Turing Machines

Alan Turing Google Doodle - 23th June 2012

October 24, 2025 Handouts:
Notes on Assignment 16
Assignment 17



David Hilbert

Born: January 23, 1862 in Konigsberg, Prussia
(now Kaliningrad, Russia)
Died: February 14, 1943 in Gottingen, Germany

Hilbert Biography Link

"No one shall expel us from the Paradise that Cantor has created.”


http://www-groups.dcs.st-and.ac.uk/~history/Biographies/Hilbert.html

Turing Machines
Algorithms,
and Computing

Turing machines (TMs) can compute any function normally
considered "computable.” In fact, we can define computable to
mean " computable by a TM".

At the International Congress of Mathematicians (Paris, 1900),
David Hilbert identified 23 problems in Mathematics and posed
them as a challenge for the coming century



Hilbert’s 10th Problem

Devise an algorithm* that determines whether a given polynomial
(with one or more variables) with integer coefficients has an
integral root.

* In Hilbert's words: "... a process according to which it can be
determined by a finite number of operations.”

For example p(x, yz) = 6x3yz? + 3xy? — x3 — 10 has four terms
over the three variables x, y, z and has a root at

(x,y,z) =(5,3,0).

The polynomial p(x) = x? — 3x + 2 over the single variable x has
two roots {1,2} which can be found by factoring

p(x) = x> —=3x + 2 = (x — 1)(x — 2) or by using the quadratic
formula.

The polynomial p(x) = x> — 2 = (x — v/2)(x + /2) over the single
variable x has no integer roots.



Perhaps Hilbert assumed that an algorithm must exist (similar to
the quadratic formula for single variable polynomials). Someone
only needed to find it.

It soon became clear that mathematics lacked a clear definition for
just what an "algorithm” was as well as just what it meant for
something to be "computable function”. At the turn of the
century, these two terms (algorithm and computable) were not
seen as essentially being the same.

Not having a precise definition for important terms is generally a
problem for mathematicians!



During the 1930s, mathematicians were still trying to come to
grips with the notion of just what was meant by the term

" computable function” (as well as the notion of "algorithm”
itself). Several alternative notions had been proposed each with its
own peculiarities and all very different.

Here is a list of the most well known attempts:

A-calculus Alonzo Church, Stephen Kleene (1936)
p-recursive functions Kurt Godel (1933)
combinatory logic Haskell Curry (1930)
Post systems Emil Post (1928)
Turing machines Alan Turing (1936)




All these systems had a notion of "computation” in one form or
another. They deal with various types of data, however. For
example, Turing machines manipulate strings over a finite
alphabet, p-recursive functions manipulate the natural numbers,
the lambda calculus manipulates "lambda” terms, and
combinatory logic manipulates strings of " combinatory symbols”.

It is easy to encode just about anything as strings in {0,1}, after
all, we do this all the time when using modern day computers.
Surprisingly, with suitable encodings as strings, it turns out that all
the above formalisms can simulate each other. So despite their
superficial differences, they are all equivalent models of
"computation”.

Of the classical systems listed above, the one that most closely
resembles modern computers is the Turing machine.



The Church — Turing Thesis

When it was discovered that all these researchers were essentially
talking about the same thing, Alonzo Church went out on a limb
and declared that the intuitive notion of "computable by some
algorithm”, which mathematicians had sought to capture formally
for some time, is captured precisely by Turing machines.

This assertion is known as Church’s Thesis or The Church —
Turing Thesis. It is not a theorem but rather a declaration that
the formalism exactly captures our intuition of what it means to
"compute”’ something



The Church — Turing Thesis

Intuitive notion of what it means to be computable via an
algorithm
= (is equivalent to) computable via a Turing machine
or
intuitive notion of algorithm = TM
or
Any computation that can be carried out by mechanical means can
be performed by some Turing machine.

Also, since there is a " Universal Turing Machine” that can
simulate all other TMs, one can take the liberty of viewing a TM
as being an algorithm and a universal TM as being a computer
that "executes” algorithms (all other TMs).

Algorithm = TM 2 computer program (say in Java or Python)
computer = universal TM



Turing Machines
Algorithms,
and Computing

Turing machines (TMs) can compute any function normally
considered " computable.” In fact, we can define computable to
mean " computable by a TM".



Self-Reference

With "self-reference”, one can end up with rather strange
situations. In logic, for example, one might want all declarative
sentences to either be true or false (XOR, "exclusive or"). Can
there be a sentence that is both?

This sentence is false



Self-Reference

| am not provable

Godel (in his famous " Incompleteness Theorem") actually showed
that in any "sufficiently large” system of mathematics (containing
the natural numbers or " axioms of Peano arithmetic”, for
example), there are statements that are true but not provable.

He did this by essentially encoding the sentence "I am not
provable” within his mathematical system using " Godel numbers”.



