

Code Makers and Code Breakers
From Julius Caesar To Alan Turing
And Beyond V
An Introduction To
Some Mathematics and Linguistics
Used to Crack Secret Ciphers

Detecting a Polyalphabetic Cipher

A monoalphabetic cipher has greater variation among frequencies of the individual letters

William Friedman (1930) Index of Coincidence

Index of Coincidence

$$\sum_{i=A}^{Z} \frac{f_i(f_i-1)}{N(N-1)}$$

 f_i = frequency of letter iN = number of characters in message

Number of Alphabets	Expected IC
1	.066
2	.052
5	.044
10	.041
26	.038

The Vigenère Cipher Was Secure for 300 Years

The Vigenère Cipher Was Secure for 300 Years

A Simple Mathematical Idea Destroyed Its
Apparent Security

The Vigenère Cipher Was Secure for 300 Years

A Simple Mathematical Idea Destroyed Its Apparent Security

If the keyword has n letters and some word appears in the plaintext more than n times, then that word will be enciphered the same way at least twice in the cipher text.

How Can We Make a Vigenère Cipher More Secure?

How Can We Make a Vigenère Cipher More Secure? Try To Get Rid of Repetitions How Can We Make a Vigenère Cipher More Secure? Try To Get Rid of Repetitions How? How Can We Make a Vigenère Cipher More Secure? Try To Get Rid of Repetitions How? Make Keyword Longer

How Can We Make a Vigenère Cipher More Secure? Try To Get Rid of Repetitions How? Make Keyword Longer

Take Keywords Longer Than Length of Plaintext

Take Keywords Longer Than Length of Plaintext

Examples

Declaration Of Independence
The Bible

1. Take two long texts (2000 or more characters in length)

- 1. Take two long texts (2000 or more characters in length)
- 2. Choose one of them for the Keyword and the other for the Plaintext

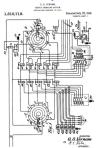
- 1. Take two long texts (2000 or more characters in length)
- 2. Choose one of them for the Keyword and the other for the Plaintext
- 3. Use our Vigenère program to generate the ciphertext

- 1. Take two long texts (2000 or more characters in length)
- 2. Choose one of them for the Keyword and the other for the Plaintext
- 3. Use our Vigenère program to generate the ciphertext
- 4. How flat is the frequency count for the cipher text?

- 1. Take two long texts (2000 or more characters in length)
- 2. Choose one of them for the Keyword and the other for the Plaintext
- 3. Use our Vigenère program to generate the ciphertext
- 4. How flat is the frequency count for the cipher text?
- 5. What is the longest string in the cipher text that repeats itself?

Possible Weaknesses of This Approach

IS THERE A THEORETICALLY UNBREAKABLE CIPHER SCHEME?


IS THERE A THEORETICALLY UNBREAKABLE CIPHER SCHEME?

THE ONE TIME PAD

Each character in plaintext is shifted by a random number

Gilbert Vernam 1890 – 1960

Vernam's Patent Figure

USING A ONE TIME PAD

11	25	20	14	13	12	9	18	21	5	24	17	18	9	5
12	8	2	1	12	9	14	13	15	23	17	9	21	14	17
20	15	24	5	17	21	10	21	5	5	26	3	22	22	23
1	4	14	18	24	2	18	4	17	18	21	22	10	5	21
1	13	2	8	26	2	5	1	3	25	2	2	12	19	21
4	4	21	8	12	11	7	17	18	14	20	18	18	19	12
2	22	20	14	10	20	4	13	23	13	5	1	5	6	14
14	16	3	8	16	9	9	14	14	21	3	17	25	24	15
26	23	12	19	23	3	8	4	17	23	17	6	24	20	16
17	4	10	15	16	26	14	3	2	22	10	1	22	23	17
13	18	25	24	10	17	14	12	26	23	15	7	5	26	19
21	21	3	16	16	20	9	21	12	23	16	21	1	6	10

M	A	Т	Н	E	M	Α	Т	-1	C	S
13	1	20	8	5	13	1	20	9	3	19
11	25	20	14	13	12	9	18	21	5	24
24	26	40	22	18	25	10	38	30	8	43
24	26	14	22	18	25	10	12	4	8	17
X	Z	N	V	R	Υ	J	L	D	Н	Q

Vernam One Time Pad in Binary

Add Modulo 2 with no carries; Also called XORing

$$0 + 0 = 0$$
 $0 + 1 = 1$
 $1 + 0 = 1$
 $1 + 1 = 0$

Letter	Position	Binary
A	1	00001
В	2	00010
С	3	00011
D	4	00100
E	5	00101
F	6	00110
G	7	00111
H	8	01000
I	9	01001
J	10	01010
K	11	01011
L	12	01100
M	13	01101
N	14	01110
0	15	01111
P	16	10000

Letter	Position	Binary			
Q	17	10001			
R	18	10010			
S	19	10011			
T	20	10100			
U	21	10101			
V	22	10110			
W	23	10111 11000			
X	24				
Y	25	11001			
Z	26	11010			
[SPACE]	27	11011			
	28	11100			
,	29	11101			
!	30	11110 11111 00000			
:	31				
;	32				

plaintext: **THI**S IS THE MESSAGE One Time Pad: 0101010010010011110001111000011?

0	1	0	1	0	1	0	0	1	0	0	1	0	0	0
1	0	1	0	0	0	1	0	0	0	0	1	0	0	1
1	1	1	1	0	1	1	0	1	0	0	0	0	0	1

Letter	Position	Binary				
A	1	00001				
В	2	00010				
С	3	00011				
D	4	00100				
E	5	00101				
F	6	00110				
G	7	00111				
H	8	01000				
I	9	01001				
J	10	01010				
K	11	01011				
L	12	01100				
M	13	01101				
N	14	01110				
0	15	01111				
P	16	10000				

Letter	Position	Binary
Q	17	10001
R	18	10010
S	19	10011
T	20	10100
U	21	10101
V	22	10110
W	23	10111
X	24	11000
Y	25	11001
Z	26	11010
[SPACE]	27	11011
	28	11100
,	29	11101
!	30	11110
:	31	11111
;	32	00000

0	1	0	1	0	1	0	0	1	0	0	1	0	0	0
1	0	1	0	0	0	1	0	0	0	0	1	0	0	1
1	1	1	1	0	1	1	0	1	0	0	0	0	0	1

11110 becomes ! 11010 becomes Z 00001 becomes A Ciphertext begins !ZA

Thoughts About The One-Time Pad

Thoughts About The One-Time Pad In Theory: Completely Secure

Thoughts About The One-Time Pad In Theory: Completely Secure Practical Problems:

Thoughts About The One-Time Pad In Theory: Completely Secure Practical Problems:

▶ Pad must be randomly generated.

- Pad must be randomly generated.
- You and your friend need identical pads.

- Pad must be randomly generated.
- You and your friend need identical pads.
- You must stay synchronized.

- Pad must be randomly generated.
- You and your friend need identical pads.
- You must stay synchronized.
- You must use the pad only once.

- Pad must be randomly generated.
- You and your friend need identical pads.
- You must stay synchronized.
- You must use the pad only once.
- ▶ Creation, Distribution, and Storage of pads are a problem.

- Pad must be randomly generated.
- You and your friend need identical pads.
- You must stay synchronized.
- You must use the pad only once.
- ▶ Creation, Distribution, and Storage of pads are a problem.
- ▶ How many pads would the State Department require?

Think of the Enigma Machine as a Vigenère Cipher With a Keyword of Length

$$26 \times 26 \times 26 = 17,576$$