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How Close Was Turing to
Public-Key Cryptology?

Let’s look back to the fall of 1937. Nazi Germany was rearming
under Adolf Hitler, world–shattering war looked imminent, and
Alan Turing was pondering the usefulness of number theory.

He foresaw that preserving military secrets would be vital in the
coming conflict and proposed a way to encrypt communications
using number theory.
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TURING’S CIPHER (Version 1) (Ordinary Arithmetic)

Step 1: Sender (Alice) and receiver (Bob) agree on a secret key, a
large prime number p.

Step 2: Sender translates the plain text message into a large prime
number

REBECCAS

R E B E C C A A

18 05 02 05 03 03 01 19

18050205030119

Append integers on the end so the result is a prime:

M = 18050205030119179



Step 3: Sender enciphers M by multiplying M by p:

M∗ = Mp

and transmits M∗

Step 4: Receiver deciphers message by dividing M* by p

Note that Sender and Receiver have easy tasks.

How about our Eavesdropper (Carol)?
Can she crack the ciphertext M*?

A direct attack based on factoring M* is a hard problem as far as
we know.

So Turing appears to have an idea similar to RSA:
multiplying is easy, factoring is hard.

BUT..



BUT..

Suppose the Eavesdropper intercepts a second enciphered message
from the Sender to the Receiver

N∗ = Np

Observe:

1. The greatest common divisor of N∗ = Np and M∗ = Mp is easy
to find. (The Euclidean Algorithm again)

2. The greatest common divisor of Np and Mp is p since both N
and M are prime numbers.

It’s trivial to find the ”secret” key p.



TURING’S CIPHER (Version 2) modular arithmetic

Version 1 uses conventional arithmetic.
Version 2 uses modular arithmetic.

Step 1: Sender and receiver agree on a large prime p, which may
be made public. They also agree on a secret key k , an integer less
than p. Thus k is one of the numbers 1, 2, 3, É,, p − 1. It does
not have to be a prime number.

Step 2: Sender translate plaintext into blocks of integers, each less
than p. Let M denote one of these blocks.

Step 3: Sender enciphers M by computing Mk and reducing the
product modulo p.

Mk = M∗ mod p
Sender transmits M∗



Step 3: Sender enciphers M by computing Mk and reducing the
product modulo p.

Mk = M∗ mod p
Sender transmits M∗

Step 4: How does Receiver decipher the message?

Since k is a positive integer less than p, k is relatively prime to p.

Thus k has an inverse j (modulo p):

The Receiver multiplies M∗ by j

M ∗ j = (Mk)j mod p = M(kj) mod p
= M × 1 mod p = M mod p

By Fermat’s Theorem, kp−1 = 1 mod p
Thus kp−2k = 1 mod p so kp−2 is the inverse of k mod p.

The receiver knows j .



Fermat’s Little Theorem

Pierre de Fermat first stated the theorem in a letter dated October
18, 1640, to his friend and confidant Frénicle de Bessy as the
following:

If p is a prime and a is any integer not divisible by p, then
ap−1 − 1 is divisible by p.

Fermat did not prove his assertion, only stating:

Et cette proposition est généralement vraie en toutes progressions
et en tous nombres premiers; de quoi je vous envoierois la
démonstration, si je n’apprhendois d’étre trop long.

(And this proposition is generally true for all series and for all
prime numbers; the proof of which I would send to you, if I did not
fear it being too long.)



Weakness of Turing’s 2nd Cipher
Subject to known-plaintext attack

During World War II German weather reports were not encrypted
with the supposedly highly secure Enigma system. After all, so
what if the Allies learned that there was rain off the south coast of
Iceland?

This practice provided the British with a critical edge in the
Atlantic naval battle during 1941.

The problem was that some of those weather reports had originally
been transmitted from U–boats out in the Atlantic. Thus, the
British obtained both unencrypted reports and the same reports
encrypted with Enigma. By comparing the two, the British were
able to determine which key the Germans were using that day and
could read all other Enigma encoded traffic.
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Suppose our eavesdropper knows both M and M∗ where

M∗ = Mk mod p

Then Mp−2M∗ = Mp−2Mk mod p
= Mp−1k mod p

= k mod p by Fermat’s Theorem.

So Carol can discover the secret key k and can decrypt any
message.



”Thus Turing’s cipher has no practical value. Fortunately, Turing
got better at cryptography after devising this code; his subsequent

cracking of Enigma surely saved thousands of lives, if not the
whole of Britain.”

Tom Leighton and Romitt Rubinfeld
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