

Code Makers and Code Breakers
From Julius Caesar To Alan Turing
And Beyond II:
An Introduction To
Some Mathematics and Linguistics
Used to Crack Secret Ciphers

Caesar Cipher: Replace each letter of the message by the letter 3 places beyond it in the normal alphabet

Caesar Cipher: Replace each letter of the message by the letter 3 places beyond it in the normal alphabet

Plain: ABCDEFGHIJKLMNOPQRSTUVWXYZ Cipher: DEFGHIJKLMNOPQRSTUVWXYZABC

Generalization of Caesar Cipher

- 1) Replace each letter by the number to which it corresponds (its position in the alphabet)
- 2) PERFORM SOME ARITHMETIC ON THE NUMBER, REDUCING MODULO THE NUMBER OF CHARACTERS IN THE ALPHABET
- 3) Replace resulting number by its letter equivalent

Step 2: Caesar: Add 3 Other Possibilities? Step 2:

Caesar: Add 3

Other Possibilities?

Add *k* for some other integer *k*

How many choices are there for *k* that produce different cipher texts?

k = 1, 2, 3, ..., n - 1 where n is the number of letters in the alphabet.

Step 2:

Caesar: Add 3

Other Possibilities?

Add *k* for some other integer *k*

How many choices are there for k that produce different cipher texts?

k = 1, 2, 3, ..., n - 1 where n is the number of letters in the alphabet.

Caesar Cipher with shift k.

Suppose you know that the general method was such a shift but you do not know k.

Generalization of Caesar Cipher

- 1) Replace each letter by the number to which it corresponds (its position in the alphabet)
- 2) PERFORM SOME ARITHMETIC ON THE NUMBER, REDUCING MODULO THE NUMBER OF CHARACTERS IN THE ALPHABET
- 3) Replace resulting number by its letter equivalent

Generalization of Caesar Cipher

- 1) Replace each letter by the number to which it corresponds (its position in the alphabet)
- 2) PERFORM SOME ARITHMETIC ON THE NUMBER, REDUCING MODULO THE NUMBER OF CHARACTERS IN THE ALPHABET
- 3) Replace resulting number by its letter equivalent

Step 2: Caesar: Shift Add k Other Possibilities?

Multiply? Α 3 Ν 42 16 Ρ 14 В 2 F 6 15 45 19 S 0 C 3 9 Ρ 16 48 22 V D 4 12 Q 17 51 25 Υ Ε 5 0 R 15 18 54 2 В F R S Ε 6 18 19 57 5 G 7 U Т 20 608 Н 21 Н Χ U 21 K 8 24 63 11 9 27 1 Α V 22 66 14 Ν W 23 Q 10 30 4 D 69 17 K 33 7 G X 24 Т 11 72 20 Υ 12 36 10 25 75 23 W

ABCDEFGHIJKLMNOPQRSTUVWXYZ CFILORUXADGJMPSVYBEHKNQTWZ

26

Μ

Μ

13

39 13

Ζ

78 26

Multiply by 2?

				. , ,			
Α	1	2	В	N	14	28 2	В
В	2	4	D	0	15	30 4	D
C	3	6	F	Р	16	32 6	F
D	4	8	Н	Q	17	34 8	Н
Ε	5	10	J	R	18	36 10	J
F	6	12	L	S	19	38 12	L
G	7	14	N	T	20	40 14	Ν
Н	8	16	Р	U	21	42 16	Ρ
I	9	18	R	V	22	44 18	R
J	10	20	T	W	23	46 20	Τ
K	11	22	V	X	24	48 22	V
L	12	24	X	Y	25	50 24	Χ
М	13	26	Ζ	7	26	52 26	7

ABCDEFGHIJKLMNOPQRSTUVWXYZ BDFHJLNPRTVXZBDFHJLNPRTVXZ

MULTIPLICATION BY 2

```
A, N \rightarrow B B, O \rightarrow D C, P \rightarrow F

ABC \rightarrow BDF

ABP \rightarrow BDF

AOC \rightarrow BDF

AOP \rightarrow BDF

NBC \rightarrow BDF

NPB \rightarrow BDF

NOC \rightarrow BDF

NOP \rightarrow BDF
```

Problem:

MULTIPLICATION BY 2

A, $N \rightarrow B$ B, $O \rightarrow D$ C, $P \rightarrow F$

 $\begin{array}{c} \textbf{ABC} \rightarrow \textbf{BDF} \\ \textbf{ABP} \rightarrow \textbf{BDF} \\ \textbf{AOC} \rightarrow \textbf{BDF} \\ \textbf{AOP} \rightarrow \textbf{BDF} \\ \textbf{NBC} \rightarrow \textbf{BDF} \\ \textbf{NPB} \rightarrow \textbf{BDF} \\ \textbf{NOC} \rightarrow \textbf{BDF} \\ \textbf{NOP} \rightarrow \textbf{BDF} \\ \\ \textbf{NOP} \rightarrow \textbf{BDF} \\ \end{array}$

Problem: HOW DO WE GO FROM ENCIPHERED MESSAGE BACK TO THE PLAINTEXT MESSAGE?

A MORE EXTREME CASE MULTIPLY BY 13 A C E G I K M O Q S U W Y \rightarrow M B D F H J L N P R T V X Z \rightarrow Z

MZMZMMZMMM
CAN BE DECIPHERED AS
EVIL MEN SAY OR
STATISTICS

 $13^{10} = 13,858,491,849$

What about Multiplication?

$$f(x) = a \cdot x \mod N$$

a multiplier N size of alphabet

$$S: \{1, 2, ..., N\}$$

- 1) Does $f: S \rightarrow S$?
- 2) When is *f* one-to-one?

$$x \neq y \Rightarrow f(x) \neq f(y)$$

Suppose
$$f(x) = f(y)$$

$$ax \mod N = ay \mod N$$

$$ax \equiv ay \mod N$$

$$a(x-y) \equiv 0 \mod N$$

This implies $x \equiv y$ exactly when a is relatively prime to N.

Our Arithmetic Function Must Be Reversible One- To - One Have an Inverse

$$S: \{1, 2, ..., 26\}$$

Caesar: $f(x) = x + 3 \pmod{26}$

What is Inverse?

General shift: f(x) = x + s(mod26)

There are 26 possible shifts.

There are $26! = 4.03 \cdot 10^{26}$ different monoalphabetic substitution schemes

Number of Rearrangements of the English Alphabet

Choices for A: 26

Choices for B: 25

Choices for A and B: $26 \cdot 25 = 650$

Choices for C: 24

Choices for A, B, C: 26 · 25 · 24

Choices for A, B, C,..., Z: $26 \cdot 25 \cdot 24 \cdot 23 \cdot ... \cdot 3 \cdot 2 \cdot 1 = 26!$

How Big is 26!?

403291461126605635584000000

Brute Force Method

Check 1 million per second:

$$\frac{4.03 \cdot 10^{26}}{10^6} = 4.02 \cdot 10^{20} \text{ seconds}$$

How Big is 26!?

403291461126605635584000000

Brute Force Method

Check 1 million per second:

$$\frac{4.03 \cdot 10^{26}}{10^6} = 4.02 \cdot 10^{20} \text{ seconds}$$

 $1.2 \cdot 10^{13}$ years Age of Universe: 10^9 years

