or
unlimited).

There are slight differences between how TMs can be defined
but the definitions do not differ in significant ways.

We shall view the special accept and reject states as final in
the sense that once the TM enters one of these "halting”
states the machine stops.

We shall assume the tape cells are indexed by the integers . .
CFHLF,-3,-2,-1,0,1,2 3 4, #,.4, ...

And that each of the cells contains the special blank symbol
just before we place any input string onto the tape.

We will always place an input string to be " processed” onto
the tape with its left end at cell 0.



So, for example, if the input string is abcd the contents of the
tape will be

{.##,#,a,b,c,d, #,#, ..}

(with a at cell 0).
Note that, given this assumption, we are guaranteed to have a
blank symbol at each end of the input string.
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More Comments

The TM machine's tape head always starts at cell 0.
The TM machine always starts in state qg.
This is often called the start configuration.

It is the transition function () that determines the action of a
specific TM.

How do you read d(q,a) = (¢, b, L)

given the definition 6 : Q x ' — Q@ x I x {L,R} 7

Answer: when in state g scanning symbol a on the tape, write
b over the tape cell, move the head left by one cell, and enter
state q’.

In terms of modern computers, you can think of the tape as
being (an unlimited amount of) memory and the transition
function (along with the states) as being the control unit
(within the CPU).



How it Works

A Turing machine begins in its start state with its tape head at cell
0 scanning the leftmost symbol in the string. At each step, it reads
the symbol under its head, and, depending on that symbol and its
current state, it

> writes a new symbol on that cell (possibly the same),
» moves its head either left or right one cell, and
> enters a (possibly) new state.

The action is determined by the transition function
5(g,a) = (q', b, L) given as part of the description for the machine.

A TM accepts its input (saying yes ) by entering the accept state
and rejects its input (saying no) by entering the reject state.



A TM to compute x + y where x, y are positive integers

We use unary (||||||| ) to represent x,y and x + y/
The input string will be x¢y in unary.
The goal is to produce xy on the tape.

Example: 3 +5 =38

Start | ... # 1 1 1 ¢ 1 1 1 1 1 #...
/[\
do
Finish | ...# 1 1 1 1 1 1 1 1 #
/]\
Qyes
r={¢,1}
r={¢1#}

Aside: We do not really need ¢ since we could just as easily use #
to separate two numbers.



State Diagram

@ ¢:1,R A # 4L @ 1:#,L@

&)

T
Scan First Change Scan Second You are now located
Number the ¢ Number at the rightmost 1 so
Move R toal Move R change it to a blank
thru 1's thru 1's and halt

In our Transition Table, we will Reject on anything else (not drawn
in the State Diagram)

You can use one fewer state since qg and g; really do the same
thing.



Transition Table

an

Tape Symbols
1 ¢ #
S Qo q0,1, R a1, L,R an, #, L
t g | g, LR aqn,—— a,#, L (¢ sym R/L)
a q |qv,#,L an,—— an,——
t gy - - -
(S



Another Turing Machine Transition Table
Here ¥ = {1,x} and I = {1, , #}

1 #
qo q1, % R de57*7R
a1 qO;*;R quSv]-vR

Ayes

The input tape will consists of some #'s followed by some
nonnegative number of 1's followed by all #'s.

nput (@) [ .. . [# | #[[1]#][#].. ]
Output? Machine halts with — — —## x % x ##... on the tape.
(nput (a) | .. [ # [ #1111 #[#]. -]
Output? Machine halts with — — —## % x % 1#4£... on the tape.

TM determines whether the number is Odd or Even. If Odd, TM
prints a single 1 but if the number is Even, it prints all #'s.



On some input, a TM may run indefinitely without ever accepting
or rejecting.

For example, it may loop on that input. Such a machine will never
halt.



Simple Examples

1. A TM to recognize 2 (a decider)

. A TM to compute f(x) = x + 1 for an integer x > 1 ( the
increment or plus one function).

3. A TM that does not halt (several, actually).
4. A TM to 'compute’ f(x) = 2x for an integer x > 1 (the

doubling function)
. A TM that adds two non-negative integers:

f(x,y) = x + y for two non-negative integers x and y.

Note: Leavitt discusses a TM to add two integers (page 68)
but since he never gives a careful, precise definition for a TM,
it is difficult to follow some of what he says.

Does his TM only work for 2 4 27.



