
Some Notes on Assignment 13
Assignment 14
Some Notes on Exam 1

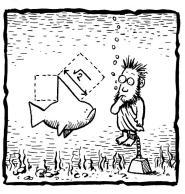
Turing and Numbers II

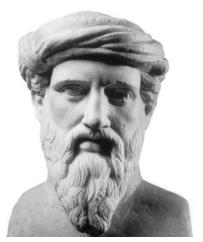
Is there a **naturally occurring** number that is not rational?

The square root of 2 is not rational. (Hypotenuse of a right triangle of sides 1)

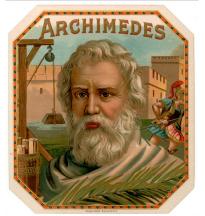
The First Great Crisis in Mathematics

Pythagoras of Samos


Link to More About Pythagoras and Pythagoreans


The first person to recognize the existence of irrational numbers might have died for his discovery. **Hippassus of Metapontum** was an Ancient Greek philosopher of the Pythagorean school of thought. Supposedly, he tried to use his teacher's famous theorem $a^2 + b^2 = c^2$ to find the length of the diagonal of a unit square. This revealed that a square's sides are incommensurable with its diagonal, and that this length cannot be expressed as the ratio of two integers. The other Pythagoreans believed dogmatically that only positive rational numbers could exist. They were so horrified by the idea of incommensurability, that they threw Hippassus overboard on a sea voyage, and vowed to keep the existence of irrational numbers an official secret of their sect.

Before After



The School of Athens by Raphael Born: about 569 BC in Samos, Ionia Died: about 475 BC Link to Biography of Pythagoras

Archimedes of Syracuse

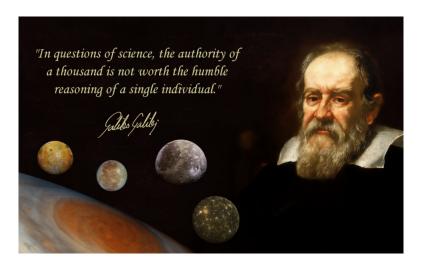
Born: 287 BC in Syracuse, Sicily Died: 212 BC in Syracuse, Sicily Link to Archimedes Biography

Greek Abhorrence of Infinity?

Potential vs Actual Infinite (Aristotle)

Aristotle distinguished between actual and potential infinities. An actual infinity is something which is completed and definite and consists of infinitely many elements. A potential infinite is a sequence which is endless. Whereas all the elements of an actually infinite set are assumed to exist together simultaneously, the elements of a potentially infinite sequence exist only consecutively over time.

Archimedes Palimpset For more details, link here Palimpset


The whole is greater than any of its parts?

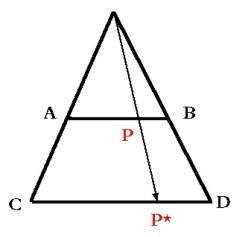
1	2	3	4	5	6	7	8	9	
\downarrow	\$								
1	4	9	16	25	36	49	64	81	

Galileo Galilei

Born: February 15,1564 in Pisa
Died: January 8, 1642 in Arcetri (near Florence)
Galileo Biography Link

Galileo Facing the Roman Inquisition by Cristiano Banti (1857).

Bernard Placidus Johann Nepomuk Bolzano



Born: October 5,1781 in Prague
Died: December 18, 1848 in Prague

<u>Bolzano Biography Link</u>
Paradoxien des Unendlichen(1851)
Paradoxes of the Infinite

Bolzano's Paradox

The line segment CD is twice as long as AB but has the same number of points!

MID 19TH CENTURY VIEW OF INFINITY

A collection is **finite** if it has n elements for some non-negative integer n.

A collection is **infinite** if it is not finite.

Cantor Turned This Upside Down

Cantor Turned This Upside Down

Georg Ferdinand Ludwig Philipp Cantor

Born: March 3, 1845 in St Petersburg, Russia Died: January 6, 1918 in Halle, Germany Cantor Biography Link

According to Cantor:

A collection is **infinite** if it can be put into a one-to-one correspondence with one of its subsets.

A collection is **finite** if it is not infinite.

Two collections **have the same size** if there is a one-to-one correspondence between the elements of each collection.

Examples

Counting Numbers = Positive Integers

Even Positive Integers = 2,4,6,8,10,...

Odd Positive Integers = 1,3,5,7,9,11,?

Primes = 2, 3, 5, 7, 11, 13, 17, 19, 21, 23, 29,?

Integers: $0, +1, -1, +2, -2, +3, -3, \dots$

Rational Numbers

Real Numbers

