
Handouts
Notes on Assignment 14

Assignment 15

No Class on Monday





Course Grade Guidelines

Percentages
Homework and Papers: 30%

Exam 1 20%
Exam 2 20%

Term Project: 20%
Class Participation: 10%



Turing in the News

This Painting Made From Gay Mens Blood Make A
Powerful Point About Blood Donation Rules

The painting is a protest against UK rules which ban men from
donating blood within 12 months of having sex with another man.
The portrait of Alan Turing, the pioneering computer scientist and
British war hero, was made from hundreds of vials of blood, all
donated by gay men.
The painting was commissioned by campaign group Freedom to
Donate, who unveiled it at the Houses of Parliament.
Artist Conor Collins said that almost all the blood is from medical
professionals who are unable donate blood, because of their
sexuality.



”With the exception of one person, all the blood in the painting is from GPs, surgeons, nurses. They’re all medical
professionals who, because of who they are, can’t donate blood,” the artist said.
”One of them was a heart surgeon and you literally trust him to open you up and hold your heart in his hands and
yet we apparently, according to the law, don’t trust him to donate blood.”



Asked why he chose Turing who was gay for the painting, Collins
said there were parallels to his sacrifices and persecution.

The first thing is that he anonymously through his actions saved
the lives potentially of millions and millions of people, he said.

And when you donate you anonymously save the life of someone
you’ve never met and who you’ll maybe never meet.

The second thing is that Alan Turing, despite all the actions and
great things he did, if he was alive today he wouldn’t be allowed to
donate blood either.



Turing and Numbers III



INFINITY



Georg Ferdinand Ludwig Philipp
Cantor

Born: March 3, 1845 in St Petersburg, Russia
Died: January 6, 1918 in Halle, Germany

Cantor Biography Link

http://www-groups.dcs.st-and.ac.uk/~history/Biographies/Cantor.html


According to Cantor:

A collection is infinite if it can be
put into a one-to-one correspondence

with one of its proper subsets.

A collection is finite if it is not
infinite.

Two collections have the same
size if there is a one-to-one

correspondence between the elements
of each collection.



Examples of Infinite Sets

Counting Numbers = Positive Integers

Even Positive Integers = 2,4,6,8,10,...

Odd Positive Integers = 1,3,5,7,9,11,?

Primes = 2, 3, 5, 7, 11, 13, 17, 19, 21, 23, 29,?

Integers: 0, +1, -1, +2 , -2, +3, -3, . . .

Rational Numbers

Real Numbers



The Real Numbers Form an Infinite Set

A function such as f (x) = 10x sets up a one-to-one
correspondence between the set of all real numbers and the subset

of all positive real numbers.



Two collections have the same size if there is a one-to-one
correspondence between the elements of each collection.

More Fans? More Seats?





Two collections have the same size if there is a one-to-one
correspondence between the elements of each collection.

Galileo’s Paradox: The Natural Numbers and the Perfect Squares
are the same size

1 2 3 4 5 6 7 8 9 . . .

↕ ↕ ↕ ↕ ↕ ↕ ↕ ↕ ↕
1 4 9 16 25 36 49 64 81 . . .



Cantor’s First Big Surprise

The Set of Rational Numbers
and

The Set of Integers Have the Same Size

1/1 2/1 3/1 4/1 5/1 6/1 7/1 8/9 9/1 10/1 11/1 . . .
1/2 2/2 3/2 4/2 5/2 6/2 7/2 8/2 9/2 10/2 11/2 . . .
1/3 2/3 3/3 4/3 5/3 6/3 7/3 8/3 9/3 10/3 11/3 . . .
1/4 2/4 3/4 4/4 5/4 6/4 7/4 8/4 9/4 10/4 11/4 . . .
1/5 2/5 3/5 4/5 5/5 6/5 7/5 8/5 9/5 10/5 11/5 . . .
1/6 2/6 3/6 4/6 5/6 6/6 7/6 8/6 9/6 10/6 11/6 . . .
1/7 2/7 3/7 4/7 5/7 6/7 7/7 8/7 9/7 10/7 11/7 . . .
1/8 2/8 3/8 4/8 5/8 6/8 7/8 8/8 9/8 10/8 11/8 . . .
1/9 2/9 3/9 4/9 5/9 6/9 7/9 8/9 9/9 10/9 11/9 . . .
1/10 2/10 3/10 4/10 5/10 6/10 7/10 8/10 9/10 10/10 11/10 . . .
1/11 2/11 3/11 4/11 5/11 6/11 7/11 8/11 9/11 10/11 11/11 . . .



The Set of Real Numbers and The Set of Integers
Do NOT Have the Same Size
Cantor’s Diagonal Argument

Consider any listing of the real numbers in interval [0,1]

1 . 3 6 7 0 0 2 4 5 9 . . .
2 . 2 5 0 0 0 0 0 0 0 . . .
3 . 9 6 7 8 7 1 2 1 5 . . .
4 . 2 4 8 6 1 3 5 7 6 . . .
5 . ...
6 . ...
7 . ...
8 . ...

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Form a number a by taking as its nth digit
5 if the nth digit of number in row n is 3

3 if the nth digit of number in row n is not 3
Claim: a does not appear in the list



David Hilbert

Born: January 23, 1862 in Königsberg, Prussia
(now Kaliningrad, Russia)

Died: February 14, 1943 in Göttingen, Germany

Hilbert Biography Link

”No one shall expel us from the Paradise that Cantor has created.”

http://www-groups.dcs.st-and.ac.uk/~history/Biographies/Hilbert.html


Turing Machines
Algorithms,

and Computing
Turing machines (TMs) can compute any function normally

considered ”computable.” In fact, we can define computable to
mean ”computable by a TM”.

At the International Congress of Mathematicians (Paris, 1900),
David Hilbert identified 23 problems in Mathematics and posed

them as a challenge for the coming century



Hilbert’s 10th Problem

Devise an algorithm* that determines whether a given polynomial
(with one or more variables) with integer coefficients has an

integral root.

* In Hilbert’s words: ”... a process according to which it can be
determined by a finite number of operations.”

For example p(x , yz) = 6x3yz2 + 3xy2 − x3 − 10 has four terms
over the three variables x , y , z and has a root at
(x , y , z) = (5, 3, 0).

The polynomial p(x) = x2 − 3x + 2 over the single variable x has
two roots {1,2} which can be found by factoring
p(x) = x2 − 3x + 2 = (x − 1)(x − 2) or by using the quadratic
formula.

The polynomial p(x) = x2 − 2 = (x −
√
2)(x +

√
2) over the single

variable x has no integer roots.



Perhaps Hilbert assumed that an algorithm must exist (similar to
the quadratic formula for single variable polynomials). Someone
only needed to find it.

It soon became clear that mathematics lacked a clear definition for
just what an ”algorithm” was as well as just what it meant for
something to be ”computable function”. At the turn of the
century, these two terms (algorithm and computable) were not
seen as essentially being the same.

Not having a precise definition for important terms is generally a
problem for mathematicians!



During the 1930s, mathematicians were still trying to come to
grips with the notion of just what was meant by the term
”computable function” (as well as the notion of ”algorithm”
itself). Several alternative notions had been proposed each with its
own peculiarities and all very different.

Here is a list of the most well known attempts:

λ-calculus Alonzo Church, Stephen Kleene (1936)
µ-recursive functions Kurt Gödel (1933)
combinatory logic Haskell Curry (1930)
Post systems Emil Post (1928)

Turing machines Alan Turing (1936)



All these systems had a notion of ”computation” in one form or
another. They deal with various types of data, however. For
example, Turing machines manipulate strings over a finite
alphabet, µ-recursive functions manipulate the natural numbers,
the lambda calculus manipulates ”lambda” terms, and
combinatory logic manipulates strings of ”combinatory symbols”.

It is easy to encode just about anything as strings in {0,1}, after
all, we do this all the time when using modern day computers.
Surprisingly, with suitable encodings as strings, it turns out that all
the above formalisms can simulate each other. So despite their
superficial differences, they are all equivalent models of
”computation”.

Of the classical systems listed above, the one that most closely
resembles modern computers is the Turing machine.



The Church – Turing Thesis

When it was discovered that all these researchers were essentially
talking about the same thing, Alonzo Church went out on a limb
and declared that the intuitive notion of ”computable by some
algorithm”, which mathematicians had sought to capture formally
for some time, is captured precisely by Turing machines.

This assertion is known as Church’s Thesis or The Church –
Turing Thesis. It is not a theorem but rather a declaration that
the formalism exactly captures our intuition of what it means to
”compute” something



The Church – Turing Thesis
Intuitive notion of what it means to be computable via an

algorithm
∼= (is equivalent to) computable via a Turing machine

or
intuitive notion of algorithm ∼= TM

or
Any computation that can be carried out by mechanical means can

be performed by some Turing machine.

Also, since there is a ”Universal Turing Machine” that can
simulate all other TMs, one can take the liberty of viewing a TM
as being an algorithm and a universal TM as being a computer
that ”executes” algorithms (all other TMs).

Algorithm ∼= TM ∼= computer program (say in Java or Python)
computer ∼= universal TM


